Elderflowers (Sambuci flos L.): A Potential Source of Health-Promoting Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Material
- Albida;
- Bohatka;
- Haschberg;
- Sambo;
- Samdal;
- Weihenstephan;
- Wild elderberry.
2.3. Dry Matter, Ash Content, Titratable Acidity, Pectin and Vitamin C
2.4. Determination of Sugar Content
2.5. Analysis of Organic Acids by HPLC Method
2.6. Carotenoid Content UPLC-PDA-MS Analysis
2.7. Identification and Quantification of Polyphenols Using the UPLC-PDA-MS Method
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stuper-Szablewska, K.; Szablewski, T.; Przybylska-Balcerek, A.; Szwajkowska-Michałek, L.; Krzyżaniak, M.; Świerk, D.; Cegielska-Radziejewska, R.; Krejpcio, Z. Antimicrobial Activities Evaluation and Phytochemical Screening of Some Selected Plant Materials Used in Traditional Medicine. Molecules 2023, 28, 244. [Google Scholar] [CrossRef]
- Waszkiewicz-Robak, B.; Biller, E. Właściwości prozdrowotne czarnego bzu. Probl. Hig. Epidemiol. 2018, 99, 217–224. (In Polish) [Google Scholar]
- Uzlasir, T.; Kadiroglu, P.; Selli, S.; Kelebek, H. LC-DAD-ESI-MS/MS characterization of elderberry flower (Sambucus nigra L.) phenolic compounds in ethanol, methanol, and aqueous extracts. J. Food Process. Preserv. 2020, 45, 14478. [Google Scholar] [CrossRef]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Schmitzer, V.; Veberic, R.; Stampar, F. European elderberry (Sambucus nigra L.) and American Elderberry (Sambucus canadensis L.): Botanical, chemical and health properties of flowers, berries and their products, Berries: Properties. Consum. Nutr. 2012, 1, 27–148. [Google Scholar]
- Izzo, A.A.; Carlo, G.; Biscardi, D.; Fusco, R.; Mascolo, N.; Borrelli, F.; Capasso, F.; Fasulo, M.P.; Autore, G. Biological screening of Italian medicinal plants for 35, antibacterial activity. Phytother. Res. 1995, 9, 281–286. [Google Scholar] [CrossRef]
- Hearst, C.; McCollum, G.; Nelson, D.; Ballard, L.M.; Millar, B.C.; Goldsmith, C.E.; Rooney, P.J.; Loughrey, A.; Moore, J.E.; Rao, J.R. Antibacterial activity of elder (Sambucus nigra L.) flower or berry against hospital pathogens. J. Med. Plants Res. 2010, 4, 1805–1809. [Google Scholar]
- Kujawa-Warchala, K.; Nazaruk, J. Aktywność farmakologiczna pentacyklicznych związków triterpenowych. Postępy Fitoter. 2012, 1, 35–47. (In Polish) [Google Scholar]
- Gao, D.; Li, Q.; Li, Y.; Liu, Z.; Fan, Y.; Liu, Z.; Zhao, H.; Li, J.; Han, Z. Antidiabetic and antioxidant effects of oleanolic acid from Ligustrum lucidum Ait in alloxan-induced diabetic rats. Phytother. Res. 2009, 23, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Petruţ, G.S.; Muste, S.; Mureșan, C.; Păucean, A.; Mureşan, A.E.; Nagy, M. Chemical Profiles and Antioxidant Activity of Black Elder (Sambucus nigra L.)—A Review. Bull. UASVM Food Sci. Technol. 2017, 74, 9–16. [Google Scholar] [CrossRef]
- Ravindran, P.N. The Encyclopedia of Herbs and Spices (English Edition); CABI: Wallingford, UK, 2017. [Google Scholar]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak, G.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377–390. [Google Scholar] [CrossRef]
- Charlebois, D.; Byers, P.L.; Finn, C.E.; Thomas, A.L. Elderberry: Botany, Horticulture, Potential. Hortic. Rev. 2010, 37, 213–280. [Google Scholar] [CrossRef]
- Porter, R.S.; Bode, F. A Review of the Antiviral Properties of Black Elder (Sambucus nigra L.) Products. Psychother. Res. 2017, 31, 533–554. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- PN-90/A-75101/04; Fruit and Vegetable Products: Preparation of Samples and Test Methods, Determination of Total Acidity. Polski Komitet Normalizacyjny: Warszawa, Poland, 1990.
- Nawirska-Olszańska, A.; Oziembłowski, M.; Brandova, P.; Czaplicka, M. Comparison of the Chemical Composition of Selected Varieties of Elderberry with Wild Growing Elderberry. Molecules 2022, 27, 5050. [Google Scholar] [CrossRef]
- Czaplicka, M.; Parypa, K.; Szewczuk, A.; Gudarowska, E.; Rowińska, M.; Zubaidi, M.A.; Nawirska-Olszańska, A. Assessment of Selected Parameters for Determining the Internal Quality of White Grape Cultivars Grown in Cold Climates. Appl. Sci. 2022, 12, 5534. [Google Scholar] [CrossRef]
- Oziembłowski, M.; Trenka, M.; Czaplicka, M.; Maksimowski, D.; Nawirska-Olszańska, A. Selected Properties of Juices from Black Chokeberry (Aronia melanocarpa L.) Fruits Preserved Using the PEF Method. Appl. Sci. 2022, 12, 7008. [Google Scholar] [CrossRef]
- Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem. 2009, 114, 511–515. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Zaczyńska, E.; Czarny, A.; Kolniak-Ostek, J. Chemical Characteristics of Ethanol and Water Extracts of Black Alder (Alnus glutinosa L.) Acorns and Their Antibacterial, Anti-Fungal and Antitumor Properties. Molecules 2022, 27, 2804. [Google Scholar] [CrossRef]
- Stefaniak, A.; Grzeszczuk, M. Nutritional and Biological Value of Five Edible Flower Species. Not. Bot. Horti Agrobot. Cluj Napoca 2019, 47, 128–134. [Google Scholar] [CrossRef]
- Barros, L.; Cabrita, L.; Boas, M.V.; Carvalho, A.M.; Ferreira, I.C.F.R. Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chem. 2011, 127, 1600–1608. [Google Scholar] [CrossRef]
- Socaci, S.A.; Fărcaș, A.; Tofană, M.; Pop, C.; Jimborean, M.; Nagy, M. Evaluation of bioactive compounds from flowers and fruits of black elder (Sambucus nigra L.). Food Sci. Technol. 2015, 72, 289–290. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Ivancic, A.; Schmitzer, V.; Veberic, R.; Stampar, F. Comparison of Major Taste Compounds and Antioxidative Properties of Fruits and Flowers of Different Sambucus Species and Interspecific Hybrids. Food Chem. 2016, 200, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Staniek, H.; Kidoń, M.; Łysiak, G.P. The Content of Selected Minerals, Bioactive Compounds, and the Antioxidant Properties of the Flowers and Fruit of Selected Cultivars and Wildly Growing Plants of Sambucus nigra L. Molecules 2020, 25, 876. [Google Scholar] [CrossRef] [PubMed]
- Wołosiak, R.; Piątek, M.; Ciecierska, M.; Derewiaka, D.; Drużyńska, B.; Kowalska, J.; Majewska, E. Właściwości przeciwutleniające ekstraktów związków fenolowych kwiatów jadalnych wybranych gatunków roślin. Zesz. Probl. Postępów Nauk Rol. 2017, 590, 73–82. (In Polish) [Google Scholar] [CrossRef]
Variety | Dry Matter [%] | Ash [%] | Titratable Acidity [g/100 g] | Pectin [%] | Vitamin C [mg/100 g] |
---|---|---|---|---|---|
Albida | 34.19 ± 2.81 b | 3.42 ± 0.67 c | 0.95 ± 0.08 b | 0.42 ± 0.04 c | 13.36 ± 0.58 g |
Bohatka | 33.36 ± 2.67 c | 3.88 ± 0.38 b | 0.84 ± 0.03 e | 0.19 ± 0.01 f | 25.67 ± 1.56 a |
Haschberg | 34.25 ± 2.44 b | 3.94 ± 0.43 b | 0.99 ± 0.09 a | 0.46 ± 0.03 b | 21.15 ± 1.29 c |
Sambo | 31.17 ± 2.93 d | 2.45 ± 0.85 e | 0.86 ± 0.06 d | 0.40 ± 0.03 d | 16.61 ± 0.93 f |
Samdal | 33.79 ± 2.27 c | 3.31 ± 0.78 c,d | 0.75 ± 0.04 f | 0.28 ± 0.01 e | 19.52 ± 0.56 d |
Weihenstephan | 35.60 ± 2.28 a | 4.68 ± 0.56 a | 0.89 ± 0.07 c | 0.49 ± 0.03 a | 22.59 ± 0.99 b |
Wild elderberry | 33.30 ± 2.35 c | 2.41 ± 0.24 e | 0.76 ± 0.08 f | 0.20 ± 0.01 f | 18.77 ± 1.22 e |
Variety | Fructose | Saccharose | Glucose | Sum | Ratio S/A |
---|---|---|---|---|---|
g/100 g dm | |||||
Albida | 27.65 ± 1.65 d | 3.93 ± 0.08 c | 13.11 ± 0.08 d,e | 44.71 | 0.85 |
Bohatka | 30.58 ± 2.54 b | 5.47 ± 0.78 a | 15.05 ± 0.08 c | 51.10 | 1.12 |
Haschberg | 25.07 ± 1.76 e | 3.86 ± 0.07 c | 16.47 ± 0.12 a | 45.41 | 0.75 |
Sambo | 31.97 ± 2.98 a | 5.39 ± 0.63 a | 16.34 ± 0.15 a | 53.70 | 1.56 |
Samdal | 30.69 ± 2.83 b | 4.29 ± 0.08 b | 13.60 ± 0.09 d | 48.59 | 1.47 |
Weihenstephan | 29.25 ± 1.89 c | 3.85 ± 0.09 c | 10.83 ± 0.06 f | 43.95 | 1.20 |
Wild elderberry | 13.52 ± 1.28 f | 0.00 | 15.63 ± 0.11 a,b | 29.15 | 0.87 |
Variety | Citric Acid | Malic Acid | Fumaric Acid | Tartaric Acid | Shikimic Acid | Sum |
---|---|---|---|---|---|---|
mg/100 g dm | ||||||
Albida | 5.27 ± 0.41 e | 43.02 ± 2.71 a | 0.14 ± 0.01 d | 2.48 ± 0.01 e | 1.68 ± 0.41 e | 52.59 |
Bohatka | 8.15 ± 0.33 b | 31.38 ± 3.96 b | 0.31 ± 0.01 b | 3.16 ± 0.31 d | 2.79 ± 0.33 b | 45.79 |
Haschberg | 9.57 ± 0.23 a | 42.69 ± 1.21 a | 0.29 ± 0.01 c | 4.52 ± 0.23 a | 3.23 ± 0.23 a | 60.30 |
Sambo | 7.24 ± 0.09 c | 21.10 ± 1.73 d | 0.28 ± 0.02 c | 3.45 ± 0.09 c | 2.41 ± 0.09 c | 34.48 |
Samdal | 7.51 ± 0.09 c | 19.41 ± 1.97 e | 0.32 ± 0.01 b | 3.51 ± 0.09 c | 2.39 ± 0.09 c | 33.14 |
Weihenstephan | 6.64 ± 0.07 d | 23.11 ± 1.21 c | 0.47 ± 0.01 a | 4.33 ± 0.07 b | 1.99 ± 0.01 d | 36.54 |
wild elderberry | 5.33 ± 0.21 e | 23.42 ± 1.19 c | 0.32 ± 0.01 b | 2.53 ± 0.01 e | 1.72 ± 0.01 e | 33.32 |
Variety | β-Carotene [μg/g dm] | Lutein [μg/g dm] | Lycopene [μg/g dm] | Pheophytin A [μg/g dm] |
---|---|---|---|---|
Albida | 9.34 ± 0.83 d | 1.02 ± 0.08 f | 0.15 ± 0.01 g | 0 |
Bohatka | 9.95 ± 0.74 d | 1.64 ± 0.09 e | 1.02 ± 0.09 c,d | 0.55 ± 0.06 c |
Haschberg | 3.09 ± 0.26 e | 1.72 ± 0.16 e | 0.21 ± 0.07 f | 0 |
Sambo | 14.58 ± 1.16 b | 3.15 ± 0.31 b | 2.45 ± 1.52 a | 1.61 ± 0.76 a |
Samdal | 16.05 ± 0.52 a | 4.44 ± 0.26 a | 1.19 ± 0.09 c | 0.51 ± 0.05 c |
Weihenstephan | 12.90 ± 0.56 c | 2.37 ± 0.21 d | 1.67 ± 0.98 b | 0.75 ± 0.09 b |
Wild elderberry | 12.54 ± 0.98 c | 2.78 ± 0.13 c | 0.59 ± 0.09 e | 0 |
Compound | Albida | Bohatka | Haschberg | Sambo | Samdal | Weihenstephan | Wild Elderberry |
---|---|---|---|---|---|---|---|
Quinic acid | 0.01 ± 0.00 c | 0.02 ± 0.00 b | 0.01 ± 0.00 c | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.03 ± 0.00 a |
Protocatechuic acid | nd | nd | 0.01 ± 0.00 a | nd | nd | nd | nd |
Hydroxybenzoic acid | 25.07 ± 3.12 e | 36.76 ± 2.22 a | 29.17 ± 3.11 d | 35.07 ± 2.32 b | 31.26 ± 1.21 c | 34.16 ± 2.19 b | nd |
Caffeoyl N-tryptophan | nd | 0.02 ± 0.00 a | 0.02 ± 0.00 a | nd | nd | nd | nd |
Caffeoylhexose | 2.98 ± 0.01 d | 4.55 ± 0.01 d | nd | 6.49 ± 0.04 a | 6.22 ± 0.04 b | 3.86 ± 0.02 c | nd |
3-Caffeoylquinic acid | 2.39 ± 0.01 d | 3.98 ± 0.02 c | 5.22 ± 0.14 b | 2.99 ± 0.08 d | 3.02 ± 0.09 d | 3.86 ± 0.12 c | 10.01 ± 0.15 a |
Caffeoylquinic acid dimer | 53.96 ± 4.33 d | 89.56 ± 5.28 a | 65.32 ± 3.48 c | nd | nd | 78.99 ± 4.17 b | 12.65 ± 1.42 e |
cis-3-Caffeoylquinic acid | nd | nd | nd | nd | nd | nd | 92.65 ± 6.25 a |
5-Caffeoylquinic acid | 4.12 ± 0.08 e | 8.76 ± 0.09 d | 14.33 ± 0.89 c | 10.98 ± 0.16 c | 11.24 ± 0.18 c | 15.76 ± 0.65 b | 25.48 ± 1.64 a |
cis-4-Caffeoylquinic acid | nd | nd | nd | nd | nd | nd | 13.88 ± 0.95 a |
B-type procyanidin dimer | 9.28 ± 0.24 d | 15.72 ± 0.99 a | 11.34 ± 0.97 c | 13.53 ± 0.89 b | 13.97 ± 0.88 b | 16.51 ± 1.09 a | nd |
4-Caffeoylquinic acid | 0.92 ± 0.02 c,d | 0.99 ± 0.07 c | 0.97 ± 0.03 c | 1.78 ± 0.09 a | 1.86 ± 0.09 a | 0.98 ± 0.04 c | 1.21 ± 0.08 b |
Quercetin hexoside pentoside | 1.23 ± 0.09 c | 4.87 ± 0.32 b | 9.76 ± 0.97 a | 10.12 ± 1.06 a | 10.22 ± 1.07 a | 3.55 ± 0.23 b | 9.81 ± 0.98 a |
Kaempferol dihexoside | 43.76 ± 2.09 c | nd | nd | 59.76 ± 3.66 a | 60.14 ± 3.66 a | 61.54 ± 4.78 a | 30.38 ± 2.11 d |
5-p-Coumaroylquinic acid | 2.67 ± 0.21 e | 11.8 ± 0.99 a | 7.98 ± 0.69 c,d | 6.21 ± 0.33 d | 6.24 ± 0.22 d | 8.33 ± 0.82 b,c | 3.98 ± 0.03 e |
Quercetin dihexoside | 0.99 ± 0.04 e | 2.01 ± 0.22 b | 1.98 ± 0.16 b | 1.23 ± 0.11 d | 1.33 ± 0.08 c.d | 1.49 ± 0.09 c | 2.27 ± 0.29 a |
3-Feruloyl-quinic acid | 1.99 ± 0.04 e,f | 2.54 ± 0.19 c | 2.63 ± 0.22 b | 2.49 ± 0.18 d | 2.46 ± 0.12 d | 2.11 ± 0.09 e | 2.93 ± 0.29 a |
4-Feruloyl-quinic acid | nd | 2.98 ± 0.02 c | 3.52 ± 0.03 b | nd | nd | nd | 9.53 ± 0.56 a |
Quercetin-3-O-rhamnosyl hexoside | nd | 4.76 ± 0.36 c | 6.58 ± 0.39 b | nd | nd | nd | 8.66 ± 0.84 a |
Quercetin dihexoside 1 | 0.99 ± 0.01 c | nd | 1.12 ± 0.09 b | 1.30 ± 0.09 a | 1.28 ± 0.08 a | nd | 1.32 ± 0.08 a |
Ferulic acid hexoside | nd | 15.41 ± 1.25 b | 30.98 ± 2.33 a | nd | nd | 16.29 ± 4.66 b | nd |
Quercetin dihexoside 2 | nd | 0.82 ± 0.06 c | 0.86 ± 0.05 c | 1.02 ± 0.09 b | 0.98 ± 0.08 b | nd | 1.37 ± 0.09 a |
Isorhamnetin dihexoside | 36.54 ± 2.67 d | 36.66 ± 1.92 d | 33.58 ± 2.26 d,e | 66.44 ± 5.43 b | 69.32 ± 6.94 b | 50.98 ± 4.29 c | 99.87 ± 3.22 a |
Quercetin acetyldihexoside | nd | 2.43 ± 0.08 d | 2.99 ± 0.17 c | 3.17 ± 0.27 b | 3.15 ± 0.21 b | 3.24 ± 0.09 a | nd |
Quercetin-3-rutinoside | nd | 13.22 ± 0.13 c | nd | nd | nd | 13.42 ± 0.29 b | 13.65 ± 0.25 a |
Quercetin-3-O-rhamnosyl hexoside | 0.28 ± 0.02 f | 0.95 ± 0.08 e | 1.23 ± 0.15 d | 1.67 ± 0.22 c | nd | 2.44 ± 0.22 b | 2.72 ± 0.27 a |
Quercetin-3-O-rhamnosyl hexoside | nd | nd | 3.65 ± 0.22 b | 3.42 ± 0.32 b | 3.58 ± 0.29 b | 6.98 ± 0.53 a | 3.22 ± 0.26 b,c |
Kaempferol-3-rutinoside | 5.62 ± 0.04 e | 9.29 ± 0.09 d | 11.27 ± 0.99 a | 9.74 ± 0.86 b | 9.44 ± 0.74 c | 10.98 ± 1.06 a,b | 13.83 ± 1.25 a |
Isorhamnetin-3-rutinoside | nd | 0.88 ± 0.06 a | nd | 0.68 ± 0.01 b | 0.54 ± 0.01 c | nd | nd |
Dicaffeoylquinic acid 1 | nd | 8.64 ± 0.63 b | nd | nd | nd | nd | 14.37 ± 0.31 a |
Dicaffeoylquinic acid dimer | 0.10 ± 0.00 e | 0.29 ± 0.01 a | 0.21 ± 0.01 c | 0.19 ± 0.01 c | 0.18 ± 0.01 d | 0.24 ± 0.01 b | 0.25 ± 0.02 b |
Isorhamnetin hexoside | nd | 6.87 ± 0.33 a | nd | nd | nd | nd | nd |
Isorhamnetin acetyl hexoside pentoside | nd | 1.99 ± 0.09 d | 2.21 ± 0.19 c | 1.67 ± 0.09 e | 1.34 ± 0.09 f | 2.96 ± 0.22 b | 3.74 ± 0.29 a |
Dicaffeoylquinic acid 2 | nd | 0.01 ± 0.00 c | 0.03 ± 0.00 c | 0.11 ± 0.01 a | 0.12 ± 0.02 a | 0.07 ± 0.00 b | 0.09 ± 0.00 b |
Dicaffeoylquinic acid 3 | nd | 0.02 ± 0.00 c | 0.01 ± 0.00 c | 0.09 ± 0.00 a | 0.08 ± 0.00 a | 0.02 ± 0.00 c | 0.05 ± 0.00 b |
Isorhamnetin acetyl hexoside | nd | 0.46 ± 0.01 b | 0.53 ± 0.01 a | 0.33 ± 0.01 c | 0.35 ± 0.01 c | 0.61 ± 0.01 a | nd |
Coumaroylquinic acid derivative | nd | nd | nd | nd | nd | nd | 1.22 ± 0.61 a |
3-O-caffeoyl-4-O-p-coumaroylquinic acid | 1.25 ± 0.09 f | 5.96 ± 0.43 b | 4.39 ± 0.26 d | 5.27 ± 0.33 c | 5.32 ± 0.23 c | 3.87 ± 0.21 e | 6.44 ± 0.44 a |
Dihydrokaempferol-O-hexoside | 3.01 ± 0.00 f | 3.32 ± 0.00 d | 3.46 ± 0.00 c | 3.63 ± 0.00 a | 3.22 ± 0.00 e | 3.52 ± 0.00 b | 3.34 ± 0.00 d |
Naringenin derivative | 0.02 ± 0.00 d | 0.04 ± 0.00 c | nd | 0.09 ± 0.00 a | 0.07 ± 0.00 b | nd | nd |
Naringenin hexoside | nd | 0.03 ± 0.00 d | 4.03 ± 0.00 a | 0.05 ± 0.00 c | 0.09 ± 0.00 b | 0.06 ± 0.00 c | 4.41 ± 0.00 a |
sum | 197.18 f | 296.61 c | 259.49 e | 249.54 d | 246.04 d | 377.76 b | 394.26 a |
Variety | ABTS [μMol Trolox/g dm] | FRAP [μMol Trolox/g dm] |
---|---|---|
Albida | 294.5 ± 11.53 e | 199.8 ± 11.92 e |
Bohatka | 421.0 ± 13.23 b | 321.0 ± 22.91 b |
Haschberg | 344.4 ± 16.64 d | 238.3 ± 22.33 d |
Sambo | 378.9 ± 15.16 c | 276.5 ± 21.53 c |
Samdal | 335.0 ± 17.88 d | 232.5 ± 19.98 d |
Weihenstephan | 449.9 ± 22.98 a | 348.9 ± 21.44 a |
Wild elderberry | 371.1 ± 17.22 c | 275.4 ± 14.42 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawirska-Olszańska, A.; Kolniak-Ostek, J.; Zubaidi, M.A.; Maksimowski, D.; Brandova, P.; Oziembłowski, M. Elderflowers (Sambuci flos L.): A Potential Source of Health-Promoting Components. Foods 2024, 13, 2560. https://doi.org/10.3390/foods13162560
Nawirska-Olszańska A, Kolniak-Ostek J, Zubaidi MA, Maksimowski D, Brandova P, Oziembłowski M. Elderflowers (Sambuci flos L.): A Potential Source of Health-Promoting Components. Foods. 2024; 13(16):2560. https://doi.org/10.3390/foods13162560
Chicago/Turabian StyleNawirska-Olszańska, Agnieszka, Joanna Kolniak-Ostek, Muhamad A. Zubaidi, Damian Maksimowski, Pavla Brandova, and Maciej Oziembłowski. 2024. "Elderflowers (Sambuci flos L.): A Potential Source of Health-Promoting Components" Foods 13, no. 16: 2560. https://doi.org/10.3390/foods13162560
APA StyleNawirska-Olszańska, A., Kolniak-Ostek, J., Zubaidi, M. A., Maksimowski, D., Brandova, P., & Oziembłowski, M. (2024). Elderflowers (Sambuci flos L.): A Potential Source of Health-Promoting Components. Foods, 13(16), 2560. https://doi.org/10.3390/foods13162560