Atmospheric Cold Plasma as an Alternative to Chlorination in Soft Wheat Flour to Prepare High-Ratio Cakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. ACP Treatment of Soft Wheat Flour
2.2.2. Analysis of Wheat Flour
2.2.3. Color Measurement of the Soft Wheat Flour
2.2.4. Pasting Properties Analysis of Soft Wheat Flour
2.3. Baking of High-Ratio Cake
2.4. Analysis of High-Ratio Cake
2.4.1. High-Ratio Cake Volume, Texture, and C-Cell Structure Analysis
2.4.2. Statistical Analysis
3. Results
3.1. Soft Wheat Flour Properties
3.1.1. Moisture and Protein Content and pH of Soft Wheat Flour
3.1.2. Color of Soft Wheat Flour
3.1.3. Pasting Properties of Soft Wheat Flour
3.2. High-Ratio Cake Properties
3.2.1. High-Ratio Cake Volume
3.2.2. High-Ratio Cake Texture
3.2.3. C-Cell Structure Analysis of High-Ratio Cakes
4. Discussion
4.1. ACP Treatment of Soft Wheat Flour
4.2. Soft Wheat Flour Properties
4.3. Pasting Properties of Soft Wheat Flour
4.4. High-Ratio Cake Properties
4.5. C-Cell Structure of the High-Ratio Cakes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alegbeleye, O.; Odeyemi, O.A.; Strateva, M.; Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2022, 2, 100122. [Google Scholar] [CrossRef]
- World Food Situation. 2024. Available online: https://www.fao.org/worldfoodsituation/csdb/en (accessed on 23 June 2024).
- Rosell, C.M. Nutritionally enhanced wheat flours and breads. In Breadmaking; Woodhead Publishing: Cambridge, UK, 2012; pp. 687–710. [Google Scholar]
- Adams, M.L.; Lombi, E.; Zhao, F.J.; McGrath, S.P. Evidence of low selenium concentrations in UK bread-making wheat grain. J. Sci. Food Agric. 2002, 82, 1160–1165. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Baublis, A.J.; Lu, C.; Clydesdale, F.M.; Decker, E.A. Potential of wheat-based breakfast cereals as a source of dietary antioxidants. J. Am. Coll. Nutr. 2000, 19 (Suppl. S3), 308S–311S. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, D.H. Wheat and Wheat Quality in Australia; Csiro Publishing: Clayton, VIC, Australia, 1989. [Google Scholar]
- Katyal, M.; Singh, N.; Chopra, N.; Kaur, A. Hard, medium-hard and extraordinarily soft wheat varieties: Comparison and relationship between various starch properties. Int. J. Biol. Macromol. 2019, 123, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Kulp, K. (Ed.) Handbook of Cereal Science and Technology, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Cauvain, S.P.; Young, L.S. The Chorleywood Bread Process; Woodhead Publishing: Cambridge, UK, 2006. [Google Scholar]
- Al-DMooR, H.M.; El-Qudah, J.M. Cake flour chlorination and alternative treatments. Curr. Res. Nutr. Food Sci. 2016, 4, 127–134. [Google Scholar] [CrossRef]
- Wilderjans, E.; Luyts, A.; Brijs, K.; Delcour, J.A. Ingredient functionality in batter type cake making. Trends Food Sci. Technol. 2013, 30, 6–15. [Google Scholar] [CrossRef]
- Choi, H.W.; Baik, B.K. Significance of wheat flour particle size on sponge cake baking quality. Cereal Chem. 2013, 90, 150–156. [Google Scholar] [CrossRef]
- Chittrakorn, S.; Earls, D.; MacRitchie, F. Ozonation as an alternative to chlorination for soft wheat flours. J. Cereal Sci. 2014, 60, 217–221. [Google Scholar] [CrossRef]
- Sollars, W.F. Fractionation and reconstitution procedures for cake flours. Cereal Chem. 1958, 35, 85–99. [Google Scholar]
- Gough, B.M.; Whitehouse, M.E.; Greenwood, C.T.; Miller, B.S. The role and function of chlorine in the preparation of high-ratio cake flour. Crit. Rev. Food Sci. Nutr. 1978, 10, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Gaines, C.S.; Donelson, J.R. Contribution of chlorinated flour fractions to cake crumb stickiness. Cereal Chem. 1982, 59, 378–380. [Google Scholar]
- Thomasson, C.A.; Miller, R.A.; Hoseney, R.C. Replacement of chlorine treatment for cake flour. Cereal Chem. 1995, 72, 616–620. [Google Scholar]
- Bosmans, G.M.; Peene, L.J.; Van Haesendonck, I.; Brijs, K.; Delcour, J.A. Impact of chlorine treatment on properties of wheat flour and its components in the presence of sucrose. Food Chem. 2019, 274, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, C.E. Functional Additives for Bakery Foods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Kweon, M.; Slade, L.; Levine, H. Cake baking with alternative carbohydrates for potential sucrose replacement. I. Functionality of small sugars and their effects on high-ratio cake-baking performance. Cereal Chem. 2016, 93, 562–567. [Google Scholar] [CrossRef]
- Igbinosa, E.O.; Odjadjare, E.E.; Chigor, V.N.; Igbinosa, I.H.; Emoghene, A.O.; Ekhaise, F.O.; Igiehon, N.O.; Idemudia, O.G. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 2013, 2013, 460215. [Google Scholar] [CrossRef] [PubMed]
- Neill, G.; Ala’a, H.; Magee, T.R.A. Optimisation of time/temperature treatment, for heat treated soft wheat flour. J. Food Eng. 2012, 113, 422–426. [Google Scholar] [CrossRef]
- Bucsella, B.; Takács, Á.; Vizer, V.; Schwendener, U.; Tömösközi, S. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours. Food Chem. 2016, 190, 990–996. [Google Scholar] [CrossRef] [PubMed]
- González, M.; Vernon-Carter, E.J.; Alvarez-Ramirez, J.; Carrera-Tarela, Y. Effects of dry heat treatment temperature on the structure of wheat flour and starch in vitro digestibility of bread. Int. J. Biol. Macromol. 2021, 166, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Van Rooyen, J.; Simsek, S.; Oyeyinka, S.A.; Manley, M. Holistic view of starch chemistry, structure and functionality in dry heat-treated whole wheat kernels and flour. Foods 2022, 11, 207. [Google Scholar] [CrossRef] [PubMed]
- Dhua, S.; Kheto, A.; Sharanagat, V.S.; Singh, L.; Kumar, K.; Nema, P.K. Quality characteristics of sand, pan and microwave roasted pigmented wheat (Triticum aestivum). Food Chem. 2021, 365, 130372. [Google Scholar] [CrossRef] [PubMed]
- Palav, T.; Seetharaman, K. Impact of microwave heating on the physico-chemical properties of a starch–water model system. Carbohydr. Polym. 2007, 67, 596–604. [Google Scholar] [CrossRef]
- Thirumdas, R.; Sarangapani, C.; Annapure, U.S. Cold plasma: A novel non-thermal technology for food processing. Food Biophys. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- McClurkin-Moore, J.D.; Ileleji, K.E.; Keener, K.M. The effect of high-voltage atmospheric cold plasma treatment on the shelf-life of distillers wet grains. Food Bioprocess Technol. 2017, 10, 1431–1440. [Google Scholar] [CrossRef]
- Bahrami, N.; Bayliss, D.; Chope, G.; Penson, S.; Perehinec, T.; Fisk, I.D. Cold plasma: A new technology to modify wheat flour functionality. Food Chem. 2016, 202, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Misra, N.N.; Kaur, S.; Tiwari, B.K.; Kaur, A.; Singh, N.; Cullen, P.J. Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocoll. 2015, 44, 115–121. [Google Scholar] [CrossRef]
- Zhu, F. Effect of ozone treatment on the quality of grain products. Food Chem. 2018, 264, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Mouele, E.S.M.; Tijani, J.O.; Badmus, K.O.; Pereao, O.; Babajide, O.; Fatoba, O.O.; Zhang, C.; Shao, T.; Sosnin, E.; Tarasenko, V.; et al. A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. J. Environ. Chem. Eng. 2021, 9, 105758. [Google Scholar] [CrossRef]
- Mahanta, S.; Habib, M.R.; Moore, J.M. Effect of high-voltage atmospheric cold plasma treatment on germination and heavy metal uptake by soybeans (Glycine max). Int. J. Mol. Sci. 2022, 23, 1611. [Google Scholar] [CrossRef] [PubMed]
- AACC International. Method 44-15.02, Moisture—Air-Oven Methods; Method 46-30.01, Crude Protein-Combustion Method; Method 02-52.01, Hydrogen-Ion Activity (pH)-Electrometric Method; Method 10-90.01, Baking Quality of Cake Flour. Approved October 8, 1976. Approved Methods of Analysis, 11th ed. AACC International, St. Paul, MN. Available online: http://methods.aaccnet.org/default.aspx (accessed on 12 February 2024).
- Habib, M.R.; Mahanta, S.; Jolly, Y.N.; Moore, J.M. Alleviating heavy metal toxicity in milk and water through a synergistic approach of absorption technique and high voltage atmospheric cold plasma and probable rheological changes. Biomolecules 2022, 12, 913. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists; Approved Methods Committee. Approved Methods of the American Association of Cereal Chemists; American Association of Cereal Chemists: St. Paul, MN, USA, 2000; Volume 1. [Google Scholar]
- Kocer, D.; Hicsasmaz, Z.; Bayindirli, A.; Katnas, S. Bubble and pore formation of the high-ratio cake formulation with polydextrose as a sugar-and fat-replacer. J. Food Eng. 2007, 78, 953–964. [Google Scholar] [CrossRef]
- Chesterton, A.K.S. Heat-Treatment of Cake Flours. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2012. [Google Scholar]
- Finnie, S.M.; Bettge, A.D.; Morris, C.F. Influence of flour chlorination and ingredient formulation on the quality attributes of pancakes. Cereal Chem. 2006, 83, 684–691. [Google Scholar] [CrossRef]
- Gurol, C.E.Y.D.A.; Ekinci, F.Y.; Aslan, N.; Korachi, M. Low temperature plasma for decontamination of E. coli in milk. Int. J. Food Microbiol. 2012, 157, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nikmaram, N.; Keener, K.M. The effects of cold plasma technology on physical, nutritional, and sensory properties of milk and milk products. LWT 2022, 154, 112729. [Google Scholar] [CrossRef]
- Gaou, I.; Dubois, M.; Pfohl-Leszkowicz, A.; Coste, C.; De Jouffrey, S.; Parent-Massin, D. Safety of Oxygreen®, an ozone treatment on wheat grains. Part 1. A four-week toxicity study in rats by dietary administration of treated wheat. Food Addit. Contam. 2005, 22, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Chaple, S.; Sarangapani, C.; Jones, J.; Carey, E.; Causeret, L.; Genson, A.; Duffy, B.; Bourke, P. Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. Innov. Food Sci. Emerg. Technol. 2020, 66, 102529. [Google Scholar] [CrossRef]
- Mira, I.; Eliasson, A.C.; Persson, K. Effect of surfactant structure on the pasting properties of wheat flour and starch suspensions. Cereal Chem. 2005, 82, 44–52. [Google Scholar] [CrossRef]
- Zhou, J.; Faubion, J.M.; Walker, C.E. Evaluation of different types of fats for use in high-ratio layer cakes. LWT-Food Sci. Technol. 2011, 44, 1802–1808. [Google Scholar] [CrossRef]
- Edmund, J.T.; Perry, K.W. Soft wheat quality. In Food Engineering Aspects of Baking Sweet Goods; CRC Press: Boca Raton, FL, USA, 2008; pp. 1–30. [Google Scholar]
Elapsed Time | Temperature | Speed |
---|---|---|
0:00 | 25 °C | 960 rpm |
0.10 | - | 160 rpm |
1:00 | 40 °C | 160 rpm |
2:00 | 50 °C | 160 rpm |
3:00 | 60 °C | 160 rpm |
4:00 | 70 °C | 160 rpm |
5:00 | 78 °C | 160 rpm |
6:00 | 84 °C | 160 rpm |
7:00 | 88 °C | 160 rpm |
8:00 | 92 °C | 160 rpm |
9:00 | 95 °C | 160 rpm |
10:00 | 98 °C | 160 rpm |
11:00 | 99 °C | 160 rpm |
20:00 | 99 °C | 160 rpm |
Ingredients | % (Flour Basis) |
---|---|
Flour | 100.00 |
Sugar | 140.00 |
Shortening | 50.00 |
Nonfat dry milk | 12.00 |
Dried egg whites | 9.00 |
NaCl | 3.00 |
Baking powder | 6.50 |
Water | 125.00 |
Treatment | Moisture (%) | Protein (%) | pH |
---|---|---|---|
Untreated | 11.91 a | 9.29 a | 6.14 b |
Chlorinated | 11.49 a | 9.27 a | 4.44 b,c,d,e |
50 kV, 5 min | 11.97 a | 9.36 a | 6.08 b,c |
50 kV, 6 min | 12.13 a | 9.38 a | 6.04 b,c |
50 kV, 7 min | 12.27 a | 9.30 a | 6.03 b,c |
60 kV, 5 min | 12.22 a | 9.37 a | 5.99 c |
60 kV, 6 min | 12.19 a | 9.33 a | 6.04 b,c |
60 kV, 7 min | 12.33 a | 9.37 a | 5.79 d |
70 kV, 5 min | 12.34 a | 9.33 a | 5.72 d |
70 kV, 6 min | 12.48 a | 9.37 a | 5.58 e |
70 kV, 7 min | 12.52 a | 9.35 a | 5.43 e |
Treatment | L | a | b | ΔE |
---|---|---|---|---|
Untreated | 92.16 i | −1.93 i | 7.22 b | 0.00 a |
Chlorinated | 92.27 i | −0.76 i | 2.79 a | 4.58 b |
50 kV, 5 min | 92.11 i | −1.82 i | 6.69 b | 0.54 c |
50 kV, 6 min | 92.19 i | −1.80 i | 6.59 b | 0.64 c |
50 kV, 7 min | 92.20 i | −1.77 i | 6.52 b | 0.72 c,d |
60 kV, 5 min | 92.30 i | −1.59 i | 5.70 c | 1.56 e |
60 kV, 6 min | 92.19 i | −1.51 i | 5.50 c | 1.77 f |
60 kV, 7 min | 92.17 i | −1.51 i | 5.49 c | 1.78 f |
70 kV, 5 min | 92.27 i | −1.42 i | 4.95 c | 2.32 g |
70 kV, 6 min | 92.35 i | −1.33 i | 4.60 c | 2.69 h |
70 kV, 7 min | 92.38 i | −1.32 i | 4.50 c | 2.79 h |
Treatment | Initial Viscosity (RVU) | Trough 1 (RVU) | Breakdown Viscosity (RVU) | Peak Viscosity (RVU) |
---|---|---|---|---|
Untreated | 4.17 a | 205.00 c | 305.25 b | 516.96 a |
Chlorinated | 8.58 b | 357.00 a | 300.25 b | 674.29 b,c |
50 kV, 5 min | 7.92 b | 263.33 a | 345.42 a,b | 614.33 c |
50 kV, 6 min | 7.83 b | 277.42 a | 355.00 a | 638.71 b,c |
50 kV, 7 min | 12.25 c | 417.75 b | 299.50 b | 714.71 d |
60 kV, 5 min | 7.83 b | 279.50 a | 327.83 b | 622.33 b |
60 kV, 6 min | 7.08 b | 335.75 a | 321.25 b | 635.75 b,c |
60 kV, 7 min | 8.00 b | 261.83 a | 279.92 b | 635.29 b,c |
70 kV, 5 min | 4.08 a | 277.92 a | 330.58 b | 624.54 b,c |
70 kV, 6 min | 7.83 b | 326.83 a | 358.50 a | 664.25 b,c |
70 kV, 7 min | 8.08 b | 315.50 a | 333.83 b | 662.80 b,c |
Treatment | Cell Diameter (mm) |
---|---|
CHLORINATED | 3.23 a |
UNTREATED | 5.41 c |
50 kV, 5 min | 4.59 b,c |
50 kV, 6 min | 4.08 a,b |
50 kV, 7 min | 4.49 b,c |
60 kV, 5 min | 4.19 a,b,c |
60 kV, 6 min | 4.81 b,c |
60 kV, 7 min | 4.59 b,c |
70 kV, 5 min | 4.95 b,c |
70 kV, 6 min | 5.17 b,c |
70 kV, 7 min | 4.95 b,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahanta, S.; Bock, J.; Mense, A.; Kirk-Bradley, N.; Awika, J.; Moore, J.M. Atmospheric Cold Plasma as an Alternative to Chlorination in Soft Wheat Flour to Prepare High-Ratio Cakes. Foods 2024, 13, 2366. https://doi.org/10.3390/foods13152366
Mahanta S, Bock J, Mense A, Kirk-Bradley N, Awika J, Moore JM. Atmospheric Cold Plasma as an Alternative to Chlorination in Soft Wheat Flour to Prepare High-Ratio Cakes. Foods. 2024; 13(15):2366. https://doi.org/10.3390/foods13152366
Chicago/Turabian StyleMahanta, Shikhadri, Jayne Bock, Andrew Mense, Nahndi Kirk-Bradley, Joseph Awika, and Janie McClurkin Moore. 2024. "Atmospheric Cold Plasma as an Alternative to Chlorination in Soft Wheat Flour to Prepare High-Ratio Cakes" Foods 13, no. 15: 2366. https://doi.org/10.3390/foods13152366
APA StyleMahanta, S., Bock, J., Mense, A., Kirk-Bradley, N., Awika, J., & Moore, J. M. (2024). Atmospheric Cold Plasma as an Alternative to Chlorination in Soft Wheat Flour to Prepare High-Ratio Cakes. Foods, 13(15), 2366. https://doi.org/10.3390/foods13152366