Global Research Network Analysis of Edible Coatings and Films for Preserving Perishable Fruit Crops: Current Status and Future Directions
Abstract
:1. Introduction
2. Results
2.1. An Overview of Research Performance Statistics on Edible Coatings and Films
2.2. Research Trends in Edible Coatings and Films
2.3. Geographic Distribution of Research
2.4. Global Collaboration Network in EC/F Research
2.5. Network Visualisation of Academic Journals within Edible Coating and Film Research
2.6. Dominant Themes in Edible Coatings and Films Research
2.6.1. Development of Novel Materials
2.6.2. Enhancing ECs/Fs Efficacy for Shelf Life and Quality
2.6.3. Sustainable Solutions to Postharvest Challenges
2.7. Material Innovations for Edible Coatings and Films
2.7.1. An Overview of Materials Used in Edible Coatings and Films
Polysaccharides
Lipids
Proteins
Composite Materials
2.7.2. Technological Advancements for Enhanced Functionality of ECs/Fs
Nanotechnology
Active Packaging
Smart Packaging
Bioprinting
2.7.3. Functional Properties of Edible Coatings and Films
Barrier Properties
Mechanical Properties
Bioactive Properties
Fruit Shelf Life Extension
2.7.4. Incorporation of Natural Substances
Natural Antimicrobials
Natural Antioxidants
2.8. Emerging Trends, Research Gaps, and Future Directions
2.8.1. Emerging Trends
2.8.2. Research Gaps
2.8.3. Future Directions
3. Methodology
3.1. Data Collection
3.1.1. Identification
3.1.2. Inclusion and Exclusion Criteria
3.2. Analytical Tools and Preprocessing
3.3. Bibliometric Analysis and Visualisation
4. Limitations and Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamam, M.; Chinnici, G.; Di Vita, G.; Pappalardo, G.; Pecorino, B.; Maesano, G.; D’Amico, M. Circular Economy Models in Agro-Food Systems: A Review. Sustainability 2021, 13, 3453. [Google Scholar] [CrossRef]
- Pawlak, K.; Kołodziejczak, M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable Intensification of Agriculture for Human Prosperity and Global Sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Bancal, V.; Ray, R. Overview of Food Loss and Waste in Fruits and Vegetables: From Issue to Resources. In Fruits and Vegetable Wastes; Springer: Singapore, 2022; pp. 3–29. ISBN 9789811695261. [Google Scholar]
- Liguori, G.; Greco, G.; Gaglio, R.; Settanni, L.; Inglese, P.; Allegra, A. Influence of Cactus Pear Mucilage-Based Edible Coating on Marketability and Edibility Parameters of Minimally Processed Loquat Fruits. Agronomy 2022, 12, 2120. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Jafari, S.M.; Salehabadi, A.; Nafchi, A.M.; Uthaya Kumar, U.S.; Khalil, H.P.S.A. Biodegradable Green Packaging with Antimicrobial Functions Based on the Bioactive Compounds from Tropical Plants and Their By-Products. Trends Food Sci. Technol. 2020, 100, 262–277. [Google Scholar] [CrossRef]
- Rhein, S.; Schmid, M. Consumers’ Awareness of Plastic Packaging: More than Just Environmental Concerns. Resour. Conserv. Recycl. 2020, 162, 105063. [Google Scholar] [CrossRef]
- Brasil, I.M.; Gomes, C.; Puerta-Gomez, A.; Castell-Perez, M.E.; Moreira, R.G. Polysaccharide-Based Multilayered Antimicrobial Edible Coating Enhances Quality of Fresh-Cut Papaya. LWT—Food Sci. Technol. 2012, 47, 39–45. [Google Scholar] [CrossRef]
- Mantilla, N.; Castell-Perez, M.E.; Gomes, C.; Moreira, R.G. Multilayered Antimicrobial Edible Coating and Its Effect on Quality and Shelf-Life of Fresh-Cut Pineapple (Ananas comosus). LWT—Food Sci. Technol. 2013, 51, 37–43. [Google Scholar] [CrossRef]
- Milani, J.M.; Nemati, A. Lipid-Based Edible Films and Coatings: A Review of Recent Advances and Applications. J. Packag. Technol. Res. 2022, 6, 11–22. [Google Scholar] [CrossRef]
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Alves, V.D.; Moldão-Martins, M. Impact of Chitosan-Beeswax Edible Coatings on the Quality of Fresh Strawberries (Fragaria ananassa cv Camarosa) under Commercial Storage Conditions. LWT—Food Sci. Technol. 2013, 52, 80–92. [Google Scholar] [CrossRef]
- Li, Y.; Guo, L.; Yi, X.; Xu, Q.; Zhang, Q.; Zhou, Y.; Li, X.; Chen, B.; Zhao, N.; Pan, W.; et al. Fabrication and Characterization of Plumula nelumbinis Extract Loaded Gelatin/Zein Films (PNE@GZF) to Prolong Strawberries Shelf-Life. Food Control 2023, 154, 109989. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, F.; Zhao, H.; Wu, H.; Sun, C.; Li, Q. Furoic Acid-Mediated Konjac Glucomannan/Flaxseed Gum Based Green Biodegradable Antibacterial Film for Shine-Muscat Grape Preservation. Int. J. Biol. Macromol. 2023, 253, 126883. [Google Scholar] [CrossRef] [PubMed]
- Kouhi, M.; Prabhakaran, M.P.; Ramakrishna, S. Edible Polymers: An Insight into Its Application in Food, Biomedicine and Cosmetics. Trends Food Sci. Technol. 2020, 103, 248–263. [Google Scholar] [CrossRef]
- McHugh, T.H. Protein-Lipid Interactions in Edible Films and Coatings. Food/Nahrung 2000, 44, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.C.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.C.; McHugh, T.H. Recent Advances on Edible Films Based on Fruits and Vegetables—A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar] [CrossRef]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-Based Films and Coatings for Food Packaging: A Review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Gomes, B.A.F.; Alexandre, A.C.S.; De Andrade, G.A.V.; Zanzini, A.P.; De Barros, H.E.A.; Ferraz E Silva, L.M.D.S.; Costa, P.A.; Boas, E.V.D.B.V. Recent Advances in Processing and Preservation of Minimally Processed Fruits and Vegetables: A Review—Part 2: Physical Methods and Global Market Outlook. Food Chem. Adv. 2023, 2, 100304. [Google Scholar] [CrossRef]
- Rhim, J.W.; Gennadios, A.; Handa, A.; Weller, C.L.; Hanna, M.A. Solubility, Tensile, and Color Properties of Modified Soy Protein Isolate Films. J. Agric. Food Chem. 2000, 48, 4937–4941. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Cheng, Y.; Wang, C.; Liu, H.; Bian, H.; Pan, Y.; Sun, J.; Han, W. Application of Protein-Based Films and Coatings for Food Packaging: A Review. Polymers 2019, 11, 2039. [Google Scholar] [CrossRef]
- Duong, N.T.C.; Uthairatanakij, A.; Laohakunjit, N.; Jitareerat, P.; Kaisangsri, N. Cross-Linked Alginate Edible Coatings Incorporated with Hexyl Acetate: Film Characteristics and Its Application on Fresh-Cut Rose Apple. Food Biosci. 2023, 52, 102410. [Google Scholar] [CrossRef]
- Montone, A.M.I.; Malvano, F.; Pham, P.L.; Cinquanta, L.; Capparelli, R.; Capuano, F.; Albanese, D. Alginate-Based Coatings Charged with Hydroxyapatite and Quercetin for Fresh-Cut Papaya Shelf Life. Int. J. Food Sci. Technol. 2022, 57, 5307–5318. [Google Scholar] [CrossRef]
- Oregel-Zamudio, E.; Angoa-Pérez, M.V.; Oyoque-Salcedo, G.; Aguilar-González, C.N.; Mena-Violante, H.G. Effect of Candelilla Wax Edible Coatings Combined with Biocontrol Bacteria on Strawberry Quality during the Shelf-Life. Sci. Hortic. 2017, 214, 273–279. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Martín-Belloso, O. Edible Alginate-Based Coating as Carrier of Antimicrobials to Improve Shelf-Life and Safety of Fresh-Cut Melon. Int. J. Food Microbiol. 2008, 121, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Robles-Sánchez, R.M.; Rojas-Graü, M.A.; Odriozola-Serrano, I.; González-Aguilar, G.; Martin-Belloso, O. Influence of Alginate-Based Edible Coating as Carrier of Antibrowning Agents on Bioactive Compounds and Antioxidant Activity in Fresh-Cut Kent Mangoes. LWT—Food Sci. Technol. 2013, 50, 240–246. [Google Scholar] [CrossRef]
- Nunes, C.; Silva, M.; Farinha, D.; Sales, H.; Pontes, R.; Nunes, J. Edible Coatings and Future Trends in Active Food Packaging–Fruits’ and Traditional Sausages’ Shelf Life Increasing. Foods 2023, 12, 3308. [Google Scholar] [CrossRef] [PubMed]
- Perez-Vazquez, A.; Barciela, P.; Carpena, M.; Prieto, M.A. Edible Coatings as a Natural Packaging System to Improve Fruit and Vegetable Shelf Life and Quality. Foods 2023, 12, 3570. [Google Scholar] [CrossRef]
- Priya, K.; Thirunavookarasu, N.; Chidanand, D.V. Recent Advances in Edible Coating of Food Products and Its Legislations: A Review. J. Agric. Food Res. 2023, 12, 100623. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- García, M.A.; Martino, M.N.; Zaritzky, N.E. Starch-Based Coatings: Effect on Refrigerated Strawberry (Fragaria ananassa) Quality. J. Sci. Food Agric. 1998, 76, 411–420. [Google Scholar] [CrossRef]
- Retamales, J.B. World Temperate Fruit Production: Characteristics and Challenges. Rev. Bras. Frutic. 2011, 33, 121–130. [Google Scholar] [CrossRef]
- Ali, A.; Noh, N.M.; Mustafa, M.A. Antimicrobial Activity of Chitosan Enriched with Lemongrass Oil against Anthracnose of Bell Pepper. Food Packag. Shelf Life 2015, 3, 56–61. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Raybaudi-Massilia, R.M.; Soliva-Fortuny, R.C.; Avena-Bustillos, R.J.; McHugh, T.H.; Martín-Belloso, O. Apple Puree-Alginate Edible Coating as Carrier of Antimicrobial Agents to Prolong Shelf-Life of Fresh-Cut Apples. Postharvest Biol. Technol. 2007, 45, 254–264. [Google Scholar] [CrossRef]
- Frassinetti, S.; Castagna, A.; Santin, M.; Pozzo, L.; Baratto, I.; Longo, V.; Ranieri, A. Gelatin-Based Coating Enriched with Blueberry Juice Preserves the Nutraceutical Quality and Reduces the Microbial Contamination of Tomato Fruit. Nat. Prod. Res. 2021, 35, 6088–6092. [Google Scholar] [CrossRef] [PubMed]
- Tanada-Palmu, P.S.; Grosso, C.R.F. Effect of Edible Wheat Gluten-Based Films and Coatings on Refrigerated Strawberry (Fragaria ananassa) Quality. Postharvest Biol. Technol. 2005, 36, 199–208. [Google Scholar] [CrossRef]
- Oliveira Filho, J.G.d.; Silva, G.d.C.; Oldoni, F.C.A.; Miranda, M.; Florencio, C.; Oliveira, R.M.D.d.; Gomes, M.d.P.; Ferreira, M.D. Edible Coating Based on Carnauba Wax Nanoemulsion and Cymbopogon martinii Essential Oil on Papaya Postharvest Preservation. Coatings 2022, 12, 1700. [Google Scholar] [CrossRef]
- Pérez-Vergara, L.D.; Cifuentes, M.T.; Franco, A.P.; Pérez-Cervera, C.E.; Andrade-Pizarro, R.D. Development and Characterization of Edible Films Based on Native Cassava Starch, Beeswax, and Propolis. NFS J. 2020, 21, 39–49. [Google Scholar] [CrossRef]
- Heristika, W.; Ningrum, A.; Supriyadi; Munawaroh, H.S.H.; Show, P.L. Development of Composite Edible Coating from Gelatin-Pectin Incorporated Garlic Essential Oil on Physicochemical Characteristics of Red Chili (Capsicum annnum L.). Gels 2023, 9, 49. [Google Scholar] [CrossRef]
- Han, C.; Zhao, Y.; Leonard, S.W.; Traber, M.G. Edible Coatings to Improve Storability and Enhance Nutritional Value of Fresh and Frozen Strawberries (Fragaria × ananassa) and Raspberries (Rubus Ideaus). Postharvest Biol. Technol. 2004, 33, 67–78. [Google Scholar] [CrossRef]
- Ponce, A.G.; Roura, S.I.; del Valle, C.E.; Moreira, M.R. Antimicrobial and Antioxidant Activities of Edible Coatings Enriched with Natural Plant Extracts: In Vitro and in Vivo Studies. Postharvest Biol. Technol. 2008, 49, 294–300. [Google Scholar] [CrossRef]
- Kaya, M.; Ravikumar, P.; Ilk, S.; Mujtaba, M.; Akyuz, L.; Labidi, J.; Salaberria, A.M.; Cakmak, Y.S.; Erkul, S.K. Production and Characterization of Chitosan Based Edible Films from Berberis crataegina’s Fruit Extract and Seed Oil. Innov. Food Sci. Emerg. Technol. 2018, 45, 287–297. [Google Scholar] [CrossRef]
- Maqbool, M.; Ali, A.; Alderson, P.G.; Zahid, N.; Siddiqui, Y. Effect of a Novel Edible Composite Coating Based on Gum Arabic and Chitosan on Biochemical and Physiological Responses of Banana Fruits during Cold Storage. J. Agric. Food Chem. 2011, 59, 5474–5482. [Google Scholar] [CrossRef] [PubMed]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of Antimicrobial Nanoemulsions as Edible Coatings: Impact on Safety and Quality Attributes of Fresh-Cut Fuji Apples. Postharvest Biol. Technol. 2015, 105, 8–16. [Google Scholar] [CrossRef]
- Mahmud, M.Z.A.; Mobarak, M.H.; Hossain, N. Emerging Trends in Biomaterials for Sustainable Food Packaging: A Comprehensive Review. Heliyon 2024, 10, e24122. [Google Scholar] [CrossRef]
- Sultan, M.; Hafez, O.M.; Saleh, M.A.; Youssef, A.M. Smart Edible Coating Films Based on Chitosan and Beeswax–Pollen Grains for the Postharvest Preservation of Le Conte Pear. RSC Adv. 2021, 11, 9572–9585. [Google Scholar] [CrossRef]
- Ahari, H.; Soufiani, S.P. Smart and Active Food Packaging: Insights in Novel Food Packaging. Front. Microbiol. 2021, 12, 657233. [Google Scholar] [CrossRef]
- Riccio, B.V.F.; Silvestre, A.L.P.; Meneguin, A.B.; Ribeiro, T.d.C.; Klosowski, A.B.; Ferrari, P.C.; Chorilli, M. Exploiting Polymeric Films as a Multipurpose Drug Delivery System: A Review. AAPS PharmSciTech 2022, 23, 269. [Google Scholar] [CrossRef]
- Yu, K.; Zhou, L.; Huang, H.; Xu, J.; Li, Y.; Yu, W.; Peng, S.; Zou, L.; Liu, W. The Improvement of Water Barrier Property in Gelatin/Carboxymethyl Cellulose Composite Film by Electrostatic Interaction Regulation and Its Application in Strawberry Preservation. Food Chem. 2024, 450, 138352. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, K.; Shaw, N.B.; Kerry, J.F.; Kerry, J.P. Combined Effects of Proteins and Polysaccharides on Physical Properties of Whey Protein Concentrate-Based Edible Films. J. Food Sci. 2004, 69, E271–E275. [Google Scholar] [CrossRef]
- Martínez-Romero, D.; Castillo, S.; Guillén, F.; Díaz-Mula, H.M.; Zapata, P.J.; Valero, D.; Serrano, M. Aloe vera Gel Coating Maintains Quality and Safety of Ready-to-Eat Pomegranate Arils. Postharvest Biol. Technol. 2013, 86, 107–112. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Harte, B.R. Physical Properties and Antioxidant Activity of an Active Film from Chitosan Incorporated with Green Tea Extract. Food Hydrocoll. 2010, 24, 770–775. [Google Scholar] [CrossRef]
- Abdel Aziz, M.S.; Salama, H.E. Development of Alginate-Based Edible Coatings of Optimized UV-Barrier Properties by Response Surface Methodology for Food Packaging Applications. Int. J. Biol. Macromol. 2022, 212, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Tarazaga, M.L.; Massa, A.; Pérez-Gago, M.B. Effect of Beeswax Content on Hydroxypropyl Methylcellulose-Based Edible Film Properties and Postharvest Quality of Coated Plums (Cv. Angeleno). LWT—Food Sci. Technol. 2011, 44, 2328–2334. [Google Scholar] [CrossRef]
- Amoozegaran, A.; Dehghan, H.; Homami, S.S.; Hashemi, S.A. Efficacy of an Edible Coating, Containing Thyme Essential Oil, to Control Fusarium oxysporum and the Quality of Tomato Fruits. Food Meas. 2022, 16, 3760–3767. [Google Scholar] [CrossRef]
- Basaglia, R.R.; Pizato, S.; Santiago, N.G.; Maciel de Almeida, M.M.; Pinedo, R.A.; Cortez-Vega, W.R. Effect of Edible Chitosan and Cinnamon Essential Oil Coatings on the Shelf Life of Minimally Processed Pineapple (Smooth cayenne). Food Biosci. 2021, 41, 100966. [Google Scholar] [CrossRef]
- Liguori, G.; Greco, G.; Gargano, F.; Gaglio, R.; Settanni, L.; Inglese, P. Effect of Mucilage-Based Edible Coating Enriched with Oregano Essential Oil on Postharvest Quality and Sensorial Attributes of Fresh-Cut Loquat. Coatings 2023, 13, 1387. [Google Scholar] [CrossRef]
- Martínez, K.; Ortiz, M.; Albis, A.; Gilma Gutiérrez Castañeda, C.; Valencia, M.E.; Grande Tovar, C.D. The Effect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecules 2018, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Won, J.S.; Lee, S.J.; Park, H.H.; Song, K.B.; Min, S.C. Edible Coating Using a Chitosan-Based Colloid Incorporating Grapefruit Seed Extract for Cherry Tomato Safety and Preservation. J. Food Sci. 2018, 83, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Najafi Marghmaleki, S.; Mortazavi, S.M.H.; Saei, H.; Mostaan, A. The Effect of Alginate-Based Edible Coating Enriched with Citric Acid and Ascorbic Acid on Texture, Appearance and Eating Quality of Apple Fresh-Cut. Int. J. Fruit Sci. 2021, 21, 40–51. [Google Scholar] [CrossRef]
- Apriyanti, D.; Rokhati, N.; Mawarni, N.; Khoiriyah, Z.; Istirokhatun, T. Edible Coating from Green Tea Extract and Chitosan to Preserve Strawberry (Fragaria vesca L.). MATEC Web Conf. 2018, 156, 01022. [Google Scholar] [CrossRef]
- Al-Hashimi, A.G.; Ammar, A.B.; G., L.; Cacciola, F.; Lakhssassi, N. Development of a Millet Starch Edible Film Containing Clove Essential Oil. Foods 2020, 9, 184. [Google Scholar] [CrossRef] [PubMed]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Sójka, M.; Skóra, B.; Balawejder, M. Quality and Antioxidant Activity of Highbush Blueberry Fruit Coated with Starch-Based and Gelatine-Based Film Enriched with Cinnamon Oil. Food Control 2022, 138, 109015. [Google Scholar] [CrossRef]
- Tügen, A.; Ocak, B.; Özdestan-Ocak, Ö. Development of Gelatin/Chitosan Film Incorporated with Lemon Essential Oil with Antioxidant Properties. Food Meas. 2020, 14, 3010–3019. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Sayed, S.M. Bionanocomposites Materials for Food Packaging Applications: Concepts and Future Outlook. Carbohydr. Polym. 2018, 193, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Mehwish; Azam, S.; Muzamail, S. Unveiling the Future: Nanotechnology’s Role in Advanced Food Packaging. Agrobiol. Rec. 2023, 15, 23–24. [Google Scholar] [CrossRef]
- Choi, W.S.; Singh, S.; Lee, Y.S. Characterization of Edible Film Containing Essential Oils in Hydroxypropyl Methylcellulose and Its Effect on Quality Attributes of ‘Formosa’ Plum (Prunus salicina L.). LWT 2016, 70, 213–222. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, S.; Moon, H.C.; Seo, H.; Kim, J.Y.; Hong, S.-P.; Lee, B.S.; Kang, E.; Lee, J.; Ryu, D.H.; et al. Antimicrobial Spray Nanocoating of Supramolecular Fe(III)-Tannic Acid Metal-Organic Coordination Complex: Applications to Shoe Insoles and Fruits. Sci. Rep. 2017, 7, 6980. [Google Scholar] [CrossRef] [PubMed]
- Oyom, W.; Yu, L.; Dai, X.; Li, Y.; Zhang, Z.; Bi, Y.; Tahergorabi, R. Starch-Based Composite Coatings Modulate Cell Wall Modification and Softening in Zaosu Pears. Prog. Org. Coat. 2022, 171, 107014. [Google Scholar] [CrossRef]
- Quintana, S.E.; Llalla, O.; García-Risco, M.R.; Fornari, T. Comparison between Essential Oils and Supercritical Extracts into Chitosan-Based Edible Coatings on Strawberry Quality during Cold Storage. J. Supercrit. Fluids 2021, 171, 105198. [Google Scholar] [CrossRef]
- Touayar, M.; Zayani, R.; Messaoud, C.; Salman, H. Influence of Droplet Size on the Antibacterial Efficacy of Citral and Citronella Oil Nanoemulsions in Polysaccharide Coated Fresh-Cut Apples. Sci. Rep. 2023, 13, 10460. [Google Scholar] [CrossRef]
- Dinh, T.A.; Le, Y.N.; Pham, N.Q.; Ton-That, P.; Van-Xuan, T.; Ho, T.G.-T.; Nguyen, T.; Phuong, H.H.K. Fabrication of Antimicrobial Edible Films from Chitosan Incorporated with Guava Leaf Extract. Prog. Org. Coat. 2023, 183, 107772. [Google Scholar] [CrossRef]
- Martelli, M.R.; Barros, T.T.; de Moura, M.R.; Mattoso, L.H.C.; Assis, O.B.G. Effect of Chitosan Nanoparticles and Pectin Content on Mechanical Properties and Water Vapor Permeability of Banana Puree Films. J. Food Sci. 2013, 78, N98–N104. [Google Scholar] [CrossRef] [PubMed]
- Shuang, F.-F.; Zong, C.-M.; Wang, C.-C.; Hu, R.-Z.; Shen, Y.-S.; Ju, Y.-X.; Yao, X.-H.; Chen, T.; Zhao, W.-G.; Zhang, D.-Y. Chlorogenic Acid and Cellulose Nanocrystal–Assisted Crosslinking Preparation of a Silk-Based Film to Extend the Shelf Life of Strawberries. LWT 2022, 172, 114218. [Google Scholar] [CrossRef]
- Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a Curated, High-Quality Bibliometric Data Source for Academic Research in Quantitative Science Studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software Tools for Conducting Bibliometric Analysis in Science: An up-to-Date Review. Prof. Inf. 2020, 29, 1–20. [Google Scholar] [CrossRef]
- Gonzales-Malca, J.A.; Tirado-Kulieva, V.A.; Abanto-López, M.S.; Aldana-Juárez, W.L.; Palacios-Zapata, C.M. Bibliometric Analysis of Research on the Main Genes Involved in Meat Tenderness. Animals 2022, 12, 2976. [Google Scholar] [CrossRef]
- Baker, H.K.; Kumar, S.; Pandey, N. Forty Years of the Journal of Futures Markets: A Bibliometric Overview. J. Futures Mark. 2021, 41, 1027–1054. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silue, Y.; Fawole, O.A. Global Research Network Analysis of Edible Coatings and Films for Preserving Perishable Fruit Crops: Current Status and Future Directions. Foods 2024, 13, 2321. https://doi.org/10.3390/foods13152321
Silue Y, Fawole OA. Global Research Network Analysis of Edible Coatings and Films for Preserving Perishable Fruit Crops: Current Status and Future Directions. Foods. 2024; 13(15):2321. https://doi.org/10.3390/foods13152321
Chicago/Turabian StyleSilue, Yardjouma, and Olaniyi Amos Fawole. 2024. "Global Research Network Analysis of Edible Coatings and Films for Preserving Perishable Fruit Crops: Current Status and Future Directions" Foods 13, no. 15: 2321. https://doi.org/10.3390/foods13152321
APA StyleSilue, Y., & Fawole, O. A. (2024). Global Research Network Analysis of Edible Coatings and Films for Preserving Perishable Fruit Crops: Current Status and Future Directions. Foods, 13(15), 2321. https://doi.org/10.3390/foods13152321