Optimizing Chlorella vulgaris Cultivation to Enhance Biomass and Lutein Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Strain and Seed Culture
2.2. Experimental Design
2.3. Analytical Methods
2.3.1. Biomass Analysis
2.3.2. Nutrient Consumption Analysis
2.3.3. Value-Added Compounds Production Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of Culture Mode and Nitrogen Source
3.2. Effect of Total-Organic-Carbon–Total-Nitrogen Ratio
3.3. Effect of Total-Nitrogen–Total-Phosphorus Ratio
3.4. Effect of Lighting Duration
3.5. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, Y.; Wang, Y.; Yi, L.; Liu, J.; Yang, S.; Liu, B.; Chen, F.; Sun, H. Lutein production from microalgae: A review. Bioresour. Technol. 2023, 376, 128875. [Google Scholar] [CrossRef]
- Chen, J.-H.; Chen, C.-Y.; Hasunuma, T.; Kondo, A.; Chang, C.-H.; Ng, I.-S.; Chang, J.-S. Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. Bioresour. Technol. 2019, 278, 17–25. [Google Scholar] [CrossRef]
- Bone, R.A.; Ruiz, C.A.; Landrum, J.T.; Guerra, L.H. Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. J. Nutr. 2003, 133, 992–998. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Y.; Li, S.; Nagarajan, D.; Varjani, S.; Lee, D.-J.; Chang, J.-S. Recent advances in lutein production from microalgae. Renew. Sustain. Energy Rev. 2022, 153, 111795. [Google Scholar] [CrossRef]
- Pereira, A.G.; Otero, P.; Echave, J.; Carreira-Casais, A.; Chamorro, F.; Collazo, N.; Jaboui, A.; Lourenço-Lopes, C.; Simal-Gandara, J.; Prieto, M.A. Xanthophylls from the sea: Algae as source of bioactive carotenoids. Mar. Drugs 2021, 19, 188. [Google Scholar] [CrossRef]
- Li, L.H.; Lee, J.C.-Y.; Leung, H.H.; Lam, W.C.; Fu, Z.; Lo, A.C.Y. Lutein supplementation for eye diseases. Nutrients 2020, 12, 1721. [Google Scholar] [CrossRef]
- Lin, J.-H.; Lee, D.-J.; Chang, J.-S. Lutein production from biomass: Marigold flowers versus microalgae. Bioresour. Technol. 2015, 184, 421–428. [Google Scholar] [CrossRef]
- Vadrale, A.P.; Dong, C.-D.; Haldar, D.; Wu, C.-H.; Chen, C.-W.; Singhania, R.R.; Patel, A.K. Bioprocess development to enhance biomass and lutein production from Chlorella sorokiniana Kh12. Bioresour. Technol. 2023, 370, 128583. [Google Scholar] [CrossRef]
- Nolandy, H.; Utomo, M.S.K.T.S.; Kiono, B.F.T.; Sukra, K.F.A.; Soewono, R.T.; Rahman, A.T.; Ammarullah, M.I. Gravimetric approach of fuel consumption in 30% biodiesel blends fuel: Cost-effective solution of real-world fuel consumption measurement. Cogent Eng. 2024, 11, 2345512. [Google Scholar] [CrossRef]
- Fernández-Sevilla, J.M.; Acién Fernández, F.G.; Molina Grima, E. Biotechnological production of lutein and its applications. Appl. Microbiol. Biotechnol. 2010, 86, 27–40. [Google Scholar] [CrossRef]
- Arun, M.; Barik, D.; Chandran, S.S.R.; Govil, N.; Sharma, P.; Yunus Khan, T.M.; Baig, R.U.; Bora, B.J.; Medhi, B.J.; Kumar, R.; et al. Twisted helical Tape’s impact on heat transfer and friction in zinc oxide (ZnO) nanofluids for solar water heaters: Biomedical insight. Case Stud. Therm. Eng. 2024, 56, 104204. [Google Scholar] [CrossRef]
- Panahi, Y.; Khosroushahi, A.Y.; Sahebkar, A.; Heidari, H.R. Impact of cultivation condition and media content on Chlorella vulgaris composition. Adv. Pharm. Bull. 2019, 9, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Lu, I.-C.; Nagarajan, D.; Chang, C.-H.; Ng, I.-S.; Lee, D.-J.; Chang, J.-S. A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12. Bioresour. Technol. 2018, 253, 141–147. [Google Scholar] [CrossRef]
- Shi, X.-M.; Chen, F.; Yuan, J.-P.; Chen, H. Heterotrophic production of lutein by selected Chlorella strains. J. Appl. Phycol. 1997, 9, 445–450. [Google Scholar] [CrossRef]
- González-Camejo, J.; Aparicio, S.; Jiménez-Benítez, A.; Pachés, M.; Ruano, M.V.; Borrás, L.; Barat, R.; Seco, A. Improving membrane photobioreactor performance by reducing light path: Operating conditions and key performance indicators. Water Res. 2020, 172, 115518. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Liu, Y.; Liu, T.; Gao, K.; Zhang, Q.; Cao, L.; Wang, Y.; Wu, X.; Zheng, H.; Peng, H.; et al. Heterotrophic cultivation of Chlorella vulgaris using broken rice hydrolysate as carbon source for biomass and pigment production. Bioresour. Technol. 2021, 323, 124607. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-K.; Wang, X.; Tao, H.-H.; Sun, X.-S.; Tian, Y.-T. Heterotrophic culture of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with immobilized yeast. Bioresour. Technol. 2018, 249, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Cao, L.; Zhang, Q.; Liu, Y.; Xiang, S.; Liu, T.; Ruan, R. Effect of chlortetracycline on the growth and intracellular components of Spirulina platensis and its biodegradation pathway. J. Hazard. Mater. 2021, 413, 125310. [Google Scholar] [CrossRef]
- Wu, K.; Fang, Y.; Hong, B.; Cai, Y.; Xie, H.; Wang, Y.; Cui, X.; Yu, Z.; Liu, Y.; Ruan, R.; et al. Enhancement of carbon conversion and value-added compound production in heterotrophic Chlorella vulgaris using sweet sorghum extract. Foods 2022, 11, 2579. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, F.; Zhou, K.; Zhao, Q.; Sun, H.; Wang, S.; Zhao, Y.; Fu, J. Breeding of high protein Chlorella sorokiniana using protoplast fusion. Bioresour. Technol. 2020, 313, 123624. [Google Scholar] [CrossRef]
- Li, B.; Jing, F.; Wu, D.; Xiao, B.; Hu, Z. Simultaneous removal of nitrogen and phosphorus by a novel aerobic denitrifying phosphorus-accumulating bacterium, Pseudomonas stutzeri ADP-19. Bioresour. Technol. 2021, 321, 124445. [Google Scholar] [CrossRef] [PubMed]
- Caspi, R.; Billington, R.; Ferrer, L.; Foerster, H.; Fulcher, C.A.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Mueller, L.A.; et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016, 44, D471–D480. [Google Scholar] [CrossRef] [PubMed]
- Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Salati, S.; D’Imporzano, G.; Menin, B.; Veronesi, D.; Scaglia, B.; Abbruscato, P.; Mariani, P.; Adani, F. Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products. Bioresour. Technol. 2017, 230, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Babaei, A.; Mehrnia, M.R.; Shayegan, J.; Sarrafzadeh, M.-H.; Amini, E. Evaluation of nutrient removal and biomass production through mixotrophic, heterotrophic, and photoautotrophic cultivation of Chlorella in nitrate and ammonium wastewater. Int. J. Environ. Res. 2018, 12, 167–178. [Google Scholar] [CrossRef]
- Del Campo, J.A.; Moreno, J.; Rodríguez, H.; Vargas, M.A.; Rivas, J.; Guerrero, M.G. Carotenoid content of chlorophycean microalgae: Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J. Biotechnol. 2000, 76, 51–59. [Google Scholar] [CrossRef]
- Batista, A.D.; Rosa, R.M.; Machado, M.; Magalhães, A.S.; Shalaguti, B.A.; Gomes, P.F.; Covell, L.; Vaz, M.G.M.V.; Araújo, W.L.; Nunes-Nesi, A. Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth in Chlamydomonas reinhardtii. Metabolomics 2019, 15, 31. [Google Scholar] [CrossRef]
- Sun, H.; Ren, Y.; Fan, Y.; Lu, X.; Zhao, W.; Chen, F. Systematic metabolic tools reveal underlying mechanism of product biosynthesis in Chromochloris zofingiensis. Bioresour. Technol. 2021, 337, 125406. [Google Scholar] [CrossRef]
- Yan, H.; Gu, Z.; Zhang, Q.; Wang, Y.; Cui, X.; Liu, Y.; Yu, Z.; Ruan, R. Detoxification of copper and zinc from anaerobic digestate effluent by indigenous bacteria: Mechanisms, pathways and metagenomic analysis. J. Hazard. Mater. 2024, 469, 133993. [Google Scholar] [CrossRef]
- Hsieh, C.-H.; Wu, W.-T. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour. Technol. 2009, 100, 3921–3926. [Google Scholar] [CrossRef]
- Ye, Y.; Huang, Y.; Xia, A.; Fu, Q.; Liao, Q.; Zeng, W.; Zheng, Y.; Zhu, X. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity. Bioresour. Technol. 2018, 270, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Horsman, M.; Wang, B.; Wu, N.; Lan, C.Q. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 2008, 81, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, W.; Chen, H.; Zhan, J.; He, C.; Wang, Q. Ammonium nitrogen tolerant Chlorella strain screening and its damaging effects on photosynthesis. Front. Microbiol. 2019, 9, 3250. [Google Scholar] [CrossRef]
- Gu, Z.; Yan, H.; Zhang, Q.; Wang, Y.; Liu, C.; Cui, X.; Liu, Y.; Yu, Z.; Wu, X.; Ruan, R. Elimination of copper obstacle factor in anaerobic digestion effluent for value-added utilization: Performance and resistance mechanisms of indigenous bacterial consortium. Water Res. 2024, 252, 121217. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-H.; Chan, M.-C.; Liu, C.-C.; Chen, C.-Y.; Lee, W.-L.; Lee, D.-J.; Chang, J.-S. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresour. Technol. 2014, 152, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Ho, S.-H.; Liu, C.-C.; Chang, J.-S. Enhancing lutein production with Chlorella sorokiniana Mb-1 by optimizing acetate and nitrate concentrations under mixotrophic growth. J. Taiwan Inst. Chem. Eng. 2017, 79, 88–96. [Google Scholar] [CrossRef]
- Xie, Y.; Ho, S.-H.; Chen, C.-N.N.; Chen, C.-Y.; Ng, I.-S.; Jing, K.-J.; Chang, J.-S.; Lu, Y. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: Effects of nitrate concentration, light intensity and fed-batch operation. Bioresour. Technol. 2013, 144, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-H.; Xie, Y.; Chan, M.-C.; Liu, C.-C.; Chen, C.-Y.; Lee, D.-J.; Huang, C.-C.; Chang, J.-S. Effects of nitrogen source availability and bioreactor operating strategies on lutein production with Scenedesmus obliquus FSP-3. Bioresour. Technol. 2015, 184, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Cordero, B.F.; Obraztsova, I.; Couso, I.; Leon, R.; Vargas, M.A.; Rodriguez, H. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar. Drugs 2011, 9, 1607–1624. [Google Scholar] [CrossRef]
- McClure, D.D.; Nightingale, J.K.; Luiz, A.; Black, S.; Zhu, J.; Kavanagh, J.M. Pilot-scale production of lutein using Chlorella vulgaris. Algal Res. 2019, 44, 101707. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Ma, R.; Ho, S.-H.; Shi, X.; Liu, L.; Chen, J. Bioprocess operation strategies with mixotrophy/photoinduction to enhance lutein production of microalga Chlorella sorokiniana FZU60. Bioresour. Technol. 2019, 290, 121798. [Google Scholar] [CrossRef] [PubMed]
- Watt, D.A.; Amory, A.M.; Cresswell, C.F. Interactions between nitrogen metabolism and photosynthesis in nitrogen-limited Monoraphidium falcatus. S. Afr. J. Bot. 1989, 55, 543–550. [Google Scholar] [CrossRef]
- Shahar, B.; Shpigel, M.; Barkan, R.; Masasa, M.; Neori, A.; Chernov, H.; Salomon, E.; Kiflawi, M.; Guttman, L. Changes in metabolism, growth and nutrient uptake of Ulva fasciata (Chlorophyta) in response to nitrogen source. Algal Res. 2020, 46, 101781. [Google Scholar] [CrossRef]
- Li, Q.; Fu, L.; Wang, Y.; Zhou, D.; Rittmann, B.E. Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresour. Technol. 2018, 268, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, J.; Ho, S.-H.; Ma, R.; Shi, X.; Liu, L.; Chen, J. Pilot-scale cultivation of Chlorella sorokiniana FZU60 with a mixotrophy/photoautotrophy two-stage strategy for efficient lutein production. Bioresour. Technol. 2020, 314, 123767. [Google Scholar] [CrossRef]
- Van Wagenen, J.; De Francisci, D.; Angelidaki, I. Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana. J. Appl. Phycol. 2014, 27, 1775–1782. [Google Scholar] [CrossRef]
Groups | μ Max (day−1) | Generation Time (days) | Biomass Productivity (g·L−1·day−1) | Biomass Concentration (g·L−1) | Growth Yield (g Biomass/g TOC) |
---|---|---|---|---|---|
HSN | 1.81 ± 0.04 b | 0.38 ± 0.01 cd | 0.45 ± 0.01 a | 2.84 ± 0.07 a | 0.94 ± 0.02 c |
HAA | 1.60 ± 0.07 bc | 0.43 ± 0.02 abc | 0.51 ± 0.01 a | 3.21 ± 0.08 a | 1.02 ± 0.03 bc |
HU | 1.63 ± 0.08 bc | 0.43 ± 0.02 bc | 0.49 ± 0.08 a | 3.02 ± 0.46 a | 1.19 ± 0.18 b |
MSN | 2.10 ± 0.37 a | 0.34 ± 0.06 d | 0.51 ± 0.04 a | 3.19 ± 0.25 a | 1.50 ± 0.12 a |
MAA | 1.52 ± 0.05 bc | 0.46 ± 0.02 ab | 0.43 ± 0.04 a | 2.71 ± 0.25 a | 1.67 ± 0.15 a |
MU | 1.46 ± 0.05 c | 0.48 ± 0.02 a | 0.46 ± 0.04 a | 2.88 ± 0.20 a | 1.53 ± 0.10 a |
Groups | μ Max (day−1) | Generation Time (days) | Biomass Productivity (g·L−1·day−1) | Biomass Concentration (g·L−1) | Growth Yield (g Biomass/g TOC) |
---|---|---|---|---|---|
TOC/TN = 3:1 | 1.38 ± 0.03 d | 0.50 ± 0.01 b | 0.19 ± 0.04 c | 1.23 ± 0.24 c | 1.96 ± 0.38 a |
TOC/TN = 6:1 | 1.14 ± 0.08 e | 0.61 ± 0.04 a | 0.22 ± 0.02 c | 1.41 ± 0.11 c | 1.88 ± 0.15 a |
TOC/TN = 9:1 | 1.61 ± 0.04 c | 0.43 ± 0.01 c | 0.29 ± 0.02 b | 1.79 ± 0.12 b | 2.09 ± 0.14 a |
TOC/TN = 12:1 | 1.96 ± 0.04 b | 0.35 ± 0.01 d | 0.42 ± 0.01 a | 2.60 ± 0.06 a | 2.03 ± 0.05 a |
TOC/TN = 18:1 | 2.52 ± 0.03 a | 0.27 ± 0.01 e | 0.45 ± 0.01 a | 2.80 ± 0.06 a | 1.40 ± 0.03 b |
Groups | μ Max (day−1) | Generation Time (days) | Biomass Productivity (g·L−1·day−1) | Biomass Concentration (g·L−1) | Growth Yield (g Biomass/g TOC) |
---|---|---|---|---|---|
TN/TP = 5:1 | 0.58 ± 0.01 d | 1.19 ± 0.02 a | 0.07 ± 0.00 e | 0.53 ± 0.01 e | 0.67 ± 0.01 c |
TN/TP = 10:1 | 2.44 ± 0.01 b | 0.28 ± 0.00 c | 1.01 ± 0.01 a | 6.16 ± 0.02 a | 1.60 ± 0.01 a |
TN/TP = 25:1 | 2.73 ± 0.02 a | 0.25 ± 0.01 c | 0.80 ± 0.02 b | 4.89 ± 0.13 b | 1.40 ± 0.04 b |
TN/TP = 50:1 | 1.45 ± 0.33 c | 0.50 ± 0.13 b | 0.37 ± 0.07 c | 2.31 ± 0.43 c | 1.32 ± 0.24 b |
TN/TP = 80:1 | 1.64 ± 0.13 c | 0.43 ± 0.03 b | 0.29 ± 0.01 d | 1.85 ± 0.06 d | 1.28 ± 0.04 b |
Groups | μ Max (day−1) | Generation Time (days) | Biomass Productivity (g·L−1·day−1) | Biomass Concentration (g·L−1) | Growth Yield (g Biomass/g TOC) |
---|---|---|---|---|---|
24 h | 2.19 ± 0.04 b | 0.32 ± 0.01 a | 1.00 ± 0.03 a | 6.09 ± 0.14 a | 1.67 ± 0.04 a |
18 h | 2.37 ± 0.11 a | 0.30 ± 0.02 a | 0.82 ± 0.02 b | 5.03 ± 0.14 b | 1.37 ± 0.04 b |
12 h | 2.20 ± 0.03 b | 0.31 ± 0.01 a | 0.79 ± 0.01 c | 4.83 ± 0.07 c | 1.34 ± 0.02 b |
6 h | 2.36 ± 0.10 a | 0.30 ± 0.02 a | 0.73 ± 0.01 d | 4.45 ± 0.06 d | 1.33 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Lai, J.; Zhang, Q.; Wang, Y.; Cui, X.; Liu, Y.; Wu, X.; Yu, Z.; Ruan, R. Optimizing Chlorella vulgaris Cultivation to Enhance Biomass and Lutein Production. Foods 2024, 13, 2514. https://doi.org/10.3390/foods13162514
Wu K, Lai J, Zhang Q, Wang Y, Cui X, Liu Y, Wu X, Yu Z, Ruan R. Optimizing Chlorella vulgaris Cultivation to Enhance Biomass and Lutein Production. Foods. 2024; 13(16):2514. https://doi.org/10.3390/foods13162514
Chicago/Turabian StyleWu, Kangping, Jiangling Lai, Qi Zhang, Yunpu Wang, Xian Cui, Yuhuan Liu, Xiaodan Wu, Zhigang Yu, and Roger Ruan. 2024. "Optimizing Chlorella vulgaris Cultivation to Enhance Biomass and Lutein Production" Foods 13, no. 16: 2514. https://doi.org/10.3390/foods13162514
APA StyleWu, K., Lai, J., Zhang, Q., Wang, Y., Cui, X., Liu, Y., Wu, X., Yu, Z., & Ruan, R. (2024). Optimizing Chlorella vulgaris Cultivation to Enhance Biomass and Lutein Production. Foods, 13(16), 2514. https://doi.org/10.3390/foods13162514