Enhancing Deer Sous Vide Meat Shelf Life and Safety with Eugenia caryophyllus Essential Oil against Salmonella enterica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oil Characteristics
2.2. Chemical Analysis of ECEO
2.3. Antimicrobial Activity
2.3.1. Bacteria Strain Preparation
2.3.2. Disk Diffusion Method
2.3.3. Minimal Inhibitory Concentration (MIC)
2.4. Research on Biofilm Growth
2.4.1. Crystal Violet Study
2.4.2. MALDI-TOF MS Biotyper for Biofilm Formation Detection
2.5. Extending the Shelf Life of Deer Sous Vide Meat
2.5.1. Preparation of Samples of Deer Meat
- Fresh deer meat was stored in polyethylene bags at 4 °C and then cooked at temperatures between 50 °C and 65 °C for 5 to 25 min;
- Control vacuum: Deer meat, vacuum-sealed in polyethylene bags at 4 °C, underwent cooking in a water bath at temperatures from 50 °C to 65 °C for 5 to 25 min;
- Essential oil treatment: Deer meat treated with a 1% ECEO solution, vacuum-packed, and kept at 4 °C was cooked in a water bath at temperatures from 50 °C to 65 °C for 5 to 25 min;
- Salmonella enterica contamination: Deer meat inoculated with Salmonella enterica, vacuum-packed, stored at 4 °C until exposed, then cooked in a water bath at temperatures from 50 °C to 65 °C for 5 to 25 min;
- Salmonella enterica and essential oil treatment: Deer meat treated with both Salmonella enterica and a 1% ECEO solution, vacuum-packed, stored at 4 °C, and subsequently cooked in a water bath at temperatures from 50 °C to 65 °C for 5 to 25 min.
2.5.2. Microbial Analyses
2.5.3. Identification of Microorganisms Using Mass Spectrometry
2.6. Statistic Analysis
3. Results
3.1. Chemical Composition of ECEO
3.2. Antimicrobial Activity of ECEO
3.3. Sous Vide Red Deer Meet Microbiological Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sagar, N.A.; Pareek, S. Safe Storage and Preservation Techniques in Commercialized Agriculture. In Natural Remedies for Pest, Disease and Weed Control; Elsevier: Amsterdam, The Netherlands, 2020; pp. 221–234. ISBN 978-0-12-819304-4. [Google Scholar]
- Bianchi, A.; Taglieri, I.; Zinnai, A.; Macaluso, M.; Sanmartin, C.; Venturi, F. Effect of Argon as Filling Gas of the Storage Atmosphere on the Shelf-Life of Sourdough Bread—Case Study on PDO Tuscan Bread. Foods 2022, 11, 3470. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Čmiková, N.; Vukovic, N.L.; Verešová, A.; Bianchi, A.; Garzoli, S.; Ben Saad, R.; Ben Hsouna, A.; Ban, Z.; Vukic, M.D. Citrus Limon Essential Oil: Chemical Composition and Selected Biological Properties Focusing on the Antimicrobial (In Vitro, In Situ), Antibiofilm, Insecticidal Activity and Preservative Effect against Salmonella Enterica Inoculated in Carrot. Plants 2024, 13, 524. [Google Scholar] [CrossRef] [PubMed]
- Santiesteban-López, N.A.; Gómez-Salazar, J.A.; Santos, E.M.; Campagnol, P.C.B.; Teixeira, A.; Lorenzo, J.M.; Sosa-Morales, M.E.; Domínguez, R. Natural Antimicrobials: A Clean Label Strategy to Improve the Shelf Life and Safety of Reformulated Meat Products. Foods 2022, 11, 2613. [Google Scholar] [CrossRef] [PubMed]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef] [PubMed]
- Alsaffar, A.A. Sustainable Diets: The Interaction between Food Industry, Nutrition, Health and the Environment. Food Sci. Technol. Int. 2016, 22, 102–111. [Google Scholar] [CrossRef]
- Heredia, N.; García, S. Animals as Sources of Food-Borne Pathogens: A Review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Dawoud, T.M.; Davis, M.L.; Park, S.H.; Kim, S.A.; Kwon, Y.M.; Jarvis, N.; O’Bryan, C.A.; Shi, Z.; Crandall, P.G.; Ricke, S.C. The Potential Link between Thermal Resistance and Virulence in Salmonella: A Review. Front. Vet. Sci. 2017, 4, 93. [Google Scholar] [CrossRef] [PubMed]
- Pakdel, M.; Olsen, A.; Bar, E.M.S. A Review of Food Contaminants and Their Pathways Within Food Processing Facilities Using Open Food Processing Equipment. J. Food Prot. 2023, 86, 100184. [Google Scholar] [CrossRef]
- Teshome, E.; Forsido, S.F.; Rupasinghe, H.P.V.; Olika Keyata, E. Potentials of Natural Preservatives to Enhance Food Safety and Shelf Life: A Review. Sci. World J. 2022, 2022, 9901018. [Google Scholar] [CrossRef]
- Hanková, K.; Lupoměská, P.; Nový, P.; Všetečka, D.; Klouček, P.; Kouřimská, L.; Hlebová, M.; Božik, M. Effect of Conventional Preservatives and Essential Oils on the Survival and Growth of Escherichia Coli in Vegetable Sauces: A Comparative Study. Foods 2023, 12, 2832. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential Oils: A Promising Eco-Friendly Food Preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ho, S.-H.; Lee, H.-C.; Yap, Y.-L. Insecticidal Properties of Eugenol, Isoeugenol and Methyleugenol and Their Effects on Nutrition of Sitophilus Zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium Castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2002, 38, 403–412. [Google Scholar] [CrossRef]
- Nuñez, L.; D’ Aquino, M. Microbicide Activity of Clove Essential Oil (Eugenia Caryophyllata). Braz. J. Microbiol. 2012, 43, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Matan, N.; Rimkeeree, H.; Mawson, A.J.; Chompreeda, P.; Haruthaithanasan, V.; Parker, M. Antimicrobial Activity of Cinnamon and Clove Oils under Modified Atmosphere Conditions. Int. J. Food Microbiol. 2006, 107, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. The Potential Application of Plant Essential Oils as Natural Food Preservatives in Soft Cheese. Food Microbiol. 2001, 18, 463–470. [Google Scholar] [CrossRef]
- Slobodníková, L.; Fialová, S.; Rendeková, K.; Kováč, J.; Mučaji, P. Antibiofilm Activity of Plant Polyphenols. Molecules 2016, 21, 1717. [Google Scholar] [CrossRef]
- Seyedtaghiya, M.; Nayeri Fasaei, B.; Peighambari, S.M. Antimicrobial and Antibiofilm Effects of Satureja Hortensis Essential Oil against Escherichia Coli and Salmonella Isolated from Poultry. Iran. J. Microbiol. 2021, 13, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.M.; Couto, J.A.; Hogg, T.A. Influence of Phenolic Acids on Growth and Inactivation of Oenococcus Oeni and Lactobacillus Hilgardii. J. Appl. Microbiol. 2003, 94, 167–174. [Google Scholar] [CrossRef]
- Mazzonetto, F.; Vendramim, J.D. Efeito de Pós de Origem Vegetal Sobre Acanthoscelides Obtectus (Say) (Coleoptera: Bruchidae) Em Feijão Armazenado. Neotrop. Entomol. 2003, 32, 145–149. [Google Scholar] [CrossRef]
- Karyotis, D.; Skandamis, P.N.; Juneja, V.K. Thermal Inactivation of Listeria Monocytogenes and Salmonella Spp. in Sous-Vide Processed Marinated Chicken Breast. Food Res. Int. 2017, 100, 894–898. [Google Scholar] [CrossRef]
- Kačániová, M.; Čmiková, N.; Kluz, M.I.; Akacha, B.B.; Ben Saad, R.; Mnif, W.; Waszkiewicz-Robak, B.; Garzoli, S.; Ben Hsouna, A. Anti-Salmonella Activity of Thymus Serpyllum Essential Oil in Sous Vide Cook–Chill Rabbit Meat. Foods 2024, 13, 200. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Cicaloni, V.; Salvini, L.; Trespidi, G.; Iriti, M.; Vitalini, S. SPME-GC-MS Analysis of the Volatile Profile of Three Fresh Yarrow (Achillea Millefolium L.) Morphotypes from Different Regions of Northern Italy. Separations 2023, 10, 51. [Google Scholar] [CrossRef]
- Garzoli, S.; Laghezza Masci, V.; Franceschi, S.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Headspace/GC–MS Analysis and Investigation of Antibacterial, Antioxidant and Cytotoxic Activity of Essential Oils and Hydrolates from Rosmarinus Officinalis L. and Lavandula Angustifolia Miller. Foods 2021, 10, 1768. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Galovičová, L.; Valková, V.; Ďuranová, H.; Borotová, P.; Štefániková, J.; Vukovic, N.L.; Vukic, M.; Kunová, S.; Felsöciová, S.; et al. Chemical Composition and Biological Activity of Salvia Officinalis Essential Oil. Acta Hortic. Regiotect. 2021, 24, 81–88. [Google Scholar] [CrossRef]
- Kačániová, M.; Vukovic, N.L.; Čmiková, N.; Galovičová, L.; Schwarzová, M.; Šimora, V.; Kowalczewski, P.Ł.; Kluz, M.I.; Puchalski, C.; Bakay, L.; et al. Salvia Sclarea Essential Oil Chemical Composition and Biological Activities. Int. J. Mol. Sci. 2023, 24, 5179. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Kalemba, D.; Kunicka, A. Antibacterial and Antifungal Properties of Essential Oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef] [PubMed]
- Kewlani, A.; Nayak, V.; Gohel, T.; Gupta, P. Phytochemical Analysis and Antimicrobial Activity of Selected Medicinal Plants. Sci. Prepr. 2022. [Google Scholar] [CrossRef]
- Deng, X.; Liao, Q.; Xu, X.; Yao, M.; Zhou, Y.; Lin, M.; Zhang, P.; Xie, Z. Analysis of Essential Oils from Cassia Bark and Cassia Twig Samples by GC-MS Combined with Multivariate Data Analysis. Food Anal. Methods 2014, 7, 1840–1847. [Google Scholar] [CrossRef]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove Essential Oil (Syzygium Aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The Chemical Composition and Biological Activity of Clove Essential Oil, Eugenia Caryophyllata (Syzigium Aromaticum L. Myrtaceae): A Short Review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Radünz, M.; Dos Santos Hackbart, H.C.; Camargo, T.M.; Nunes, C.F.P.; De Barros, F.A.P.; Dal Magro, J.; Filho, P.J.S.; Gandra, E.A.; Radünz, A.L.; Da Rosa Zavareze, E. Antimicrobial Potential of Spray Drying Encapsulated Thyme (Thymus Vulgaris) Essential Oil on the Conservation of Hamburger-like Meat Products. Int. J. Food Microbiol. 2020, 330, 108696. [Google Scholar] [CrossRef]
- Arora, D.S.; Kaur, J. Antimicrobial Activity of Spices. Int. J. Antimicrob. Agents 1999, 12, 257–262. [Google Scholar] [CrossRef]
- Radünz, M.; Da Trindade, M.L.M.; Camargo, T.M.; Radünz, A.L.; Borges, C.D.; Gandra, E.A.; Helbig, E. Antimicrobial and Antioxidant Activity of Unencapsulated and Encapsulated Clove (Syzygium Aromaticum, L.) Essential Oil. Food Chem. 2019, 276, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.C.T.; Figueira, G.M.; Sartoratto, A.; Rehder, V.L.G.; Delarmelina, C. Anti-Candida Activity of Brazilian Medicinal Plants. J. Ethnopharmacol. 2005, 97, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, J.D.F.; Paroul, N.; Czyewski, E.; Lerin, L.; Rotava, I.; Cansian, R.L.; Mossi, A.; Toniazzo, G.; Oliveira, D.D.; Treichel, H. Perfil Da Composição Química e Atividades Antibacteriana e Antioxidante Do Óleo Essencial Do Cravo-Da-Índia (Eugenia Caryophyllata Thunb.). Rev. Ceres 2010, 57, 589–594. [Google Scholar] [CrossRef]
- Beraldo, C.; Daneluzzi, N.S.; Scanavacca, J.; Doyama, J.T.; Fernandes Júnior, A.; Moritz, C.M.F. Eficiência de Óleos Essenciais de Canela e Cravo-Da-Índia Como Sanitizantes Na Indústria de Alimentos. Pesqui. Agropecuária Trop. 2013, 43, 436–440. [Google Scholar] [CrossRef]
- Ríos, J.L.; Recio, M.C. Medicinal Plants and Antimicrobial Activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Miao, L.; Wang, C.; Wang, P.; Ao, Y.; Qian, J.; Dai, S. Inhibitory Effects of ZnO Nanoparticles on Aerobic Wastewater Biofilms from Oxygen Concentration Profiles Determined by Microelectrodes. J. Hazard. Mater. 2014, 276, 164–170. [Google Scholar] [CrossRef]
- Zhao, Z.; Xue, W.; Wang, J.; Zhang, C.; Zhou, D. The Role of Trace P-Hydroxybenzoic Acid to Chlorella for Advanced Wastewater Treatment: Mitigating Bacterial Contamination and Boosting Biomass Recovery. Resour. Conserv. Recycl. 2023, 199, 107229. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Lee, J.-H.; Gwon, G.; Kim, S.-I.; Park, J.G.; Lee, J. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia Coli O157:H7. Sci. Rep. 2016, 6, 36377. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wei, F.; Song, C.; Jiang, B.; Tian, S.; Yi, J.; Yu, C.; Song, Z.; Sun, L.; Bao, Y.; et al. Dodartia Orientalis L. Essential Oil Exerts Antibacterial Activity by Mechanisms of Disrupting Cell Structure and Resisting Biofilm. Ind. Crops Prod. 2017, 109, 358–366. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, Y.; Dong, P.; Ni, L.; Luo, X.; Zhang, Y.; Zhu, L. Inhibitory Effects of Clove and Oregano Essential Oils on Biofilm Formation of Salmonella Derby Isolated from Beef Processing Plant. LWT 2022, 162, 113486. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Abdel-Samie, M.A.; Cui, H.; Lin, L. Unraveling the Inhibitory Mechanism of Clove Essential Oil against Listeria Monocytogenes Biofilm and Applying It to Vegetable Surfaces. LWT 2020, 134, 110210. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Inhibition of Escherichia Coli O157:H7 Biofilm on Vegetable Surface by Solid Liposomes of Clove Oil. LWT 2020, 117, 108656. [Google Scholar] [CrossRef]
- Mohan, A.; Purohit, A.S. Anti-Salmonella Activity of Pyruvic and Succinic Acid in Combination with Oregano Essential Oil. Food Control 2020, 110, 106960. [Google Scholar] [CrossRef]
- Kadam, S.R.; Den Besten, H.M.W.; Van Der Veen, S.; Zwietering, M.H.; Moezelaar, R.; Abee, T. Diversity Assessment of Listeria Monocytogenes Biofilm Formation: Impact of Growth Condition, Serotype and Strain Origin. Int. J. Food Microbiol. 2013, 165, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Tokam Kuaté, C.R.; Bisso Ndezo, B.; Dzoyem, J.P. Synergistic Antibiofilm Effect of Thymol and Piperine in Combination with Aminoglycosides Antibiotics against Four Salmonella Enterica Serovars. Evid. Based Complement. Altern. Med. 2021, 2021, 1567017. [Google Scholar] [CrossRef] [PubMed]
- Badei, A.Z.M.A.; Faheid, S.M.M.; El-Akel, A.T.M.; Mahmoud, B.S.M. Application of Some Spices in Flavoring and Preservation of Cookies: 2-Antimicrobial and Sensory Properties of Cardamom, Cinnamon and Clove. Dtsch. Lebensm.-Rundsch. 2002, 98, 261–265. [Google Scholar]
- Ji, J.; Shankar, S.; Royon, F.; Salmieri, S.; Lacroix, M. Essential Oils as Natural Antimicrobials Applied in Meat and Meat Products—A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 993–1009. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. A Novel Method to Prolong Bread Shelf Life: Sachets Containing Essential Oils Components. LWT 2020, 131, 109744. [Google Scholar] [CrossRef]
- Kumar Pandey, V.; Shams, R.; Singh, R.; Dar, A.H.; Pandiselvam, R.; Rusu, A.V.; Trif, M. A Comprehensive Review on Clove (Caryophyllus Aromaticus L.) Essential Oil and Its Significance in the Formulation of Edible Coatings for Potential Food Applications. Front. Nutr. 2022, 9, 987674. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-B.; Kang, J.-H.; Song, K.B. Clove Bud Essential Oil Emulsion Containing Benzethonium Chloride Inactivates Salmonella Typhimurium and Listeria Monocytogenes on Fresh-Cut Pak Choi during Modified Atmosphere Storage. Food Control 2019, 100, 17–23. [Google Scholar] [CrossRef]
- Latifah-Munirah, B.; Himratul-Aznita, W.H.; Mohd Zain, N. Eugenol, an Essential Oil of Clove, Causes Disruption to the Cell Wall of Candida Albicans (ATCC 14053). Front. Life Sci. 2015, 8, 231–240. [Google Scholar] [CrossRef]
- Wongsawan, K.; Chaisri, W.; Tangtrongsup, S.; Mektrirat, R. Bactericidal Effect of Clove Oil against Multidrug-Resistant Streptococcus Suis Isolated from Human Patients and Slaughtered Pigs. Pathogens 2019, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Rajkowska, K.; Otlewska, A.; Kunicka-Styczyńska, A.; Krajewska, A. Candida Albicans Impairments Induced by Peppermint and Clove Oils at Sub-Inhibitory Concentrations. Int. J. Mol. Sci. 2017, 18, 1307. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, M.; Wei, S. Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. J. Food Sci. 2018, 83, 1476–1483. [Google Scholar] [CrossRef]
- Das, M.; Roy, S.; Guha, C.; Saha, A.K.; Singh, M. In Vitro Evaluation of Antioxidant and Antibacterial Properties of Supercritical CO2 Extracted Essential Oil from Clove Bud (Syzygium Aromaticum). J. Plant Biochem. Biotechnol. 2021, 30, 387–391. [Google Scholar] [CrossRef]
- El-Darier, S.M.; El-Ahwany, A.M.D.; Elkenany, E.T.; Abdeldaim, A.A. An in Vitro Study on Antimicrobial and Anticancer Potentiality of Thyme and Clove Oils. Rendiconti Lincei Sci. Fis. E Nat. 2018, 29, 131–139. [Google Scholar] [CrossRef]
- Kheawfu, K.; Pikulkaew, S.; Rades, T.; Müllertz, A.; Okonogi, S. Development and Characterization of Clove Oil Nanoemulsions and Self-Microemulsifying Drug Delivery Systems. J. Drug Deliv. Sci. Technol. 2018, 46, 330–338. [Google Scholar] [CrossRef]
N° | Component 1 | LRI 2 | LRI 3 | Eugenia caryophyllus EO 4 |
---|---|---|---|---|
1 | eugenol | 1360 | 1363 | 82.7 ± 2.15 |
2 | α-copaene | 1365 | 1368 | 0.5 ± 0.02 |
3 | isoeugenol | 1441 | 1439 | 0.1 ± 0.01 |
4 | β-caryophyllene | 1460 | 1457 | 9.9 ± 0.18 |
5 | humulene | 1470 | 1466 | 1.3 ± 0.03 |
6 | acetyl eugenol | 1522 | 1525 | 3.4 ± 0.04 |
7 | δ-cadinene | 1530 | 1533 | 0.6 ± 0.03 |
8 | trans-calamenene | 1540 | 1536 | 0.5 ± 0.02 |
9 | α-calacorene | 1555 | 1560 | 0.1 ± 0.01 |
10 | caryophyllene oxide | 1608 | 1613 | 0.8 ± 0.02 |
11 | humulene epoxide II | 1618 | 1620 | 0.1 ± 0.00 |
SUM | 100.0 | |||
Oxygenated Sesquiterpenes | 0.9 | |||
Hydrocarbon Sesquiterpenes | 12.9 | |||
Others | 86.2 |
Inhibition Zone (mm) | ECEO | Ciprofloxacin |
---|---|---|
Salmonella enterica | 15.67 ± 0.58 | 29.67 ± 0.56 |
Minimal inhibition concentration (mg/mL) | MIC50 | MIC90 |
Salmonella enterica | 0.328 ± 0.06 | 0.384 ± 0.01 |
Minimal biofilm inhibition concentration (mg/mL) | MBIC50 | MBIC90 |
Salmonella enterica | 0.377 ± 0.05 | 0.396 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kačániová, M.; Garzoli, S.; Ben Hsouna, A.; Ban, Z.; Elizondo-Luevano, J.H.; Kluz, M.I.; Ben Saad, R.; Haščík, P.; Čmiková, N.; Waskiewicz-Robak, B.; et al. Enhancing Deer Sous Vide Meat Shelf Life and Safety with Eugenia caryophyllus Essential Oil against Salmonella enterica. Foods 2024, 13, 2512. https://doi.org/10.3390/foods13162512
Kačániová M, Garzoli S, Ben Hsouna A, Ban Z, Elizondo-Luevano JH, Kluz MI, Ben Saad R, Haščík P, Čmiková N, Waskiewicz-Robak B, et al. Enhancing Deer Sous Vide Meat Shelf Life and Safety with Eugenia caryophyllus Essential Oil against Salmonella enterica. Foods. 2024; 13(16):2512. https://doi.org/10.3390/foods13162512
Chicago/Turabian StyleKačániová, Miroslava, Stefania Garzoli, Anis Ben Hsouna, Zhaojun Ban, Joel Horacio Elizondo-Luevano, Maciej Ireneusz Kluz, Rania Ben Saad, Peter Haščík, Natália Čmiková, Božena Waskiewicz-Robak, and et al. 2024. "Enhancing Deer Sous Vide Meat Shelf Life and Safety with Eugenia caryophyllus Essential Oil against Salmonella enterica" Foods 13, no. 16: 2512. https://doi.org/10.3390/foods13162512
APA StyleKačániová, M., Garzoli, S., Ben Hsouna, A., Ban, Z., Elizondo-Luevano, J. H., Kluz, M. I., Ben Saad, R., Haščík, P., Čmiková, N., Waskiewicz-Robak, B., Kollár, J., & Bianchi, A. (2024). Enhancing Deer Sous Vide Meat Shelf Life and Safety with Eugenia caryophyllus Essential Oil against Salmonella enterica. Foods, 13(16), 2512. https://doi.org/10.3390/foods13162512