Antioxidant Ready-to-Use Grape Pomace Extracts Recovered with Natural Eutectic Mixtures for Formulation of Color-Rich Gummies
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. COSMO-SAC Model
2.3. Preparation and Characterization of Eutectic Mixtures
2.4. Ultra-Turrax-Assisted Solid–Liquid Extraction
2.5. Extract Characterization
2.6. Extracts’ Stability at Light and Temperature Exposure
2.7. Gummy Candy Production
- -
- Solution 1: gelatin solution (50 wt. %) was prepared by dissolving gelatin in distilled water and stored for 30 min for gelatin hydration.
- -
- Solution 2: a mixture of water, glucose syrup, and saccharose at a 1:1:2 mass ratio.
Gummy Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Anthocyanin Chemistry and Solvent Selection
3.2. Eutectic Mixtures Characterization
3.3. Ultra-Turrax-Assisted Solid–Liquid Extraction
3.4. Thermal Stability
3.5. Gummy Candy Development
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Le Bourvellec, C.; Yu, J.; Zhao, L.; Wang, K.; Tao, Y.; Renard, C.M.G.C.; Hu, Z. Trends and Challenges on Fruit and Vegetable Processing: Insights into Sustainable, Traceable, Precise, Healthy, Intelligent, Personalized and Local Innovative Food Products. Trends Food Sci. Technol. 2022, 125, 12–25. [Google Scholar] [CrossRef]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, Environment-Friendly and Sustainable Techniques for Extraction of Food Bioactive Compounds and Waste Valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Pereira, J.F.B.; Santos-Ebinuma, V.C.; Pessoa, A.; Raghavan, V. Insights into Using Green and Unconventional Technologies to Recover Natural Astaxanthin from Microbial Biomass. Crit. Rev. Food Sci. Nutr. 2023, 63, 11211–11225. [Google Scholar] [CrossRef]
- Bravo-Ureta, B.E.; Moreira, V.H.; Troncoso, J.L.; Wall, A. Plot-level Technical Efficiency Accounting for Farm-level Effects: Evidence from Chilean Wine Grape Producers. Agric. Econ. 2020, 51, 811–824. [Google Scholar] [CrossRef]
- Al-Masri, A.A.; Ameen, F. Anti-Inflammatory Effect of Anthocyanin-Rich Extract from Banana Bract on Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. J. Funct. Foods 2023, 107, 105628. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Fraga-Corral, M.; Carpena, M.; García-Oliveira, P.; Echave, J.; Pereira, A.G.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Agriculture Waste Valorisation as a Source of Antioxidant Phenolic Compounds within a Circular and Sustainable Bioeconomy. Food Funct. 2020, 11, 4853–4877. [Google Scholar] [CrossRef]
- Chowdhary, P.; Gupta, A.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Current Trends and Possibilities for Exploitation of Grape Pomace as a Potential Source for Value Addition. Environ. Pollut. 2021, 278, 116796. [Google Scholar] [CrossRef]
- Lou, W.; Zhou, H.; Li, B.; Nataliya, G. Rheological, Pasting and Sensory Properties of Biscuits Supplemented with Grape Pomace Powder. Food Sci. Technol. 2022, 42, e78421. [Google Scholar] [CrossRef]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat Bread Fortification by Grape Pomace Powder: Nutritional, Technological, Antioxidant, and Sensory Properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. Characterization of Băbească Neagră Grape Pomace and Incorporation into Jelly Candy: Evaluation of Phytochemical, Sensory, and Textural Properties. Foods 2023, 13, 98. [Google Scholar] [CrossRef]
- Altınok, E.; Palabiyik, I.; Gunes, R.; Toker, O.S.; Konar, N.; Kurultay, S. Valorisation of Grape By-Products as a Bulking Agent in Soft Candies: Effect of Particle Size. LWT 2020, 118, 108776. [Google Scholar] [CrossRef]
- Cappa, C.; Lavelli, V.; Mariotti, M. Fruit Candies Enriched with Grape Skin Powders: Physicochemical Properties. LWT-Food Sci. Technol. 2015, 62, 569–575. [Google Scholar] [CrossRef]
- Teixeira-Lemos, E.; Almeida, A.R.; Vouga, B.; Morais, C.; Correia, I.; Pereira, P.; Guiné, R.P.F. Development and Characterization of Healthy Gummy Jellies Containing Natural Fruits. Open Agric. 2021, 6, 466–478. [Google Scholar] [CrossRef]
- Ge, H.; Wu, Y.; Woshnak, L.L.; Mitmesser, S.H. Effects of Hydrocolloids, Acids and Nutrients on Gelatin Network in Gummies. Food Hydrocoll. 2021, 113, 106549. [Google Scholar] [CrossRef]
- Loarce, L.; Oliver-Simancas, R.; Marchante, L.; Díaz-Maroto, M.C.; Alañón, M.E. Modifiers Based on Natural Deep Eutectic Mixtures to Enhance Anthocyanins Isolation from Grape Pomace by Pressurized Hot Water Extraction. LWT 2021, 149, 111889. [Google Scholar] [CrossRef]
- Pazir, F.; Koçak, E.; Turan, F.; Ova, G. Extraction of Anthocyanins from Grape Pomace by Using Supercritical Carbon Dioxide. J. Food Process. Preserv. 2021, 45, e14950. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Radojčić Redovniković, I. Enabling Technologies for the Extraction of Grape-Pomace Anthocyanins Using Natural Deep Eutectic Solvents in up-to-Half-Litre Batches Extraction of Grape-Pomace Anthocyanins Using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef]
- Saldaña, M.D.A.; Martinez, E.R.; Sekhon, J.K.; Vo, H. The Effect of Different Pressurized Fluids on the Extraction of Anthocyanins and Total Phenolics from Cranberry Pomace. J. Supercrit. Fluids 2021, 175, 105279. [Google Scholar] [CrossRef]
- Lima, Á.S.; de Oliveira, B.S.; Shabudin, S.V.; Almeida, M.; Freire, M.G.; Bica, K. Purification of Anthocyanins from Grape Pomace by Centrifugal Partition Chromatography. J. Mol. Liq. 2021, 326, 115324. [Google Scholar] [CrossRef]
- Singh, M.B.; Kumar, V.S.; Chaudhary, M.; Singh, P. A Mini Review on Synthesis, Properties and Applications of Deep Eutectic Solvents. J. Indian Chem. Soc. 2021, 98, 100210. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Vanda, H.; Dai, Y.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Green Solvents from Ionic Liquids and Deep Eutectic Solvents to Natural Deep Eutectic Solvents. Comptes Rendus Chim. 2018, 21, 628–638. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Santos-Ebinuma, V.C.; Herculano, R.D.; Coutinho, J.A.P.; Pereira, J.F.B.; Pessoa, A. Ionic Liquids or Eutectic Solvents? Identifying the Best Solvents for the Extraction of Astaxanthin and β-Carotene from Phaffia Rhodozyma Yeast and Preparation of Biodegradable Films. Green Chem. 2022, 24, 118–123. [Google Scholar] [CrossRef]
- Gómez-Urios, C.; Viñas-Ospino, A.; Puchades-Colera, P.; Blesa, J.; López-Malo, D.; Frígola, A.; Esteve, M.J. Choline Chloride-Based Natural Deep Eutectic Solvents for the Extraction and Stability of Phenolic Compounds, Ascorbic Acid, and Antioxidant Capacity from Citrus Sinensis Peel. LWT 2023, 177, 114595. [Google Scholar] [CrossRef]
- Alam, M.A.; Muhammad, G.; Khan, M.N.; Mofijur, M.; Lv, Y.; Xiong, W.; Xu, J. Choline Chloride-Based Deep Eutectic Solvents as Green Extractants for the Isolation of Phenolic Compounds from Biomass. J. Clean. Prod. 2021, 309, 127445. [Google Scholar] [CrossRef]
- Coban, H.B. Organic Acids as Antimicrobial Food Agents: Applications and Microbial Productions. Bioprocess Biosyst. Eng. 2020, 43, 569–591. [Google Scholar] [CrossRef]
- Merli, G.; Becci, A.; Amato, A.; Beolchini, F. Acetic Acid Bioproduction: The Technological Innovation Change. Sci. Total Environ. 2021, 798, 149292. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Ferrarini, F.; Fl, G.B.; Muniz, A.R.; Soares, R.D.P.; May, P. An Open and Extensible Sigma-Profile Database for COSMO-Based Models. AIChE J. 2018, 64, 3443–3455. [Google Scholar] [CrossRef]
- Soares, R.d.P.; Flôres, G.B.; Xavier, V.B.; Pelisser, E.N.; Ferrarini, F.; Staudt, P.B. Lvpp/Sigma: LVPP Sigma-Profile Database (18.07). 2017. Available online: https://zenodo.org/records/3613786 (accessed on 1 March 2024).
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Prommuak, C.; De-Eknamkul, W.; Shotipruk, A. Extraction of Flavonoids and Carotenoids from Thai Silk Waste and Antioxidant Activity of Extracts. Sep. Purif. Technol. 2008, 62, 444–448. [Google Scholar] [CrossRef]
- Farias, F.O.; Marques, C.; Fragoso, J.N.H.; Toci, A.T.; Mafra, M.R.; Igarashi-Mafra, L. Optimization of Green Extraction of High-Value Components from Eugenia Uniflora Leaves: Thermal Stability and in-Vitro Biological Activity. Can. J. Chem. Eng. 2022, 101, 2189–2198. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Abinaya, K.; Sharmila, K.; Priya, S.; Ponmozhi, M.; Linekha, R. Valorization of Surplus Onion for the Development and Characterization of Antioxidant-Rich Gummies. Food Hydrocoll. Heal. 2023, 3, 100130. [Google Scholar] [CrossRef]
- Roudbari, M.; Barzegar, M.; Sahari, M.A. Heliyon Formulation of Functional Gummy Candies Containing Natural Antioxidants and Stevia. Heliyon 2024, 10, e31581. [Google Scholar] [CrossRef]
- Dougall, D.K.; Baker, D.C. Effects of Reaction Mixture and Other Components on the Determination of the Equilibrium and Rate Constants of the Hydration Reactions of Anthocyanins. Food Chem. 2008, 107, 473–482. [Google Scholar] [CrossRef]
- Março, P.H.; Poppi, R.J.; Scarminio, I.S.; Tauler, R. Investigation of the PH Effect and UV Radiation on Kinetic Degradation of Anthocyanin Mixtures Extracted from Hibiscus Acetosella. Food Chem. 2011, 125, 1020–1027. [Google Scholar] [CrossRef]
- Mussagy, C.U.; de Souza Mesquita, L.M.; Rostagno, M.A.; Haddad, F.F.; dos Santos, J.L.; Scarim, C.B.; Herculano, R.D.; Valette, J.; Sangaré, D. Eco-Sustainable Biorefinery to the Management of Winery Waste by Integrating Sequential Ready-to-Use Pigments and Bioenergy through Advanced Multi-Step Kinetic Slow Pyrolysis. Ind. Crops Prod. 2024, 221, 119380. [Google Scholar] [CrossRef]
- Camargo, M.C.R.; de Souza, E.T.; Staudt, P.B.; Soares, R.d.P. Prediction of Polycyclic Aromatic Hydrocarbons Solubility in Different Solvents. Fluid Phase Equilib. 2024, 579, 114013. [Google Scholar] [CrossRef]
- Kuasnei, M.; Wojeicchowski, J.P.; Santos, N.H.; Pinto, V.Z.; Ferreira, S.R.S.; Zielinski, A.A.F. Modifiers Based on Deep Eutectic Mixtures: A Case Study for the Extraction of Anthocyanins from Black Bean Hulls Using High Pressure Fluid Technology. J. Supercrit. Fluids 2022, 191, 105761. [Google Scholar] [CrossRef]
- Bi, Y.; Chi, X.; Zhang, R.; Lu, Y.; Wang, Z.; Dong, Q.; Ding, C.; Yang, R.; Jiang, L. Highly Efficient Extraction of Mulberry Anthocyanins in Deep Eutectic Solvents: Insights of Degradation Kinetics and Stability Evaluation. Innov. Food Sci. Emerg. Technol. 2020, 66, 102512. [Google Scholar] [CrossRef]
- Benvenutti, L.; Sanchez-Camargo, d.P.; Zielinski, A.A.F.; Ferreira, S.R.S. NADES as Potential Solvents for Anthocyanin and Pectin Extraction from Myrciaria Cauliflora Fruit By-Product: In Silico and Experimental Approaches for Solvent Selection. J. Mol. Liq. 2020, 315, 113761. [Google Scholar] [CrossRef]
- Ferreira, R.S.B.; Farias, F.O.; De Araujo, E.J.S.; Martínez, J.; Eduardo, A. Deep Eutectic Solvents as an Alternative for Extraction of Flavonoids from Soybean (Glycine Max (L) Merrill) and Okara: An Experimental and Computational Approach Based on COSMO-SAC Model. Food Res. Int. 2023, 173, 113266. [Google Scholar] [CrossRef] [PubMed]
- Toledo Hijo, A.A.C.; Alves, C.; Farias, F.O.; Peixoto, V.S.; Meirelles, A.J.A.; Santos, G.H.F.; Maximo, G.J. Ionic Liquids and Deep Eutectic Solvents as Sustainable Alternatives for Efficient Extraction of Phenolic Compounds from Mate Leaves. Food Res. Int. 2022, 157, 111194. [Google Scholar] [CrossRef]
- Goltz, C.; Barbieri, J.B.; Cavalheiro, F.B.; Toci, A.T.; Farias, F.O.; Mafra, M.R. COSMO-SAC Model Approach for Deep Eutectic Solvent Selection to Extract Quercetin from Macela (A. Satureioides) and Experimental Process Optimization. Biomass Convers. Biorefinery 2023, 13, 11057–11066. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Farias, F.O.; Bila, N.M.; Giannini, M.J.S.M.; Pereira, J.F.B.; Santos-Ebinuma, V.C.; Pessoa, A. Recovery of β-Carotene and Astaxanthin from Phaffia Rhodozyma Biomass Using Aqueous Solutions of Cholinium-Based Ionic Liquids. Sep. Purif. Technol. 2022, 290, 120852. [Google Scholar] [CrossRef]
- Caicedo Paz, A.V.; Rigano, F.; Cafarella, C.; Tropea, A.; Mondello, L.; Paul Martinez Galan, J.; Ahmad, M.; Mustafa, A.; Farias, F.; Córdova, A.; et al. Process Intensification of Ultrasound Assisted Deep Eutectic Solvent-Based Extraction of Astaxanthin-Rich Extract Derived from the Non-Conventional Bacterium Paracoccus Carotinifaciens. Sep. Purif. Technol. 2024, 339, 126674. [Google Scholar] [CrossRef]
- Guo, N.; Kou, P.; Jiang, Y.W.; Wang, L.T.; Niu, L.J.; Liu, Z.M.; Fu, Y.J. Natural Deep Eutectic Solvents Couple with Integrative Extraction Technique as an Effective Approach for Mulberry Anthocyanin Extraction. Food Chem. 2019, 296, 78–85. [Google Scholar] [CrossRef]
- Qiao, Y.; Di, Z.; Ma, Y.; Ma, P.; Xia, S. Viscosities of Pure Water, Acetic Acid + Water, and p-Xylene + Acetic Acid + Water at Different Temperature and Pressure. Chin. J. Chem. Eng. 2010, 18, 446–454. [Google Scholar] [CrossRef]
- Toazza, C.E.B.; Leal, F.C.; Marques, C.; Oliveira, G.; Farias, F.O.; Belan, A.L.D.; Leite, N.F.; Mafra, M.R.; Igarashi-Mafra, L.; Masson, M.L. Bioactive Compounds Extraction from Different Lemongrass Species: Strategies and Deep Eutectic Solvents Evaluation. J. Food Process Eng. 2022, 45, e14033. [Google Scholar] [CrossRef]
- Subíria-Cueto, C.R.; Muñoz-Bernal, Ó.A.; de la Rosa, L.A.; Wall-Medrano, A.; Rodrigo-García, J.; Martinez-Gonzalez, A.I.; Gonzáles-Aguilar, G.; Martínez-Ruiz, N.d.R.; Alvarez-Parrilla, E. Adsorption of Grape Pomace (Vitis Vinifera) and Pecan Shell (Carya Illinoensis) Phenolic Compounds to Insoluble Dietary Fiber. Food Sci. Technol. 2022, 42, e41422. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.; Abd El-Twab, S.M.; Yousef, A.I.; Ashour, M.B.; Reheim, E.S.A.; Hamed, M.A.A. New Insights into the in Vitro, in Situ and in Vivo Antihyperglycemic Mechanisms of Gallic Acid and p -Coumaric Acid. Arch. Physiol. Biochem. 2022, 128, 1188–1194. [Google Scholar] [CrossRef]
- Fontana, A.; Antoniolli, A.; D’Amario Fernández, M.A.; Bottini, R. Phenolics Profiling of Pomace Extracts from Different Grape Varieties Cultivated in Argentina. RSC Adv. 2017, 7, 29446–29457. [Google Scholar] [CrossRef]
- Zeng, Y.; Song, J.; Zhang, M.; Wang, H.; Zhang, Y.; Suo, H. Comparison of In Vitro and In Vivo Antioxidant Activities of Six Flavonoids with Similar Structures. Antioxidants 2020, 9, 732. [Google Scholar] [CrossRef]
- Suresh, S.; Vellapandian, C. Restoring Impaired Neurogenesis and Alleviating Oxidative Stress by Cyanidin against Bisphenol A-Induced Neurotoxicity: In Vivo and In Vitro Evidence. Curr. Drug Discov. Technol. 2024, 21, 106–119. [Google Scholar] [CrossRef]
- Kim, C.H.; Kim, J.-E.; Song, Y.-J. Antiviral Activities of Quercetin and Isoquercitrin Against Human Herpesviruses. Molecules 2020, 25, 2379. [Google Scholar] [CrossRef]
- Yang, Q.; Kang, Z.; Zhang, J.; Qu, F.; Song, B. Neuroprotective Effects of Isoquercetin: An in Vitro and in Vivo Study. Cell J. 2021, 23, 355–365. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Ž.; Soković Bajić, S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Lj Tešić, Ž.; Pešić, M.B. Phenolic Compounds and Biopotential of Grape Pomace Extracts from Prokupac Red Grape Variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
Temperature (°C) | Viscosity (mPa·s) | |
---|---|---|
[Ch]Cl: AA-30 | [Ch]Cl: CA-30 | |
25 | 13.01 | 22.46 |
35 | 11.85 | 16.21 |
45 | 11.33 | 13.27 |
55 | 10.47 | 11.96 |
Arrhenius model adjusted | ||
ln(η0) | 0.27 | −3.84 |
Ea (kJ/mol) | 5.67 | 17.12 |
R2 | 0.99 | 0.96 |
Sample | Antioxidant Activity µg Equivalent of Trolox/g of Dry Grape Pomace | |
---|---|---|
DPPH | FRAP | |
[Ch]Cl: AA-30 | 462.24 ± 23.32 b | 384.62 ± 15.29 a |
[Ch]Cl: CA-30 | 515.72 ± 11.00 a | 129.45 ± 3.45 c |
Ethanol/water | 474.71 ± 13.52 b | 212.69 ± 8.55 b |
Sample | Concentration (mg/L) | ||||
---|---|---|---|---|---|
Gallic Acid | Syringic Acid | Cyanidin | Isoquercetin | Quercetin | |
[Ch]Cl: AA-30 | 1.043 ± 0.004 | 4.516 ± 0.005 | 2.268 ± 0.296 | 4.808 ± 0.184 | 1.545 ± 0.055 |
[Ch]Cl: CA-30 | 0.988 ± 0.004 | 4.252 ± 0.053 | 0.999 ± 0.050 | 6.406 ± 0.079 | 0.999 ± 0.031 |
Ethanol/water | 1.171 ± 0.013 | 3.693 ± 0.053 | 0.891 ± 0.064 | 9.146 ± 1.379 | 1.907 ± 0.053 |
Solvent | t1/2 (Days) Light | t1/2 (Days) Dark | ||||
---|---|---|---|---|---|---|
25 °C | 45 °C | 65 °C | 25 °C | 45 °C | 65 °C | |
[Ch]Cl: AA-30 | 10.57 | 2.90 | 0.87 | 29.88 | 6.23 | 1.21 |
[Ch]Cl: CA-30 | 25.67 | 6.78 | 0.99 | 57.28 | 8.03 | 1.31 |
Ethanol/water | 6.22 | 2.77 | 1.31 | 28.41 | 5.34 | 1.94 |
Sample | Color Analysis | Water Activity (aw) | Moisture Content (g/100 g) | pH | ||
---|---|---|---|---|---|---|
L* | a* | b* | ||||
Control | 43.42 ± 2.81 a | −0.17 ± 0.01 f | 15.30 ± 1.65 a | 0.822 ± 0.007 e | 23.706 ± 0.506 e | 3.86 ± 0.04 c |
CA-2.5% | 34.74 ± 1.01 b | 7.57 ± 0.60 d | 10.95 ± 0.85 b | 0.826 ± 0.001 d,e | 26.423 ± 0.421 d | 3.45 ± 0.06 d |
CA-5% | 29.58 ± 1.19 c | 13.76 ± 0.67 b | 7.71 ± 0.45 c | 0.834 ± 0.001 b,c | 28.396 ± 0.584 c | 3.39 ± 0.04 d |
CA-7.5% | 23.22 ± 0.95 d,e | 15.21 ± 0.16 a | 3.90 ± 0.14 d,e | 0.835 ± 0.001 b,c | 29.763 ± 0.222 b | 3.19 ± 0.01 e |
CA-10% | 14.10 ± 2.37 f | 10.52 ± 1.38 c | 1.43 ± 0.77 f | 0.833 ± 0.004 b,c | 29.812 ± 0.260 b | 3.10 ± 0.01 f |
AA-2.5% | 32.57 ± 3.43 b,c | 3.92 ± 0.77 e | 11.30 ± 2.13 b | 0.832 ± 0.001 c,d | 26.404 ± 0.146 d | 4.39 ± 0.03 a |
AA-5% | 29.08 ± 2.04 c | 7.28 ± 0.50 d | 8.69 ± 1.11 c | 0.840 ± 0.001 b | 28.207 ± 0.231 c | 4.14 ± 0.01 b |
AA-7.5% | 24.18 ± 0.90 d | 7.69 ± 1.03 d | 5.47 ± 0.84 d | 0.848 ± 0.001 a | 29.096 ± 0.918 b,c | 4.09 ± 0.01 c |
AA-10% | 20.05 ± 1.91 e | 7.60 ± 0.96 d | 2.78 ± 0.59 e,f | 0.849 ± 0.004 a | 30.187 ± 0.171 a | 3.00 ± 0.01 g |
Sample | Hardness (N) | Springiness (mm) | Cohesiveness | Gumminess (N) | Chewiness (J) |
---|---|---|---|---|---|
Control | 74.09 ± 7.98 a | 4.15 ± 0.22 a | 0.78 ±0.07 e, f | 54.99 ± 2.42 a | 0.28 ± 0.11 a |
CA-2.5% | 42.19 ± 6.97 c | 4.17 ± 0.05 a | 0.76 ± 0.02 f | 28.25 ± 6.96 b | 0.13 ± 0.03 b |
CA-5% | 17.14 ± 1.39 d | 4.22 ± 0.17 a | 0.81 ± 0.03 d, e, f | 13.92 ± 1.18 d | 0.06 ± 0.00 b, c |
CA-7.5% | 14.17 ± 1.08 d | 4.58 ± 0.56 a | 0.78 ± 0.03 e, f | 9.89 ± 2.30 c | 0.04 ± 0.01 c |
CA-10% | 7.47 ± 0.54 e | 4.79 ± 0.95 a | 0.82 ± 0.01 c, d, e | 6.11 ± 0.40 e | 0.03 ± 0.01 c |
AA-2.5% | 13.93 ± 1.14 d | 4.41 ± 0.76 a | 0.90 ± 0.03 a | 12.57 ± 0.71 d | 0.05 ± 0.01 b, c |
AA-5% | 16.35 ± 2.35 d | 4.29 ± 0.32 a | 0.87 ± 0.01 a, b, c | 14.22 ± 1.89 d | 0.06 ± 0.01 b, c |
AA-7.5% | 7.71 ± 1.82 e | 4.68 ± 0.70 a | 0.87 ± 0.02 a, b | 6.74 ± 1.48 e | 0.03 ± 0.01 c |
AA-10% | 4.77 ± 0.72 f | 4.46 ± 0.65 a | 0.85 ± 0.02 c, d, e | 47.92 ± 3.59 b | 0.22 ± 0.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trentin, J.; Mussagy, C.U.; Arantes, M.S.T.; Pedro, A.C.; Mafra, M.R.; Farias, F.O. Antioxidant Ready-to-Use Grape Pomace Extracts Recovered with Natural Eutectic Mixtures for Formulation of Color-Rich Gummies. Foods 2024, 13, 2840. https://doi.org/10.3390/foods13172840
Trentin J, Mussagy CU, Arantes MST, Pedro AC, Mafra MR, Farias FO. Antioxidant Ready-to-Use Grape Pomace Extracts Recovered with Natural Eutectic Mixtures for Formulation of Color-Rich Gummies. Foods. 2024; 13(17):2840. https://doi.org/10.3390/foods13172840
Chicago/Turabian StyleTrentin, Julia, Cassamo U. Mussagy, Matheus S. T. Arantes, Alessandra C. Pedro, Marcos R. Mafra, and Fabiane O. Farias. 2024. "Antioxidant Ready-to-Use Grape Pomace Extracts Recovered with Natural Eutectic Mixtures for Formulation of Color-Rich Gummies" Foods 13, no. 17: 2840. https://doi.org/10.3390/foods13172840
APA StyleTrentin, J., Mussagy, C. U., Arantes, M. S. T., Pedro, A. C., Mafra, M. R., & Farias, F. O. (2024). Antioxidant Ready-to-Use Grape Pomace Extracts Recovered with Natural Eutectic Mixtures for Formulation of Color-Rich Gummies. Foods, 13(17), 2840. https://doi.org/10.3390/foods13172840