Ball Milling Improves Physicochemical, Functionality, and Emulsification Characteristics of Insoluble Dietary Fiber from Polygonatum sibiricum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of PIDF
2.3. Ball Milling Treatment
2.4. Characterization of Milled PIDF
2.4.1. Particle Size Analysis
2.4.2. Zeta-Potential
2.4.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.4. X-ray Diffraction (XRD)
2.4.5. Scanning Electron Microscopy (SEM)
2.5. Functional Properties
2.5.1. Water-Holding Capacity (WHC), Oil-Holding Capacity (OHC) and Water-Swelling Capacity (WSC)
2.5.2. Total Phenolics Content (TPC) and Total Flavonoid Content (TFC)
2.5.3. Antioxidant Ability
2.5.4. Cation Exchange Capability (CEC)
2.5.5. Fat and Glucose Adsorption Capacity
2.6. Emulsification Characteristics
2.6.1. Contact Angle Analysis
2.6.2. Dynamic Interfacial Tension (IFT)
2.6.3. Pickering Emulsion Preparation
2.6.4. Zeta-Potential and Particle Size and Measurements
2.6.5. Microstructure of Pickering Emulsions
2.6.6. Rheological Properties
2.6.7. Turbiscan Stability Index (TSI)
2.6.8. Stability of Pickering Emulsions
2.7. Statistical Analyses
3. Results
3.1. Structure and Physicochemical Analysis
3.1.1. Particle Size Distribution
3.1.2. Zeta-Potential Analysis
3.1.3. FTIR Analysis
3.1.4. XRD Analysis
3.1.5. Morphology Analysis
3.2. Functional Properties Analysis
3.2.1. Effects of Ball Milling on Hydration Properties and OHC
3.2.2. TPC and TFC Content
3.2.3. Antioxidant Ability of PIDF
3.2.4. Cation Exchange Capability (CEC)
3.2.5. Adsorption Capacity Analysis
3.3. Emulsification Characteristics of the Five Kinds of PIDF
3.3.1. Contact Angle Analysis
3.3.2. IFT of PIDF
3.3.3. Droplet Size and Zeta-Potential of Pickering Emulsions
3.3.4. Optical Microscope Images of Pickering Emulsions
3.3.5. Rheological Properties
3.3.6. Turbiscan Stability Index (TSI)
3.3.7. Storage Stability of Pickering Emulsions
3.3.8. Temperature Stability of Pickering Emulsions
3.3.9. pH Stability of Pickering Emulsions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, W.; Huang, N.; Huang, J.; Wang, L.; Wu, L.; Wang, Q.; Zhao, H. Effects of the steaming process on the structural properties and immunological activities of polysaccharides from Polygonatum cyrtonema. J. Funct. Foods 2022, 88, 104866. [Google Scholar] [CrossRef]
- Li, X.-L.; Ma, R.-H.; Zhang, F.; Ni, Z.-J.; Thakur, K.; Wang, S.; Zhang, J.-G.; Wei, Z.-J. Evolutionary research trend of Polygonatum species: A comprehensive account of their transformation from traditional medicines to functional foods. Crit. Rev. Food Sci. Nutr. 2021, 63, 3803–3820. [Google Scholar] [CrossRef] [PubMed]
- Lan, G.; Chen, H.; Chen, S.; Tian, J. Chemical composition and physicochemical properties of dietary fiber from Polygonatum odoratum as affected by different processing methods. Food Res. Int. 2012, 49, 406–410. [Google Scholar] [CrossRef]
- Wang, X.; Ke, J.; Wang, Y.; Sun, J.; Liu, H.; Wan, P.; Ma, Y.; Chen, Z. Effects of Extraction Methods on Structural and Functional Properties of Water-Insoluble Dietary Fiber from Polygonatum Sibiricum Residue. Sci. Technol. Food Ind. 2024, 010181, 1–17. [Google Scholar]
- Chau, C.-F.; Wang, Y.-T.; Wen, Y.-L. Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chem. 2007, 100, 1402–1408. [Google Scholar] [CrossRef]
- Jin, Q.; Feng, Y.; Cabana-Puig, X.; Chau, T.N.; Difulvio, R.; Yu, D.; Hu, A.; Li, S.; Luo, X.M.; Ogejo, J.; et al. Combined dilute alkali and milling process enhances the functionality and gut microbiota fermentability of insoluble corn fiber. Food Chem. 2024, 446, 138815. [Google Scholar] [CrossRef]
- Song, L.-W.; Qi, J.-R.; Liao, J.-S.; Yang, X.-Q. Enzymatic and enzyme-physical modification of citrus fiber by xylanase and planetary ball milling treatment. Food Hydrocoll. 2021, 121, 107015. [Google Scholar] [CrossRef]
- Yang, K.; Yao, J.; Shi, K.; Yang, C.; Xu, Y.; Zhang, P.; Pan, S. Emulsification Characteristics of Insoluble Dietary Fibers from Pomelo Peel: Effects of Acetylation, Enzymatic Hydrolysis, and Wet Ball Milling. Foods 2024, 13, 624. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shen, C.; Li, C.; Chen, J. Physicochemical, functional, and antioxidant properties of dietary fiber from Rosa roxburghii Tratt fruit modified by physical, chemical, and biological enzyme treatments. J. Food Process. Pres. 2020, 44, e14858. [Google Scholar] [CrossRef]
- Xiao, Z.; Yang, X.; Zhao, W.; Wang, Z.; Ge, Q. Physicochemical properties of insoluble dietary fiber from pomelo (Citrus grandis peel modified by ball milling. J. Food Process. Preserv. 2021, 46, e16242. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, M.; Huang, Y.; Ma, C.; Mu, S.; Li, H.; Liu, X.; Ma, Y.; Liu, Y.; Hou, J. Comparison and Characterization of the Structure and Physicochemical Properties of Three Citrus Fibers: Effect of Ball Milling Treatment. Foods 2022, 11, 2665. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Liu, T.; Zhang, Q.; Wang, Y.; Song, X.; Luo, X.; Ruan, R.; Deng, L.; Cui, X.; Liu, Y. Stabilization of emulsions prepared by ball milling and cellulase treated pomelo peel insoluble dietary fiber: Integrity of porous fiber structure dominates the stability. Food Chem. 2024, 440, 138189. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Wang, Y.; Sun, J.; Wang, X.; Wang, S.; Ma, Y.; Zhao, L.; Zhang, Z. Influence mechanism of chayote (Sechium edule) pectin on the stability of sodium caseinate emulsion. LWT 2024, 195, 115831. [Google Scholar] [CrossRef]
- Zhou, F.-Z.; Yu, X.-H.; Luo, D.-H.; Yang, X.-Q.; Yin, S.-W. Pickering water in oil emulsions prepared from biocompatible gliadin/ethyl cellulose complex particles. Food Hydrocoll. 2023, 134, 108050. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, X.; Yuen, M.; Yuen, T.; Yuen, H.; Wang, M.; Smith, D.; Peng, Q. Effects of Ball Milling Combined With Cellulase Treatment on Physicochemical Properties and in vitro Hypoglycemic Ability of Sea Buckthorn Seed Meal Insoluble Dietary Fiber. Front. Nutr. 2022, 8, 820672. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yan, H.-L.; Tang, C.-H. Wet media planetary ball milling remarkably improves functional and cholesterol-binding properties of okara. Food Hydrocoll. 2021, 111, 106386. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, L.; Schutyser, M.A.I. Linking particle morphology and functionality of colloid-milled dietary fibre concentrates from various plant sources. LWT 2023, 186, 115206. [Google Scholar] [CrossRef]
- Chitrakar, B.; Zhang, M.; Zhang, X.; Devahastin, S. Bioactive dietary Fiber powder from asparagus leaf by-product: Effect of low-temperature ball milling on physico-chemical, functional and microstructural characteristics. Powder Technol. 2020, 366, 275–282. [Google Scholar] [CrossRef]
- Ke, J.; Jiang, G.; Shen, G.; Wu, H.; Liu, Y.; Zhang, Z. Optimization, characterization and rheological behavior study of pectin extracted from chayote (Sechium edule) using ultrasound assisted method. Int. J. Biol. Macromol. 2020, 147, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, H.; Yuan, F.; Pan, Q.; Fan, R.; Gao, Y. Physicochemical characterization of five types of citrus dietary fibers. Biocatal. Agric. Biotechnol. 2015, 4, 250–258. [Google Scholar] [CrossRef]
- Gu, M.; Fang, H.; Gao, Y.; Su, T.; Niu, Y.; Yu, L. Characterization of enzymatic modified soluble dietary fiber from tomato peels with high release of lycopene. Food Hydrocoll. 2020, 99, 105321. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, B.; Shi, P.; Tian, H.; Li, Y.; Wang, X.; Wu, S.; Liang, P. The influences of acetylation, hydroxypropylation, enzymatic hydrolysis and crosslinking on improved adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Chem. 2022, 368, 130883. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, Z.; Goli, S.A.H. Fabrication, physicochemical properties and structural characteristics of nanoparticles from carrot pomace and its insoluble dietary fiber. Food Hydrocoll. 2023, 145, 109131. [Google Scholar] [CrossRef]
- Nie, C.; Bu, X.; Ma, S.; Zhang, J.; Ma, Q.; Li, W.; Zhang, X.; Wu, H.; Hu, S.; Fan, G.; et al. Pickering emulsions synergistically stabilized by cellulose nanocrystals and peanut protein isolate. LWT 2022, 167, 113884. [Google Scholar] [CrossRef]
- Zhang, F.; Shen, R.; Xue, J.; Yang, X.; Lin, D. Characterization of bacterial cellulose nanofibers/soy protein isolate complex particles for Pickering emulsion gels: The effect of protein structure changes induced by Ph. Int. J. Biol. Macromol. 2023, 226, 254–266. [Google Scholar] [CrossRef]
- Han, Y.; Chen, R.; Ma, Z.; Wang, Q.; Wang, X.; Li, Y.; Sun, G. Stabilization of Pickering emulsions via synergistic interfacial interactions between cellulose nanofibrils and nanocrystals. Food Chem. 2022, 395, 133603. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Li, J.; Jin, W.; Yan, S.; Wang, Q. Effect of micronisation on dietary fibre content and hydration properties of lotus node powder fractions. Int. J. Food Sci. Technol. 2018, 53, 590–598. [Google Scholar] [CrossRef]
- Ramachandraiah, K.; Chin, K.B. Evaluation of ball-milling time on the physicochemical and antioxidant properties of persimmon by-products powder. Innov. Food Sci. Emerg. Technol. 2016, 37, 115–124. [Google Scholar] [CrossRef]
- Che, L.-M.; Li, D.; Wang, L.-J.; Chen, X.D.; Mao, Z.-H. Micronization and hydrophobic modification of cassava starch. Int. J. Food Prop. 2007, 10, 527–536. [Google Scholar] [CrossRef]
- Ullah, I.; Yin, T.; Xiong, S.; Zhang, J.; Din, Z.-U.; Zhang, M. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling. LWT-Food Sci. Technol. 2017, 82, 15–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, J.; Qi, J. Functional and structural properties of dietary fiber from citrus peel affected by the alkali combined with high-speed homogenization treatment. LWT 2020, 128, 109397. [Google Scholar] [CrossRef]
- Niu, L.; Guo, Q.; Xiao, J.; Li, Y.; Deng, X.; Sun, T.; Liu, X.; Xiao, C. The effect of ball milling on the structure, physicochemical and functional properties of insoluble dietary fiber from three grain bran. Food Res. Int. 2023, 163, 112263. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhou, S.; Li, Y.; Tian, J.; Zhang, C. Structure, physicochemical properties and effects on nutrients digestion of modified soluble dietary fiber extracted from sweet potato residue. Food Res. Int. 2021, 150, 110761. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Mu, T.-h. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin. Food Chem. 2016, 194, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Wu, Q.; Song, X.; Yang, Q.; Kan, J. Physicochemical properties and bioactive function of Japanese grape (Hovenia dulcis) pomace insoluble dietary fibre modified by ball milling and complex enzyme treatment. Int. J. Food Sci. Technol. 2019, 54, 2363–2373. [Google Scholar] [CrossRef]
- Wang, S.; Xia, J.; De Paepe, K.; Zhang, B.; Fu, X.; Huang, Q.; Van de Wiele, T. Ultra-high pressure treatment controls in vitro fecal fermentation rate of insoluble dietary fiber from Rosa Roxburghii Tratt pomace and induces butyrogenic shifts in microbiota composition. J. Agric. Food Chem. 2021, 69, 10638–10647. [Google Scholar] [CrossRef]
- Gabiatti, C., Jr.; Neves, I.C.; Lim, L.-T.; Bohrer, B.M.; Rodrigues, R.C.; Prentice, C. Characterization of dietary fiber from residual cellulose sausage casings using a combination of enzymatic treatment and high-speed homogenization. Food Hydrocolloid. 2020, 100, 105398. [Google Scholar] [CrossRef]
- Beaumont, M.; Jusner, P.; Gierlinger, N.; King, A.W.; Potthast, A.; Rojas, O.J.; Rosenau, T. Unique reactivity of nanoporous cellulosic materials mediated by surface-confined water. Nat. Commun. 2021, 12, 2513. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, Y. Physicochemical and functional properties of coconut (Cocos nucifera L.) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chem. 2018, 257, 135–142. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Li, W.; Pan, Y.; Yuan, G.; Chen, H. Ball milling improves extractability and antioxidant properties of the active constituents of mushroom Inonotus obliquus powders. Int. J. Food Sci. Technol. 2016, 51, 2193–2200. [Google Scholar] [CrossRef]
- Hu, J.; Chen, Y.; Ni, D. Effect of superfine grinding on quality and antioxidant property of fine green tea powders. LWT 2012, 45, 8–12. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Li, S.-F. Effects of micronization on properties of Chaenomeles sinensis (Thouin) Koehne fruit powder. Innov. Food Sci. Emerg. Technol. 2009, 10, 633–637. [Google Scholar] [CrossRef]
- Karra, S.; Sebii, H.; Yaich, H.; Bouaziz, M.A.; Blecker, C.; Danthine, S.; Attia, H.; Besbes, S. Effect of extraction methods on the physicochemical, structural, functional, and antioxidant properties of the dietary fiber concentrates from male date palm flowers. J. Food Biochem. 2020, 44, e13202. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, X.; Tian, H.; Li, Y.; Shi, P.; Guo, W.; Zhu, Q. Effect of four modification methods on adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Res. Int. 2021, 147, 110565. [Google Scholar] [CrossRef]
- Ye, F.; Miao, M.; Cui, S.W.; Jiang, B.; Jin, Z.; Li, X. Characterisations of oil-in-water Pickering emulsion stabilized hydrophobic phytoglycogen nanoparticles. Food Hydrocoll. 2018, 76, 78–87. [Google Scholar] [CrossRef]
- Xia, T.; Xue, C.; Wei, Z. Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends Food Sci. Technol. 2021, 107, 1–15. [Google Scholar] [CrossRef]
- Yue, Y.-K.; Yang, Z.; Xing, J.-J.; Guo, X.-N.; Zhu, K.-X. Fabrication and stabilization mechanisms of Pickering emulsions based on gliadin/arabinoxylan complexes. Food Chem. 2022, 393, 133458. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, S.M.; Olusanya, S.O.; Sodeinde, K.O.; Olumayede, E.G.; Lawal, O.S.; Didunyemi, A.E.; Atunde, M.O.; Fapojuwo, D.P. Application of hydrophobically modified cellulose from oil palm frond in Pickering emulsions stabilization. Carbohydr. Polym. Technol. Appl. 2022, 4, 100248. [Google Scholar] [CrossRef]
- Lu, Z.; Lu, F.; Zhou, G.; Gao, R.; Qin, D.; Qin, G. Micronized apple pomace as a novel emulsifier for food O/W Pickering emulsion. Food Chem. 2020, 330, 127325. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Zhang, W.; Xu, Y.; Yu, Y.; Lin, X.; Fu, M.; Liu, H.; Peng, J.; Zhao, Z. Cellulose nanofiber from pomelo spongy tissue as a novel particle stabilizer for Pickering emulsion. Int. J. Biol. Macromol. 2023, 224, 1439–1449. [Google Scholar] [CrossRef] [PubMed]
- Rawal, K.; Annamalai, P.K.; Bhandari, B.; Prakash, S. Oat flour as a novel stabiliser for designing plant-based Pickering emulsion. J. Food Eng. 2023, 340, 111300. [Google Scholar] [CrossRef]
- Liu, C.; Fan, L.; Yang, Y.; Jiang, Q.; Xu, Y.; Xia, W. Characterization of surimi particles stabilized novel pickering emulsions: Effect of particles concentration, pH and NaCl levels. Food Hydrocoll. 2021, 117, 106731. [Google Scholar] [CrossRef]
- Zhu, Q.; Lu, H.; Zhu, J.; Zhang, M.; Yin, L. Development and characterization of pickering emulsion stabilized by zein/corn fiber gum (CFG) complex colloidal particles. Food Hydrocoll. 2019, 91, 204–213. [Google Scholar] [CrossRef]
- Li, Z.; Hu, W.; Dong, J.; Azi, F.; Xu, X.; Tu, C.; Tang, S.; Dong, M. The use of bacterial cellulose from kombucha to produce curcumin loaded Pickering emulsion with improved stability and antioxidant properties. Food Sci. Hum. Wellness 2023, 12, 669–679. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, J.; Cao, Y.; Wang, J.; Xiao, J. Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion. LWT 2016, 66, 590–597. [Google Scholar] [CrossRef]
- Qi, J.-r.; Song, L.-w.; Zeng, W.-q.; Liao, J.-s. Citrus fiber for the stabilization of O/W emulsion through combination of Pickering effect and fiber-based network. Food Chem. 2021, 343, 128523. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.F.O.; Pereira, A.L.S.; Rosa, M.F.; de Santiago-Aguiar, R.S. Lignin-rich cellulose nanocrystals from coir fiber treated with ionic liquids: Preparation and evaluation as pickering emulsifier. Ind. Crop. Prod. 2022, 186, 115119. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Wu, Y.; He, K.; Li, Y.; Luo, X.; Li, B.; Wang, C.; Liu, S. Flexible cellulose nanofibrils as novel pickering stabilizers: The emulsifying property and packing behavior. Food Hydrocoll. 2019, 88, 180–189. [Google Scholar] [CrossRef]
- Zhai, X.; Lin, D.; Liu, D.; Yang, X. Emulsions stabilized by nanofibers from bacterial cellulose: New potential food-grade Pickering emulsions. Food Res. Int. 2018, 103, 12–20. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, J.; Wang, X.; Gao, X.; Zhou, Y.; Wei, D.; Ma, Y.; Li, C.; Liu, Y.; Chen, Z. Ball Milling Improves Physicochemical, Functionality, and Emulsification Characteristics of Insoluble Dietary Fiber from Polygonatum sibiricum. Foods 2024, 13, 2323. https://doi.org/10.3390/foods13152323
Ke J, Wang X, Gao X, Zhou Y, Wei D, Ma Y, Li C, Liu Y, Chen Z. Ball Milling Improves Physicochemical, Functionality, and Emulsification Characteristics of Insoluble Dietary Fiber from Polygonatum sibiricum. Foods. 2024; 13(15):2323. https://doi.org/10.3390/foods13152323
Chicago/Turabian StyleKe, Jingxuan, Xin Wang, Xinyu Gao, Yuhui Zhou, Daqing Wei, Yanli Ma, Cuicui Li, Yilin Liu, and Zhizhou Chen. 2024. "Ball Milling Improves Physicochemical, Functionality, and Emulsification Characteristics of Insoluble Dietary Fiber from Polygonatum sibiricum" Foods 13, no. 15: 2323. https://doi.org/10.3390/foods13152323
APA StyleKe, J., Wang, X., Gao, X., Zhou, Y., Wei, D., Ma, Y., Li, C., Liu, Y., & Chen, Z. (2024). Ball Milling Improves Physicochemical, Functionality, and Emulsification Characteristics of Insoluble Dietary Fiber from Polygonatum sibiricum. Foods, 13(15), 2323. https://doi.org/10.3390/foods13152323