Advances in Chromatographic Analysis of Phenolic Phytochemicals in Foods: Bridging Gaps and Exploring New Horizons
Abstract
:1. Introduction
2. Conventional Chromatographic Techniques for Phenolic Phytochemicals
3. Advancements in Liquid Chromatography-Based Methods for Polyphenol Phytochemical Analysis of Foods
3.1. Hydrophilic Interaction Liquid Chromatography
3.2. Nano-Liquid Chromatography
3.3. Supercritical Fluid Chromatography
3.4. Multi-Dimensional Chromatography
3.5. Capillary Electrophoresis
4. Advancement, Challenges, and Future Directions in Chromatographic Analysis of Phenolic Phytochemicals
4.1. Advancements and Limitations
- Column Dimensions and Particle Size: In LC-based techniques (HPLC, UHPLC, Nano-LC), the relationship between column length, diameter, and particle size is crucial [7]. Longer columns improve resolution but increase analysis time and backpressure [20]. Smaller diameters reduce band broadening and provide sharper peaks, while smaller particle sizes enhance separation but generate higher backpressure, requiring robust systems [7,21].
- Flow Rate: Properly optimizing the flow rate is vital. A high flow rate can lead to poor separation, while a low flow rate can cause excessive diffusion. An optimal flow rate balances efficiency and analysis time [73].
- Mobile Phase Composition and pH: The choice of solvents and their ratios affect the interaction of analytes with the stationary phase [7]. Acidified mobile phases are preferred due to their ability to enhance the resolution and peak shape of analytes. However, it is crucial to ensure that the use of acidic conditions is compatible with the specifications and limitations of the chosen detectors to avoid any potential damage or interference with detection sensitivity [7,21,30].
- Pressure: In UHPLC, higher pressure allows the use of smaller particle sizes, improving resolution and enabling faster flow rates without sacrificing performance, provided the system can handle the increased pressure [37].
4.2. Ensuring Accuracy and Reliability: The Importance of Standardization and Validation
4.3. Novel Performance Metrics for Chromatographic Analytical Methods
- The Analytical Eco-Scale evaluates environmental impact based on penalty points assigned to factors like reagent toxicity, energy consumption, and waste generation [99].
- The Analytical Greenness (AGREE) metric approach provides a quantitative score representing overall greenness, considering solvent usage, energy consumption, and waste [100].
- The Green Analytical Procedures Index (GAPI) visually represents the greenness of an analytical procedure across various stages using a color-coded hexagonal chart [101].
- Life Cycle Assessment (LCA) offers a holistic view of the environmental impacts throughout the method’s life cycle, from raw material extraction to disposal [102].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, R.; Van Le, Q.; Yang, H.; Zhang, D.; Gu, H.; Yang, Y.; Peng, W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere 2021, 271, 129499. [Google Scholar] [CrossRef]
- Sohel, M.; Aktar, S.; Biswas, P.; Amin, M.A.; Hossain, M.A.; Ahmed, N.; Mamun, A.A. Exploring the anti-cancer potential of dietary phytochemicals for the patients with breast cancer: A comprehensive review. Cancer Med. 2023, 12, 14556–14583. [Google Scholar] [CrossRef]
- Dias, R.; Oliveira, H.; Fernandes, I.; Simal-Gándara, J.; Pérez-Gregorio, R. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Crit. Rev. Food Sci. Nutr. 2020, 61, 1130–1151. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Kitabatake, M.; Kayano, S.; Ito, T. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants 2023, 12, 880. [Google Scholar] [CrossRef]
- Verma, N. Advances and trends in analytical techniques in natural product research: Challenges and future perspective. Indian J. Nat. Prod. Resour. 2022, 12, 506–526. [Google Scholar]
- Verma, S.; Thakur, D.; Pandey, C.M.; Kumar, D. Recent prospects of carbonaceous nanomaterials-based laccase biosensor for electrochemical detection of phenolic compounds. Biosensors 2023, 13, 305. [Google Scholar] [CrossRef] [PubMed]
- Kalogiouri, N.P.; Samanidou, V.F. Advances in the optimization of chromatographic conditions for the separation of antioxidants in functional foods. Rev. Sci. Sep. 2019, 1, 17–33. [Google Scholar] [CrossRef]
- Khalaf, R.A.; Alhusban, A.A.; Al-Shalabi, E.; Al-Sheikh, I.; Sabbah, D.A. Isolation and structure elucidation of bioactive polyphenols. In Studies in Natural Products Chemistry Atta-ur-Rahman; Research Institute of Chemistry, University of Karachi: Karachi, Pakistan, 2019; pp. 267–337. [Google Scholar] [CrossRef]
- González-Domínguez, R.; Sayago, A.; Santos-Martín, M.; Fernández-Recamales, A. High-Throughput Method for Wide-Coverage and Quantitative Phenolic Fingerprinting in Plant-Origin Foods and Urine Samples. J. Agric. Food Chem. 2022, 70, 7796–7804. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.M.M. Overview of Sample Preparation and Chromatographic Methods to Analysis Pharmaceutical Active Compounds in Waters Matrices. Separations 2021, 8, 16. [Google Scholar] [CrossRef]
- Barp, L.; Višnjevec, A.M.; Moret, S. Pressurized Liquid Extraction: A Powerful Tool to Implement Extraction and Purification of Food Contaminants. Foods 2023, 12, 2017. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Félix, R.; Pais, A.C.S.; Rocha, S.M.; Silvestre, A.J.D. The Quest for Phenolic Compounds from Macroalgae: A Review of Extraction and Identification Methodologies. Biomolecules 2019, 9, 847. [Google Scholar] [CrossRef] [PubMed]
- Kašpar, M.; Bajer, T.; Bajerová, P.; Česla, P. Comparison of Phenolic Profile of Balsamic Vinegars Determined Using Liquid and Gas Chromatography Coupled with Mass Spectrometry. Molecules 2022, 27, 1356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, J.; Dai, X.; Li, X. Extraction and Analysis of Chemical Compositions of Natural Products and Plants. Separations 2023, 10, 598. [Google Scholar] [CrossRef]
- Bajo-Fernández, M.; Souza-Silva, É.A.; Barbas, C.; Rey-Stolle, M.F.; García, A. GC-MS-Based Metabolomics of Volatile Organic Compounds in Exhaled Breath: Applications in Health and Disease. A Review. Front. Mol. Biosci. 2023, 10, 1295955. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, T.; Sajewicz, M. Thin-Layer Chromatography (TLC) in the Screening of Botanicals–Its Versatile Potential and Selected Applications. Molecules 2022, 27, 6607. [Google Scholar] [CrossRef] [PubMed]
- Nortjie, E.; Basitere, M.; Moyo, D.; Nyamukamba, P. Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review. Plants 2022, 11, 2011. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Gu, H.W.; Yin, X.L.; Zhou, H.H.; Chang, H.Y.; Shi, J.; Chen, Y.; Yan, X.F.; Liu, Z. Development of an HPLC-DAD Method Combined with Chemometrics for Differentiating Geographical Origins of Chinese Red Wines on the Basis of Phenolic Compounds. Food Anal. Methods 2021, 14, 1895–1907. [Google Scholar] [CrossRef]
- Razem, M.; Ding, Y.; Morozova, K.; Mazzetto, F.; Scampicchio, M. Analysis of Phenolic Compounds in Food by Coulometric Array Detector: A Review. Sensors 2022, 22, 7498. [Google Scholar] [CrossRef]
- Armstrong, A.; Horry, K.; Cui, T.; Hulley, M.; Turner, R.; Farid, S.S.; Goldrick, S.; Bracewell, D.G. Advanced Control Strategies for Bioprocess Chromatography: Challenges and Opportunities for Intensified Processes and Next Generation Products. J. Chromatogr. A 2021, 1639, 461914. [Google Scholar] [CrossRef]
- Câmara, J.S.; Martins, C.; Pereira, J.A.M.; Perestrelo, R.; Rocha, S.M. Chromatographic-Based Platforms as New Avenues for Scientific Progress and Sustainability. Molecules 2022, 27, 5267. [Google Scholar] [CrossRef]
- Tiwari, S.; Talreja, S. Thin Layer Chromatography (TLC) VS. Paper Chromatography: A Review. Acta Sci. Pharm. Sci. 2022, 6, 5–9. [Google Scholar] [CrossRef]
- Rodriguez, E.L.; Poddar, S.; Iftekhar, S.; Suh, K.; Woolfork, A.G.; Ovbude, S.; Pekarek, A.; Walters, M.; Lott, S.; Hage, D.S. Affinity Chromatography: A Review of Trends and Developments over the Past 50 Years. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1157, 122332. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, E.R.; Chiţescu, C.L.; Geană, E.I.; Gird, C.E.; Socoteanu, R.P.; Boscencu, R. Advanced Analytical Approaches for the Analysis of Polyphenols in Plants Matrices—A Review. Separations 2021, 8, 65. [Google Scholar] [CrossRef]
- Mir-Cerdà, A.; Nuñez, O.; Granados, M.; Sentellas, S.; Saurina, J. An Overview of the Extraction and Characterization of Bioactive Phenolic Compounds from Agri-Food Waste within the Framework of Circular Bioeconomy. TrAC Trends Anal. Chem. 2023, 161, 116994. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. A New HPLC-MS/MS Method for the Simultaneous Determination of 36 Polyphenols in Blueberry, Strawberry and Their Commercial Products and Determination of Antioxidant Activity. Food Chem. 2022, 367, 130743. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shi, L.; Fan, X.; Lou, H.; Li, W.; Li, Y.; Ren, D.; Yi, L. Development and Validation of an Efficient HILIC-QQQ-MS/MS Method for Quantitative and Comparative Profiling of 45 Hydrophilic Compounds in Four Types of Tea (Camellia sentences). Food Chem. 2022, 371, 131201. [Google Scholar] [CrossRef] [PubMed]
- Meriö-Talvio, H.; Dou, J.; Vuorinen, T.; Pitkänen, L. Fast HILIC Method for Separation and Quantification of Non-Volatile Aromatic Compounds and Monosaccharides from Willow (Salix sp.) Bark Extract. Appl. Sci. 2021, 11, 3808. [Google Scholar] [CrossRef]
- Ramirez, D.A.; Altamirano, J.C.; Camargo, A.B. Multi-Phytochemical Determination of Polar and Non-Polar Garlic Bioactive Compounds in Different Food and Nutraceutical Preparations. Food Chem. 2021, 337, 127648. [Google Scholar] [CrossRef] [PubMed]
- Sentkowska, A.; Piwowarczyk, S.; Pyrzyńska, K. Simultaneous Determination of Vitamin B6 and Catechins in Dietary Supplements by ZIC-HILIC Chromatography and Their Antioxidant Interactions. Eur. Food Res. Technol. 2020, 246, 1609–1615. [Google Scholar] [CrossRef]
- Li, A.; Wang, C.; Wu, Z.; Liu, Y.; Hao, Z.; Lu, C.; Chen, H. Development of a Cation Exchange SPE-HILIC-MS/MS Method for the Determination of Ningnanmycin Residues in Tea and Chrysanthemum. Foods 2024, 13, 635. [Google Scholar] [CrossRef]
- Karabat, R.R.; Rasheed, A.S.; Hassan, M.J.M. Development of a validated zic-hilic method combined with ultraviolet detection for the determination of rutin contents in seven different tea plants. Plant Arch. 2020, 20, 5197–5202. Available online: https://www.plantarchives.org/20-2/5197-5202%20(6364).pdf (accessed on 16 July 2024).
- Dussling, S.; Steingass, C.B.; Dreifke, T.; Will, F.; Schweiggert, R. Analytical Characterization of Flavan-3-Ol-Rich Apple Juices Produced with the Innovative Spiral Filter Press Technology. Food Res. Int. 2024, 180, 114055. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Corroto, E.; Plaza, M.; Marina, M.L.; García, M.C. Sustainable Extraction of Proteins and Bioactive Substances from Pomegranate Peel (Punica granatum L.) Using Pressurized Liquids and Deep Eutectic Solvents. Innov. Food Sci. Emerg. Technol. 2020, 60, 102314. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, X.; Xu, Y.; Liu, X.; Zhang, J.; He, Z. Simultaneous Determination of 49 Amino Acids, B Vitamins, Flavonoids, and Phenolic Acids in Commonly Consumed Vegetables by Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry. Food Chem. 2021, 344, 128712. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Amezcua, I.; González-Prada, A.; Díez-Municio, M.; Soria, A.C.; Ruiz-Matute, A.I.; Sanz, M.L. Simultaneous Microwave-Assisted Extraction of Bioactive Compounds from Aged Garlic. J. Chromatogr. A 2023, 1704, 464128. [Google Scholar] [CrossRef] [PubMed]
- Sommella, E.; Pepe, G.; Pagano, F.; Ostacolo, C.; Tenore, G.C.; Russo, M.T.; Novellino, E.; Manfra, M.; Campiglia, P. Detailed Polyphenolic Profiling of Annurca Apple (M. pumila Miller cv Annurca) by a Combination of RP-UHPLC and HILIC, Both Hyphenated to IT-TOF Mass Spectrometry. Food Res. Int. 2015, 76, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Kallio, H.; Yang, W.; Liu, P.; Yang, B. Proanthocyanidins in Wild Sea Buckthorn (Hippophaë rhamnoides) Berries Analyzed by Reversed-Phase, Normal-Phase, and Hydrophilic Interaction Liquid Chromatography with UV and MS Detection. J. Agric. Food Chem. 2014, 62, 7721–7729. [Google Scholar] [CrossRef] [PubMed]
- Willemse, C.M.; Stander, M.A.; de Villiers, A. Hydrophilic Interaction Chromatographic Analysis of Anthocyanins. J. Chromatogr. A 2013, 1319, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Kosińska-Cagnazzo, A.; Kerr, W.L.; Amarowicz, R.; Swanson, R.B.; Pegg, R.B. Separation and Characterization of Phenolic Compounds from Dry-Blanched Peanut Skins by Liquid Chromatography-Electrospray Ionization Mass Spectrometry. J. Chromatogr. A 2014, 1356, 64–81. [Google Scholar] [CrossRef]
- D’Ambrosio, M. Advances in the Dereplication of Aroma Precursors from Grape Juice by Pretreatment with Lead Acetate and Combined HILIC- and RP-HPLC Methods. Foods 2019, 8, 28. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Green Analytical Chemistry Metrics: A Review. Talanta 2022, 238, 123046. [Google Scholar] [CrossRef] [PubMed]
- Fanali, S.; Aturki, Z.; D’Orazio, G.; Rocco, A.; Ferranti, A.; Mercolini, L.; Raggi, M.A. Analysis of Aloe-Based Phytotherapeutic Products by Using Nano-LC-MS. J. Sep. Sci. 2010, 33, 2663–2670. [Google Scholar] [CrossRef] [PubMed]
- García-Villalba, R.; Carrasco-Pancorbo, A.; Zurek, G.; Behrens, M.; Bäßmann, C.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Nano and Rapid Resolution Liquid Chromatography–Electrospray Ionization–Time of Flight Mass Spectrometry to Identify and Quantify Phenolic Compounds in Olive Oil. J. Sep. Sci. 2010, 33, 2069–2078. [Google Scholar] [CrossRef] [PubMed]
- Fanali, C.; Rocco, A.; Aturki, Z.; Mondello, L.; Fanali, S. Analysis of Polyphenols and Methylxanthines in Tea Samples by Means of Nano-Liquid Chromatography Utilizing Capillary Columns Packed with Core–Shell Particles. J. Chromatogr. A 2012, 1234, 38–44. [Google Scholar] [CrossRef]
- Fanali, C.; Dugo, L.; Rocco, A. Nano-Liquid Chromatography in Nutraceutical Analysis: Determination of Polyphenols in Bee Pollen. J. Chromatogr. A 2013, 1313, 270–274. [Google Scholar] [CrossRef]
- Rocco, A.; Fanali, C.; Dugo, L.; Mondello, L. A Nano-LC/UV Method for the Analysis of Principal Phenolic Compounds in Commercial Citrus Juices and Evaluation of Antioxidant Potential. Electrophoresis 2014, 35, 1701–1708. [Google Scholar] [CrossRef]
- Fanali, C.; Rocco, A.; D’Orazio, G.; Dugo, L.; Mondello, L.; Aturki, Z. Determination of Key Flavonoid Aglycones by Means of Nano-LC for the Analysis of Dietary Supplements and Food Matrices. Electrophoresis 2015, 36, 1073–1081. [Google Scholar] [CrossRef]
- del Mar Contreras, M.; Arráez-Román, D.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Nano-Liquid Chromatography Coupled to Time-of-Flight Mass Spectrometry for Phenolic Profiling: A Case Study in Cranberry Syrups. Talanta 2015, 132, 929–938. [Google Scholar] [CrossRef]
- Fitch, B.N.; Gray, R.; Beres, M.; Hicks, M.B.; Farrell, W.; Aurigemma, C.; Olesik, S.V. Life Cycle Analysis and Sustainability Comparison of Reversed Phase High Performance Liquid Chromatography and Carbon Dioxide-Containing Chromatography of Small Molecule Pharmaceuticals. Green Chem. 2022, 24, 4516–4532. [Google Scholar] [CrossRef]
- Napolitano-Tabares, P.I.; Negrín-Santamaría, I.; Gutiérrez-Serpa, A.; Pino, V. Recent Efforts to Increase Greenness in Chromatography. Curr. Opin. Green Sustain. Chem. 2021, 32, 100536. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Xue, Z.; Yang, X.; Fang, Y.; Zhao, L.; Feng, S. Chromatographic Fingerprint Analysis of Radix Hedysari Using Supercritical Fluid Chromatography Coupled with Diode Array Detector. J. Chromatogr. Sci. 2020, 58, 262–273. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Evaluation of the Extraction and Stability of Chlorophyll-Rich Extracts by Supercritical Fluid Chromatography. Anal. Bioanal. Chem. 2020, 412, 7263–7273. [Google Scholar] [CrossRef]
- Ares, A.M.; Bernal, J.; Janvier, A.; Toribio, L. Chiral and Achiral Separation of Ten Flavanones Using Supercritical Fluid Chromatography. Application to Bee Pollen Analysis. J. Chromatogr. A 2022, 1685, 463633. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Ge, D.; Dai, Y.; Chen, Y.; Fu, Q.; Jin, Y. Extraction and Isolation of Diphenylheptanes and Flavonoids from Alpinia officinarum Hance Using Supercritical Fluid Extraction Followed by Supercritical Fluid Chromatography. J. Sep. Sci. 2023, 46, 2300156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Gao, Y.; Xu, X.; Zhao, M.L.; Xi, B.N.; Shu, Y.; Shen, Y. In Situ Rapid Analysis of Squalene, Tocopherols, and Sterols in Walnut Oils Based on Supercritical Fluid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry. J. Agric. Food Chem. 2023, 71, 16371–16380. [Google Scholar] [CrossRef] [PubMed]
- Plachká, K.; Pilařová, V.; Kosturko, S.; Škop, J.; Svec, F.; Nováková, L. Ultrahigh-Performance Supercritical Fluid Chromatography–Multimodal Ionization–Tandem Mass Spectrometry as a Universal Tool for the Analysis of Small Molecules in Complex Plant Extracts. Anal. Chem. 2024, 96, 2840–2848. [Google Scholar] [CrossRef]
- van den Hurk, R.S.; Pursch, M.; Stoll, D.R.; Pirok, B.W. Recent Trends in Two-Dimensional Liquid Chromatography. TrAC Trends Anal. Chem. 2023, 91, 240–263. [Google Scholar] [CrossRef]
- Amin, R.; Alam, F.; Dey, B.K.; Mandhadi, J.R.; Bin Emran, T.; Khandaker, M.U.; Safi, S.Z. Multidimensional Chromatography and Its Applications in Food Products, Biological Samples and Toxin Products: A Comprehensive Review. Separations 2022, 9, 326. [Google Scholar] [CrossRef]
- Ishii, C.; Furusho, A.; Hsieh, C.L.; Hamase, K. Multi-Dimensional High-Performance Liquid Chromatographic Determination of Chiral Amino Acids and Related Compounds in Real World Samples. Chromatography 2020, 41, 1–17. [Google Scholar] [CrossRef]
- Mondello, L.; Dugo, P.; Donato, P.; Herrero, M.; Montero, L.; Schmitz, O.J. Comprehensive Two-Dimensional Liquid Chromatography. Nat. Rev. Methods Primers 2023, 3, 86. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Deng, J.; Hou, X.; Hao, E.; Zhang, L.; Li, P. Chemical Characterization of Flavonoids and Alkaloids in Safflower (Carthamus tinctorius L.) by Comprehensive Two-Dimensional Hydrophilic Interaction Chromatography Coupled with Hybrid Linear Ion Trap Orbitrap Mass Spectrometry. Food Chem. X 2021, 12, 100143. [Google Scholar] [CrossRef] [PubMed]
- Arena, K.; Trovato, E.; Cacciola, F.; Spagnuolo, L.; Pannucci, E.; Guarnaccia, P.; Dugo, L. Phytochemical Characterization of Rhus coriaria L. Extracts by Headspace Solid-Phase Micro Extraction Gas Chromatography, Comprehensive Two-Dimensional Liquid Chromatography, and Antioxidant Activity Evaluation. Molecules 2022, 27, 1727. [Google Scholar] [CrossRef] [PubMed]
- Montero, L.; Meckelmann, S.W.; Kim, H.; Ayala-Cabrera, J.F.; Schmitz, O.J. Differentiation of Industrial Hemp Strains by Their Cannabinoid and Phenolic Compounds Using LC×LC-HRMS. Anal. Bioanal. Chem. 2022, 414, 5445–5459. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, Y.; Shen, A.; Li, X.; Yu, L.; Wang, C.; Liang, X. Analysis of Alkaloids in Gelsemium elegans Benth Using an Online Heart-Cutting+ Comprehensive RPLC×RPLC System Tandem Mass Spectrometry. Talanta 2022, 239, 123069. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xu, X.Y.; Wang, H.M.; Liu, M.Y.; Chen, B.X.; Jiang, M.T.; Gao, X.M. A Multi-Dimensional Liquid Chromatography/High-Resolution Mass Spectrometry Approach Combined with Computational Data Processing for the Comprehensive Characterization of the Multicomponents from Cuscuta chinensis. J. Chromatogr. A 2022, 1675, 463162. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Goh, R.M.V.; Pua, A.; Liu, S.Q.; Ee, K.H.; Lassabliere, B.; Yu, B. Characterisation of Catechins and Their Oxidised Derivatives in Ceylon Tea Using Multi-Dimensional Liquid Chromatography and High-Resolution Mass Spectrometry. J. Chromatogr. A 2022, 1682, 463477. [Google Scholar] [CrossRef] [PubMed]
- Caruso, S.J.; Acquaviva, A.; Müller, J.L.; Castells, C.B. Simultaneous Analysis of Cannabinoids and Terpenes in Cannabis sativa Inflorescence Using Full Comprehensive Two-Dimensional Liquid Chromatography Coupled to Smart Active Modulation. J. Chromatogr. A 2024, 1720, 464810. [Google Scholar] [CrossRef] [PubMed]
- Arena, K.; Cacciola, F.; Miceli, N.; Taviano, M.F.; Cavò, E.; Murphy, R.E.; Dugo, P.; Mondello, L. Determination of the Polyphenolic Content of Berry Juices Using Focusing-Modulated Comprehensive Two-Dimensional Liquid Chromatography Coupled to Mass Spectrometry Detection. Anal. Bioanal. Chem. 2023, 415, 2371–2382. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; Tredoux, A.G.J.; de Villiers, A. Application of Kinetically Optimised Online HILIC × RP-LC Methods Hyphenated to High Resolution MS for the Analysis of Natural Phenolics. Chromatographia 2019, 82, 181–196. [Google Scholar] [CrossRef]
- Kalili, K.M.; de Villiers, A. Off-Line Comprehensive Two-Dimensional Hydrophilic Interaction×Reversed Phase Liquid Chromatographic Analysis of Green Tea Phenolics. J. Sep. Sci. 2010, 33, 853–863. [Google Scholar] [CrossRef]
- Montero, L.; Herrero, M.; Ibáñez, E.; Cifuentes, A. Profiling of Phenolic Compounds from Different Apple Varieties Using Comprehensive Two-Dimensional Liquid Chromatography. J. Chromatogr. A 2013, 1313, 275–283. [Google Scholar] [CrossRef]
- Feng, K.; Wang, S.; Han, L.; Qian, Y.; Li, H.; Li, X.; Yang, W. Configuration of the Ion Exchange Chromatography, Hydrophilic Interaction Chromatography, and Reversed-Phase Chromatography as Off-Line Three-Dimensional Chromatography Coupled with High-Resolution Quadrupole-Orbitrap Mass Spectrometry for the Multicomponent Characterization of Uncaria sessilifructus. J. Chromatogr. A 2021, 1649, 462237. [Google Scholar] [CrossRef]
- Szabo, R.; Gaspar, A. Determination of Phenolic Compounds by Capillary Zone Electrophoresis–Mass Spectrometry. Molecules 2022, 27, 4540. [Google Scholar] [CrossRef] [PubMed]
- Gavrilin, M.V.; Senchenko, S.P. Use of Capillary Electrophoresis for Estimating the Quality of Chamomile Flowers. Pharm. Chem. J. 2009, 43, 582–584. [Google Scholar] [CrossRef]
- Adımcılar, V.; Kalaycıoğlu, Z.; Aydoğdu, N.; Dirmenci, T.; Kahraman, A.; Erim, F.B. Rosmarinic and Carnosic Acid Contents and Correlated Antioxidant and Antidiabetic Activities of 14 Salvia Species from Anatolia. J. Pharm. Biomed. Anal. 2019, 175, 112763. [Google Scholar] [CrossRef]
- Liu, X.-Q.; Qin, C.-F.; Chen, N.-D.; Hao, J.-W.; Ma, S.-T.; Zhang, M.; Song, Y.; Min, Y.-J.; Bu, Y.-Q.; Li, S. Simultaneous Determination of Phenols in the Four Main Original Plants of the Famous Conventional Chinese Medicine Shihu by Pressurized Capillary Electrochromatography. RSC Adv. 2023, 13, 19455–19463. [Google Scholar] [CrossRef]
- Şanlı, S.; Güneşer, O.; Kılıçarslan, S.; Şanlı, N. Screening of Eighteen Polyphenolic Compounds in Different Carob Pekmez by Green Capillary Electrophoresis Method. SN Appl. Sci. 2020, 2, 576. [Google Scholar] [CrossRef]
- Przybylska, A.; Gackowski, M.; Koba, M. Application of Capillary Electrophoresis to the Analysis of Bioactive Compounds in Herbal Raw Materials. Molecules 2021, 26, 2135. [Google Scholar] [CrossRef]
- Ajayi, F.F.; Alnuaimi, A.; Hamdi, M.; Mostafa, H.; Wakayama, M.; Mudgil, P.; Maqsood, S. Metabolomics Approach for the Identification of Bioactive Compounds Released from Young and Mature Soybean upon in Vitro Gastrointestinal Digestion and Their Effect on Health-Related Bioactive Properties. Food Chem. 2023, 420, 136050. [Google Scholar] [CrossRef]
- Navarro, M.; Núñez, O.; Saurina, J.; Hernández-Cassou, S.; Puignou, L. Characterization of Fruit Products by Capillary Zone Electrophoresis and Liquid Chromatography Using the Compositional Profiles of Polyphenols: Application to Authentication of Natural Extracts. J. Agric. Food Chem. 2014, 62, 1038–1046. [Google Scholar] [CrossRef]
- Acunha, T.; Ibáñez, C.; García-Cañas, V.; Cifuentes, A.; Simó, C. CE-MS in Food Analysis and Foodomics. In Capillary Electrophoresis–Mass Spectrometry (CE-MS) Principles and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 193–215. [Google Scholar] [CrossRef]
- Jenke, D.; Liu, N. Chromatographic Considerations in the Standardization of Liquid Chromatographic Methods Used for Extractables Screening. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 613–619. [Google Scholar] [CrossRef]
- Villas-Bôas, S.; Koulman, A.; Lane, G. Analytical Methods from the Perspective of Method Standardization. In Metabolomics; Springer: Berlin, Germany, 2007; pp. 11–52. [Google Scholar]
- Kagawad, P.; Gharge, S.; Jivaje, K.; Hiremath, S.I.; Suryawanshi, S.S. Quality Control and Standardization of Quercetin in Herbal Medicines by Spectroscopic and Chromatographic Techniques. Future J. Pharm. Sci. 2021, 7, 176. [Google Scholar] [CrossRef]
- Meroni, P.L.; Biggioggero, M.; Pierangeli, S.S.; Sheldon, J.; Zegers, I.; Borghi, M.O. Standardization of Autoantibody Testing: A Paradigm for Serology in Rheumatic Diseases. Nat. Rev. Rheumatol. 2014, 10, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Riegman, P.H.J.; Becker, K.F.; Zatloukal, K.; Pazzagli, M.; Schröder, U.; Oelmuller, U. How Standardization of the Pre-Analytical Phase of Both Research and Diagnostic Biomaterials Can Increase Reproducibility of Biomedical Research and Diagnostics. New Biotechnol. 2019, 53, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Van Breemen, R.B.; Fong, H.H.; Farnsworth, N.R. The Role of Quality Assurance and Standardization in the Safety of Botanical Dietary Supplements. Chem. Res. Toxicol. 2007, 20, 577. [Google Scholar] [CrossRef]
- Yu, X.L.; Sun, D.W.; He, Y. Emerging Techniques for Determining the Quality and Safety of Tea Products: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2613–2638. [Google Scholar] [CrossRef] [PubMed]
- Poitout, F.; Colangelo, J.L.; Lavallée, S.; Aulbach, A.D.; Piché, M.S.; Ennulat, D.; Boone, L.I. Current practices and challenges in method validation. Toxic. Path. 2018, 46, 847–856. [Google Scholar] [CrossRef]
- Raposo, F.; Ibelli-Bianco, C. Performance parameters for analytical method validation: Controversies and discrepancies among numerous guidelines. TrAC Trends Anal. Chem. 2020, 129, 115913. [Google Scholar] [CrossRef]
- Barwick, V.; Ellison, S.L.R.; Gjengedal, E.; Magnusson, B.; Molinier, O.; Patriarca, M.; Sibbesen, L.; Vanlaethem, N.; Vercruysse, I. Method validation in analytical sciences: Discussions on current practice and future challenges. Accredit. Qual. Assur. 2017, 22, 253–263. [Google Scholar] [CrossRef]
- Levine, K.E.; Tudan, C.; Grohse, P.M.; Weber, F.X.; Levine, M.A.; Kim, Y.S.J. Aspects of bioanalytical method validation for the quantitative determination of trace elements. Bioanalysis 2011, 3, 1699–1712. [Google Scholar] [CrossRef]
- Loh, T.P.; Cooke, B.R.; Markus, C.; Zakaria, R.; Tran, M.T.C.; Ho, C.S.; Greaves, R.F.; IFCC Working Group on Method Evaluation Protocols. Method Evaluation in the Clinical Laboratory. Clin. Chem. Lab. Med. 2023, 61, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. U.S. Guidelines for the Validation of Chemical Methods in Food, Feed, Cosmetics, and Veterinary Products; Food and Drug Administration: Silver Spring, MD, USA, 2019; pp. 1–39. Available online: https://www.fda.gov/media/81810/download (accessed on 13 June 2024).
- Food and Drug Administration. U.S. Bioanalytical Method Validation Guidance for Industry; US Department of Health and Human Services: Washington, DC, USA, 2018; pp. 1–41. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 13 June 2024).
- Magnusson, B.; Örnemark, U. (Eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem: Gembloux, Belgium, 2014; Available online: https://www.eurachem.org (accessed on 13 June 2024)ISBN 978-91-87461-59-0.
- International Organization for Standardization. ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/66912.html (accessed on 13 June 2024).
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for Assessing the Greenness of Analytical Procedures. TrAC Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Płotka-Wasylka, J. A New Tool for the Evaluation of the Analytical Procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Suh, S. Recent Developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Manousi, N.; Wojnowski, W.; Płotka-Wasylka, J.; Samanidou, V. Blue Applicability Grade Index (BAGI) and Software: A New Tool for the Evaluation of Method Practicality. Green Chem. 2023, 25, 7598–7604. [Google Scholar] [CrossRef]
Sample | Analytes (n) | Stationary Phase | Mobile Phase | Flow (mL/min) | Detection System | Total Analysis Time (min) | Ref. |
---|---|---|---|---|---|---|---|
Yunnan large-leaf tea (Camellia sentences) | Amino acids (23) Alkaloids (9) Nucleosides (7) Nucleotides (6) | HILIC 1.7 μm column (100 × 2.1 mm) | 0.2% FA and 5 mM AF in water (A) and ACN–water (90:10) (B) | 0.4 | MS/MS | 8.5 | [29] |
Willow Bark (Salix sp.) | Phenolic compounds (2) Monosaccharides (2) | Luna® Omega Sugar 3 µm column (250 × 4.6 mm) | ACN (A), water (B), MeOH (C) | 1.3 | DAD-ELSD | 9.8 | [30] |
Red Garlic | Flavonols (3) Saccharides (3) | HILIC VG 50 4E 5 μm column (250 × 4.6 mm) | 0,01% FA in ACN (A) and water (B) | 0.6 | DAD | 40 | [25] |
Dietary supplements | B6 vitamin Catechins (4) | Column: eQuant™ ZIC-HILIC column 3.5 μm (100 × 2.1 mm) | 8 mM FA (pH 2.8) (A), ACN (B) | 0.2 | MS | 20 | [31] |
Green tea black tea chrysanthemum | Ningnanmycin | Poroshell 120 HILIC 1.9 μm column (150 × 2.1 mm) | ACN (A), 50 mM AF (B) | 0.3 | MS | 15 | [32] |
Green, black, ginger, hibiscus, moringa, and fenugreek teas | Rutin | SEQuant ZIC-HILIC 3.5 μm column (100 × 4.6 mm) | 35 mM NaAOc buffer (A), ACN (B) | 0.5 | UV-Vis | 6 | [33] |
Apple juice | Phenolic acids (20) | Luna HILIC 3 μm column (150 × 2 mm) | 0.1% AA in ACN (A), water/ACN/AA (79.9:2:0.1) (B) | 0.3 | DAD-HRMS | 40 | [34] |
Hydrolyzed pomegranate peel. | Peptides 26 | Ascentis Express 2.7 μm column (100 × 2.1 mm) | 65 mM NaAOc in water (A), ACN (B) | 0.3 | Q-TOF | 25 | [35] |
Vegetables | Amino acids (15) Vitamins b (7) Polyphenols (27) | HILIC-BEH-amide 1.7 μm column (2.1 × 100 mm) | 0,02% FA in H20 (A), ACN (B) | 0.2 | MS/MS | 20 | [36] |
Fresh and aged garlic | Phenolic compounds (10) | XBridge BEH-amide 3.5 μm column (150 × 4.6 mm | 0,1% NH4OH in ACN (A) and water (B) | 1.0 | ELSD | 35 | [26] |
Annurca and Red Delicious apple | Phenolic acids (6) Flavonoids (57) | Luna® HILIC 3.0 μm column (150 × 2.0 mm) | AA/water/ACN (0,1:80:2) (A) 0,1% AA in ACN (B) | 0.5 | DAD-Q-TOF | 25 | [37] |
Wild sea buckthorn berries | Catechins (11) Proanthocyanidin (49) | Luna HILIC 200 A 3 μm column (150 × 3.00 mm) | ACN (A), 0.5% FA in H20 (MPB) | 0.6 | DAD-MS | 12 | [38] |
Blueberries red cabbage red radish grape skins black beans | Anthocyanins (6–19) | BEH Amide 1.7 μm column (150 mm × 1.0 mm) | 0,4% TFA in ACN (A), in H20 (B) | 0.2–1.0 | DAD-Q-TOF | 60 | [39] |
Peanut skins | Proanthocyanidins (60) | Princeton SPHER DIOL 5 μm column (250 × 4.6 mm) | 2% AA in ACN (A), MeOH/water (95:3) (B) | 1.0 | MS | 50 | [40] |
Moscato Rosa grapes | Phenolic acids (5) Flavonoids (5) Anthocyanins (3) | ZIC SeQuant 5 μm column (150 × 10 mm) | ACN (A), 1% FA (B) | 0.2 | DAD-ELSD-NMR-MS/MS | 56 | [41] |
Sample | Analytes (n) | Stationary Phase (particle Size, ID, Packed Length) | Mobile Phase | Flow (nL/min) | Detection System | Total Analysis Time (Min) | Ref. |
---|---|---|---|---|---|---|---|
Aloe plants | Anthrones (14) | ChromSpher 3 C18 (3 μm, 0.1 × 150 mm) | 0.02 TFA water (A) and ACN (B) | 350 | UV-MS | 32 | [43] |
Olive oil | Phenolic acids (1) Flavonoids (2) Other phenolic compounds (4) | BioSphere (3 μm, 0.075 × 100 mm) | 0.5% AA in water (A), ACN (B) | 300 | MS | 30 | [44] |
Tea | Phenolic acids (5) Flavonoids (6) Alkaloids (2) Caffeine | Kinetex C18 (2.6 μm, 0.1 × 100 mm) | 0.5% FA in water (A) and ACN/MeOH (70:30 v/v) (B) | 1200 | UV-MS | 15 | [45] |
Bee pollen | Phenolic acids (6) Hydroxycinnamic acids (5) Flavonoids (5) | Kinetex C18 (2.6 μm, 0.1 × 100 mm) | 0.5% FA in water (A) and ACN (B) | 500 | UV-vis | 20 | [46] |
Citrus juices | Flavonoids (7) | Hydride-based RP-C18 (2 μm, 0.075 × 100 mm) | 1% FA in water (A) and ACN (B) | 500 | UV-vis | 15 | [47] |
Dietary supplements | Flavonoids (5) | Hydride-based RP-C18 (2 μm, 0.075 × 100 mm) | 0.55% FA in water (A) and ACN/MeOH (B) | 450 | UV-vis | 5 | [48] |
Cranberry syrups | Phenolic acids (6) Flavonoids (35) Iridoids (6) | C18 (3 μm, 0.075 × 101 mm) | 1% FA in water (A) and ACN (B) | 300 | Q-TOF-MS | 40 | [49] |
Sample | Analytes (n) | Stationary Phase (Particle Size, Id, Packed Length) | Mobile Phase | Pressure MPa | Flow (mL/min) | Detection System | Total Analysis Time (Min) | Ref. |
---|---|---|---|---|---|---|---|---|
Radix Hedysari | Phenolic acid (1) Flavonoid (7) Other phenolic compounds (3) | HSS SB C18 1.7 μm column (150 × 2.1 mm) | CO2 (A) and 0.2% FA in MeOH (B) | 11.03 | 1.5 | DAD | 25 | [52] |
Wild ivy | Chlorophyll and derivates (31) | Cortecs C18 2.7 μm column (150 × 4.5 mm) | CO2/MeOH (80:20 v/v) | 10 | 1.5 | MS | 10 | [53] |
Bee pollen | Flavanones (10) | Chiralpak AD 10 μm column (250 × 4.6 mm) | CO2 and EtOH/MeOH (80:15 v/v) | 15 | 3 | PDA | 40 | [54] |
Alpinia officinarum | Flavonoids (3) Other phenolic compounds (7) | Diol 5 μm column (250 × 4.6 mm) | CO2 and MeOH (5–20%) | 13.8 | 3 | UV-vis | 30 | [55] |
Walnut oil | Terpenoids (9) | BEH-2EP 1.7 μm column (100 × 3 mm) | 0.1% FA in CO2 and MeOH | 17 | 0.1 | TQ-MS | 13 | [56] |
Eucalyptus | Terpenes (17) | Super Carbon LC 2.7 μm column (150 × 3 mm) | CO2 and MeOH (5–20%) | 22.75 | 1.5 | MS/MS | 7.5 | [57] |
Sample | Analytes (n) | Stationary Phase | Mobile Phase | Flow (mL/min) | Detection System | Total Analysis Time (min) | Ref. |
---|---|---|---|---|---|---|---|
Safflower | Flavonoids (75) Alkaloids (10) | XBridge Amide 3.5 μm column (150 × 4.6 mm) | 0.1% FA in water (A) and ACN (B) | 0.08 | DAD-HRMS | 170 | [62] |
Ultimate amide five μm column (50 × 4.6 mm) | 0.2 uM AF in water (A), ACN (B) | 3 | |||||
Rhus coriaria | Phenolic acids (83) | SEQuant ZIC-HILIC 3.5 μm column (150 × 1.0 mm) * | 0.1 % FA in water, pH 3.0 (A) and ACN (B) | 0.01 | PDA-MS | 60 | [63] |
Ascentis Express C18 2.7 μm column (50 × 4.6 mm) | 0.1 % FA in water, pH 3.0 (A) and ACN (B) | 3 | |||||
Cannabis | Cannabinoids (41) Procyanidins (6) Phenolic acids (4) Flavonoids (11) | Kinetex PFP 1.7 μm column (150 × 2.1 mm) | 0.1% FA in water (A) and MeOH (B) | 0.05 | DAD-Q-TOF-MS | 65 | [64] |
Kinetex C18 2.6 μm column (50 × 4.6 mm) | 0.1% FA in water (A) and ACN (B) | 2.5 | |||||
Gelsemium elegans | Alkaloids (256) | XCharge C18 3.0 μm column (150 × 2.1 mm) | 0.1% FA in water (A) and MeOH (B) | 0.04 | Q-TOF-MS | 120 | [65] |
BEH Shield C18 1.7 μm column (50 × 3 mm) | 0.125% NH4OH in water (A) and MeOH (B) | 1 | |||||
Cuscuta Chinensis | Organic acids (26) Flavonoids (45) Lignans (45) Phenolic acids (40) Alkaloids (5) | XBridge Amide 3.5 μm column (150 × 4.6 mm) | 0.1% FA in water (A) and ACN (B) | 1 | UV-Q-TOF-MS | 53 | [66] |
Zorbax SB-AQ 1.8 μm column (100 × 2.1 mm) | 0.1% FA in water (A) and ACN (B) | 0.3 | |||||
Ceylon tea | Catechins and derivates (31) | Poroshell HPH-C18 2.7 μm column (150 × 2.1 mm) | 0.1% FA in water (A) and MeOH (B) | 0.12 | HRMS | 50 | [67] |
Poroshell Bonus RP1.9 μm column (50 × 3.0 mm) | 0.1% FA in water (A) and MeOH (B) | 0.86 | |||||
Cannabis sativa | Cannabinoids (10) Terpenes (15) | Zorbax SB-CN 5 μm column (250 × 4.6 mm) | 0.05% FA in MeOH/water (A) and ACN/water (B) | 0.7 | DAD | 75 | [68] |
Poroshell 120-SB 2.7 μm column (50 × 2.1 mm) | 0.05% FA in water (A) and ACN (B) | 2.7 | |||||
Bilberry, blackcurrant, blueberry, chokeberry, elderberry, honeyberry, and raspberry | Phenolic compounds (80) | Ascentis Express C18 2.7 μm column (50 × 4.6 mm) | 0.1% FA in water (A) and ACN (B) | 0.1 | PDA-MS | 80 | [69] |
SEQuant ZIC-HILIC 3.5 μm column (150 × 1.0 mm) | 0.1% FA in water (A) and ACN (B) | 1 | |||||
Grape seeds, Rooibos tea, Wine, and Grapes | Phenolic compounds (156) | Xbridge Amide 1.7 μm column (150 × 1.0 mm) | 0.1% FA in water (A) and ACN (B) | 0.5 | DAD-HRMS | 70 | [70] |
Kinetex C 18 1.7 μm column (50 × 3.0 mm) | 0.1% FA in water (A) and ACN (B) | 2.5 | |||||
Green tea | Anthocyanins (19) | Nomura Chemical Develosil Diol-100 5 μm column (250 × 1 mm) | 10% FA in ACN (A) and H20 (B) | 0.2 | DAD-Q-TOF-MS | 60 | [71] |
Zorbax SB-C18 1.8 μm column (50 × 4.6 mm) | 0.4% TFA in ACN (A) and H20 (B) | 1 | |||||
Apples | Phenolic compounds (65) | Lichrospher diol-5 5 μm column (150 × 1.0 mm) | 2% AA in ACN (A) MeOH/water/AA acid (95:32) (B) | 0.9 | MS | 50 | [72] |
Ascentis Express C18 2.7 μm column (50 × 4.6 mm) | 0,1% FA in water (A) ACN (C) | 3 | |||||
Uncaria sessilifructus a | Alkaloids (85) Phenolic acids (29) | PhenoSphere TM SCX 5 μm column (250 × 4.6 mm) * | 20 mM AA/0.05% FA in water (A) and MeOH (B) | 1 | HRMS | 70 | [73] |
Acchrom XAmide 5 μm column (150 × 4.6 mm) * | 0.1% FA in water (A) and ACN (B) | 0.8 | |||||
CSH Phenyl-Hexyl 1.7 μm column (100 × 2.1 mm) | 0.1% FA in water (A) and ACN (B) | 0.3 |
Sample | Analytes (n) | Capillary (Length × I.D.) | Separation Medium | Separation Mechanism | Detection System | Total Analysis Time (min) | Ref. |
---|---|---|---|---|---|---|---|
Sunflower honey | Phenolic acids (11) Flavonoids (3) Other phenolic acids (1) | Fused silica (90 cm × 50 µm) | 0.5 M NH4OH | CZE | MS | 15 | [74] |
Chamomile flowers | Flavonoids (2) | Quartz (75 cm × 50 µm) | 0.026 M borax | CZE | UV-vis | 25 | [75] |
Salvia | Phenolic acids (2) | Fused silica (67 cm × 50 µm) | 0.020 M borax | CZE | UV-vis | 10 | [76] |
Shihu a | Phenols (11) | Electropak™ C18 column (20 cm × 100 µm) | 0.012 M borax in ACN | pCEC | UV-vis | 35 | [77] |
Carob pekmez | Phenolic acids (10) Flavonoids (4) Phenolic aldehyde (1) | Fused silica (55 cm × 50 µm) | 0.04 M borax | CZE | DAD | 20 | [78] |
Soybean | Metabolites (198) | Fused silica (100 cm × 50 µm) b COSMO (+) (100 cm × 50 µm) c | 1M FA b 0.05 M AA c | CZE | MS | 40 | [80] |
Cranberries, cranberry juice, blueberries, grapes, grape juice, and raisins | Proanthocyanidins (4) | Fused silica (75 cm × 50 µm) | 0.035 M borax in 5% MeOH | CZE | UV | 40 | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Custodio-Mendoza, J.A.; Pokorski, P.; Aktaş, H.; Napiórkowska, A.; Kurek, M.A. Advances in Chromatographic Analysis of Phenolic Phytochemicals in Foods: Bridging Gaps and Exploring New Horizons. Foods 2024, 13, 2268. https://doi.org/10.3390/foods13142268
Custodio-Mendoza JA, Pokorski P, Aktaş H, Napiórkowska A, Kurek MA. Advances in Chromatographic Analysis of Phenolic Phytochemicals in Foods: Bridging Gaps and Exploring New Horizons. Foods. 2024; 13(14):2268. https://doi.org/10.3390/foods13142268
Chicago/Turabian StyleCustodio-Mendoza, Jorge Antonio, Patryk Pokorski, Havva Aktaş, Alicja Napiórkowska, and Marcin Andrzej Kurek. 2024. "Advances in Chromatographic Analysis of Phenolic Phytochemicals in Foods: Bridging Gaps and Exploring New Horizons" Foods 13, no. 14: 2268. https://doi.org/10.3390/foods13142268
APA StyleCustodio-Mendoza, J. A., Pokorski, P., Aktaş, H., Napiórkowska, A., & Kurek, M. A. (2024). Advances in Chromatographic Analysis of Phenolic Phytochemicals in Foods: Bridging Gaps and Exploring New Horizons. Foods, 13(14), 2268. https://doi.org/10.3390/foods13142268