Development of Zeolite Imidazole Framework-Based Adsorbent for Effective Microextraction and Preconcentration of Histamine in Food Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Standard Solution and Derivatization Steps
2.3. Chromatographic Conditions
2.4. ZIF Synthesis and Characterization
2.5. Optimization Conditions of the Analytical Parameters
2.6. Extraction, Preparation, Preconcentration, and Derivatization Procedure for HIS Detection in Fish and Cheese Samples
2.7. Method Validation
3. Results and Discussion
3.1. Characterization of ZIF@PPHF Adsorbent
3.1.1. FESEM and BET
3.1.2. ATR-FTIR Analysis
3.2. Optimization Analytical Parameters
3.2.1. pH
3.2.2. Adsorption Contact Time
3.2.3. Desorption Solvent Type
3.2.4. Desorption Time
3.2.5. Extractant (Desorption Solvent) Volume
3.2.6. Reusability
3.3. HIS Detection in Fish and Cheese Samples
3.3.1. Matrix Effect
3.3.2. Enrichment Factor (EF)
3.4. Method Validation and Quality Control
3.5. Comparative Analysis of the ZIF@PPHF-Based SPME Method with Other SPME Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, C.; Liu, C.; Ma, Z.; Pan, R.; Shi, H.; Kong, D.; Zhang, J.; Shen, W.; Tang, S. Detection of Four Biogenic Amines by Liquid Chromatography Based on Aptamer Signal Replacement Combined with Cyclic Amplification. Se Pu Chin. J. Chromatogr. 2022, 40, 1014–1021. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhou, Y.; Li, G.; Yang, W.; Feng, X. A Review of Pretreatment and Analytical Methods of Biogenic Amines in Food and Biological Samples since 2010. J. Chromatogr. A 2019, 1605, 360361. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, A.R. Significance of Biogenic Amines to Food Safety and Human Health. Food Res. Int. 1996, 29, 675–690. [Google Scholar] [CrossRef]
- Santos, M.H.S. Biogenic Amines: Their Importance in Foods. Int. J. Food Microbiol. 1996, 29, 213–231. [Google Scholar] [CrossRef]
- Pluta-Kubica, A.; Filipczak-Fiutak, M.; Domagała, J.; Duda, I.; Migdał, W. Contamination of Traditionally Smoked Cheeses with Polycyclic Aromatic Hydrocarbons and Biogenic Amines. Food Control 2020, 112, 107115. [Google Scholar] [CrossRef]
- Shiono, K.; Tsutsumi, T.; Nabeshi, H.; Ikeda, A.; Yokoyama, J.; Akiyama, H. Simple and Rapid Determination of Biogenic Amines in Fish and Fish Products by Liquid Chromatography–Tandem Mass Spectrometry Using 2, 4, 6-Triethyl-3, 5-Dimethyl Pyrylium Trifluoromethanesulfonate as a Derivatization Reagent. J. Chromatogr. A 2021, 1643, 462046. [Google Scholar] [CrossRef]
- Weremfo, A.; Eduafo, M.K.; Gyimah, H.A.; Abassah-Oppong, S. Monitoring the Levels of Biogenic Amines in Canned Fish Products Marketed in Ghana. J. Food Qual. 2020, 2020, 2684235. [Google Scholar] [CrossRef]
- Omanovic-Miklicanin, E.; Valzacchi, S. Development of New Chemiluminescence Biosensors for Determination of Biogenic Amines in Meat. Food Chem. 2017, 235, 98–103. [Google Scholar] [CrossRef]
- Ekici, K.; Omer, A.K. The Determination of Some Biogenic Amines in Turkish Fermented Sausages Consumed in Van. Toxicol. Rep. 2018, 5, 639–643. [Google Scholar] [CrossRef]
- Kamankesh, M.; Mohammadi, A.; Ghanati, K. Determination of Biogenic Amines in Lighvan Cheese Using a Novel Hollow-fibre Electromembrane-microextraction Coupled with Gas Chromatography–Mass Spectrometry. Int. J. Dairy Technol. 2021, 74, 759–767. [Google Scholar] [CrossRef]
- Ekici, K.; Omer, A.K. Biogenic Amines in Plant Food. In Neurotransmitters in Plants; CRC Press: Boca Raton, FL, USA, 2018; pp. 305–330. [Google Scholar]
- Ekici, K.; Omer, A.K. Biogenic Amines Formation and Their Importance in Fermented Foods. In Proceedings of the BIO Web of Conferences; EDP Sciences: Les Uils, France, 2020; Volume 17, p. 00232. [Google Scholar]
- Visciano, P.; Schirone, M. Update on Biogenic Amines in Fermented and Non-Fermented Beverages. Foods 2022, 11, 353. [Google Scholar] [CrossRef]
- Różańska, A.; Fabjanowicz, M.; Kalinowska, K.; Polkowska, Ż.; Płotka-Wasylka, J. Green, Simple Analytical Method for Biogenic Amines Determination in Fruit Juice Samples Using Salting-out Assisted Liquid-Liquid Microextraction and Gas Chromatography-Mass Spectrometry. Food Chem. 2022, 384, 132557. [Google Scholar] [CrossRef]
- Omer, A.K.; Mohammed, R.R.; Ameen, P.S.M.; Abas, Z.A.; Ekici, K. Presence of Biogenic Amines in Food and Their Public Health Implications: A Review. J. Food Prot. 2021, 84, 1539–1548. [Google Scholar] [CrossRef]
- Smolinska, S.; Winiarska, E.; Globinska, A.; Jutel, M. Histamine: A Mediator of Intestinal Disorders—A Review. Metabolites 2022, 12, 895. [Google Scholar] [CrossRef]
- El-Ghareeb, W.R.; Elhelaly, A.E.; Abdallah, K.M.E.; El-Sherbiny, H.M.M.; Darwish, W.S. Formation of Biogenic Amines in Fish: Dietary Intakes and Health Risk Assessment. Food Sci. Nutr. 2021, 9, 3123–3129. [Google Scholar] [CrossRef]
- DeBeeR, J.; Bell, J.W.; Nolte, F.; Arcieri, J.; Correa, G. Histamine Limits by Country: A Survey and Review. J. Food Prot. 2021, 84, 1610–1628. [Google Scholar] [CrossRef] [PubMed]
- Tırıs, G.; Sare Yanıkoğlu, R.; Ceylan, B.; Egeli, D.; Kepekci Tekkeli, E.; Önal, A. A Review of the Currently Developed Analytical Methods for the Determination of Biogenic Amines in Food Products. Food Chem. 2023, 398, 133919. [Google Scholar] [CrossRef]
- Gagic, M.; Jamroz, E.; Krizkova, S.; Milosavljevic, V.; Kopel, P.; Adam, V. Current Trends in Detection of Histamine in Food and Beverages. J. Agric. Food Chem. 2019, 67, 773–783. [Google Scholar] [CrossRef]
- Hou, J.; Xie, W.; Hong, D.; Zhang, W.; Li, F.; Qian, Y.; Han, C. Simultaneous Determination of Ten Neonicotinoid Insecticides and Two Metabolites in Honey and Royal-Jelly by Solid− Phase Extraction and Liquid Chromatography—Tandem Mass Spectrometry. Food Chem. 2019, 270, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Ran, L.; Xu, M.; Ren, D.; Yi, L. In Situ Ionic Liquid Dispersive Liquid–Liquid Microextraction Combined with Ultra High Performance Liquid Chromatography for Determination of Neonicotinoid Insecticides in Honey Samples. J. Sep. Sci. 2019, 42, 1930–1937. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yang, X.; Wang, J.; Cui, J.; Dong, A.J.; Zhao, H.T.; Zhang, L.W.; Wang, Z.Y.; Xu, R.B.; Li, W.J. Multi-Residue Method for Determination of Seven Neonicotinoid Insecticides in Grains Using Dispersive Solid-Phase Extraction and Dispersive Liquid–Liquid Micro-Extraction by High Performance Liquid Chromatography. Food Chem. 2012, 134, 1691–1698. [Google Scholar] [CrossRef] [PubMed]
- Ghiasi, A.; Malekpour, A.; Mahpishanian, S. Metal-Organic Framework MIL101 (Cr)-NH2 Functionalized Magnetic Graphene Oxide for Ultrasonic-Assisted Magnetic Solid Phase Extraction of Neonicotinoid Insecticides from Fruit and Water Samples. Talanta 2020, 217, 121120. [Google Scholar] [CrossRef] [PubMed]
- Arabi, M.; Ostovan, A.; Bagheri, A.R.; Guo, X.; Wang, L.; Li, J.; Wang, X.; Li, B.; Chen, L. Strategies of Molecular Imprinting-Based Solid-Phase Extraction Prior to Chromatographic Analysis. TrAC Trends Anal. Chem. 2020, 128, 115923. [Google Scholar] [CrossRef]
- Madej, K.; Jonda, A.; Borcuch, A.; Piekoszewski, W.; Chmielarz, L.; Gil, B. A Novel Stir Bar Sorptive-Dispersive Microextraction in Combination with Magnetically Modified Graphene for Isolation of Seven Pesticides from Water Samples. Microchem. J. 2019, 147, 962–971. [Google Scholar] [CrossRef]
- Molaei, R.; Tajik, H.; Moradi, M. Magnetic Solid Phase Extraction Based on Mesoporous Silica-Coated Iron Oxide Nanoparticles for Simultaneous Determination of Biogenic Amines in an Iranian Traditional Dairy Product; Kashk. Food Control 2019, 101, 1–8. [Google Scholar] [CrossRef]
- Jayasinghe, G.D.T.M.; Jinadasa, B.K.K.K.; Pohl, P.; Abdelkarim, A. Critical Review on Microextraction Techniques Used in Determination of Histamine in Food Samples. Discov. Food 2022, 2, 8. [Google Scholar] [CrossRef]
- Alizadeh, N.; Kamalabadi, M.; Mohammadi, A. Determination of Histamine and Tyramine in Canned Fish Samples by Headspace Solid-Phase Microextraction Based on a Nanostructured Polypyrrole Fiber Followed by Ion Mobility Spectrometry. Food Anal. Methods 2017, 10, 3001–3008. [Google Scholar] [CrossRef]
- Kitagawa, S. Metal–Organic Frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar]
- Jin, C.-X.; Shang, H.-B. Synthetic Methods, Properties and Controlling Roles of Synthetic Parameters of Zeolite Imidazole Framework-8: A Review. J. Solid State Chem. 2021, 297, 122040. [Google Scholar] [CrossRef]
- Ma, Z.-J.; Li, W.; Yu, J.-M.; Zhang, Z.; Zhu, X.-Q.; Xiong, W.-W.; Huang, X.-Y. Syntheses, Structures and Properties of a Series of Heterometallic-Organic Frameworks Based on Pyridinedicarboxylic Acids. J. Solid State Chem. 2020, 285, 121248. [Google Scholar] [CrossRef]
- Huang, K.; Li, Q.; Liu, G.; Shen, J.; Guan, K.; Jin, W. A ZIF-71 Hollow Fiber Membrane Fabricated by Contra-Diffusion. ACS Appl. Mater. Interfaces 2015, 7, 16157–16160. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O.M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319, 939–943. [Google Scholar] [CrossRef]
- Cheng, N.; Ren, L.; Xu, X.; Du, Y.; Dou, S.X. Recent Development of Zeolitic Imidazolate Frameworks (ZIFs) Derived Porous Carbon Based Materials as Electrocatalysts. Adv. Energy Mater. 2018, 8, 1801257. [Google Scholar] [CrossRef]
- Phan, A.; Doonan, C.J.; Uribe-Romo, F.J.; Knobler, C.B.; O’keeffe, M.; Yaghi, O.M. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks; ACS Publications: Washington, DC, USA, 2009. [Google Scholar]
- Al-Hazmi, G.A.A.; El-Zahhar, A.A.; El-Desouky, M.G.; El-Bindary, M.A.; El-Bindary, A.A. Efficiency of Fe3O4@ZIF-8 for the Removal of Doxorubicin from Aqueous Solutions: Equilibrium, Kinetics and Thermodynamic Studies. Environ. Technol. 2022, 45, 731–750. [Google Scholar] [CrossRef]
- Martínez-Pérez-Cejuela, H.; Mompó-Roselló, Ó.; Crespí-Sánchez, N.; Cabello, C.P.; Catalá-Icardo, M.; Simó-Alfonso, E.F.; Herrero-Martínez, J.M. Determination of Benzomercaptans in Environmental Complex Samples by Combining Zeolitic Imidazolate Framework-8-Based Solid-Phase Extraction and High-Performance Liquid Chromatography with UV Detection. J. Chromatogr. A 2020, 1631, 461580. [Google Scholar] [CrossRef]
- Selahle, S.K.; Mpupa, A.; Nomngongo, P.N. Combination of Zeolitic Imidazolate Framework-67 and Magnetic Porous Porphyrin Organic Polymer for Preconcentration of Neonicotinoid Insecticides in River Water. J. Chromatogr. A 2022, 1661, 462685. [Google Scholar] [CrossRef] [PubMed]
- Khoobi, A.; Salavati-Niasari, M.; Ghani, M.; Ghoreishi, S.M.; Gholami, A. Multivariate Optimization Methods for In-Situ Growth of LDH/ZIF-8 Nanocrystals on Anodized Aluminium Substrate as a Nanosorbent for Stir Bar Sorptive Extraction in Biological and Food Samples. Food Chem. 2019, 288, 39–46. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Z.; Wang, T.; Tian, D.; Ren, S.; Gao, Z. MOF-on-MOF Heterostructure Boosting AIE Sensing and Triggered Structural Collapse for Histamine Detection. Talanta 2024, 270, 125632. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Y.; Hou, C.; Qiao, X. PEG-Modified Halloysite as a Hydrophilic Interaction and Cation Exchange Mixed-Mode Sorbent for Solid-Phase Extraction of Biogenic Amines in Fish Samples. Anal. Bioanal. Chem. 2023, 415, 4265–4275. [Google Scholar] [CrossRef]
- Cicero, A.; Galluzzo, F.G.; Cammilleri, G.; Pulvirenti, A.; Giangrosso, G.; Macaluso, A.; Vella, A.; Ferrantelli, V. Development of a Rapid and Eco-Friendly UHPLC Analytical Method for the Detection of Histamine in Fish Products. Int. J. Environ. Res. Public Health 2020, 17, 7453. [Google Scholar] [CrossRef]
- Nadeem, M.; Naveed, T.; Rehman, F.; Xu, Z. Determination of Histamine in Fish without Derivatization by Indirect Reverse Phase-HPLC Method. Microchem. J. 2019, 144, 209–214. [Google Scholar] [CrossRef]
- Chen, H.; Liu, T.; Meng, Y.; Cheng, Y.; Lu, J.; Wang, H. Novel Graphene Oxide/Aminated Lignin Aerogels for Enhanced Adsorption of Malachite Green in Wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125281. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Wu, S.; Yu, Y.; Zhang, C.; Chen, F. Colorimetric Determination of Amaranth Followed Enrichment and Separation Using Buoyant Adsorbents. J. Anal. Sci. Technol. 2020, 11, 6. [Google Scholar] [CrossRef]
- Saeidi, N.; Parvini, M.; Sarsabili, M.R. Performance of Dubinin-Astakhov and Dubinin-Raduchkevic Equations to Evaluate Nanopore Volume and Pore Size of MCM-41 Particles. Int. J. Eng. 2014, 27, 1511–1518. [Google Scholar]
- Mutlu, O.; Demirkol, G.T.; Cetin, E. Removal of Natural Organic Matter from Drinking Water by Hybrid Coagulation/Adsorption-Membrane Filtration. Fresenius Environ. Bull. 2017, 26, 499–509. [Google Scholar]
- Binaeian, E.; Maleki, S.; Motaghedi, N.; Arjmandi, M. Study on the Performance of Cd2+ Sorption Using Dimethylethylenediamine-Modified Zinc-Based MOF (ZIF-8-Mmen): Optimization of the Process by RSM Technique. Sep. Sci. Technol. 2019, 55, 2713–2728. [Google Scholar] [CrossRef]
- Eletta, O.A.A.; Adeniyi, A.G.; Ighalo, J.O.; Onifade, D.V.; Ayandele, F.O. Valorisation of Cocoa (Theobroma Cacao) Pod Husk as Precursors for the Production of Adsorbents for Water Treatment. Environ. Technol. Rev. 2020, 9, 20–36. [Google Scholar] [CrossRef]
- Nasir, A.M.; Md Nordin, N.A.H.; Goh, P.S.; Ismail, A.F. Application of Two-Dimensional Leaf-Shaped Zeolitic Imidazolate Framework (2D ZIF-L) as Arsenite Adsorbent: Kinetic, Isotherm and Mechanism. J. Mol. Liq. 2018, 250, 269–277. [Google Scholar] [CrossRef]
- Yan, X.; Hu, X.; Chen, T.; Zhang, S.; Zhou, M. Adsorptive Removal of 1-Naphthol from Water with Zeolitic Imidazolate Framework-67. J. Phys. Chem. Solids 2017, 107, 50–54. [Google Scholar] [CrossRef]
- Wang, Y.; Rui, M.; Lu, G. Recent Applications of Metal—Organic Frameworks in Sample Pretreatment. J. Sep. Sci. 2018, 41, 180–194. [Google Scholar] [CrossRef]
- Yang, C.-X.; Yan, X.-P. Application of Metal-Organic Frameworks in Sample Pretreatment. Chin. J. Anal. Chem. 2013, 41, 1297–1300. [Google Scholar] [CrossRef]
- Zhong, G.; Liu, D.; Zhang, J. The Application of ZIF-67 and Its Derivatives: Adsorption, Separation, Electrochemistry and Catalysts. J. Mater. Chem. A 2018, 6, 1887–1899. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, X.; Zhang, Z.; Yin, J. Preparation of Magnetic Flower-like Molybdenum Disulfide Hybrid Materials for the Extraction of Organophosphorus Pesticides from Environmental Water Samples. J. Chromatogr. A 2020, 1631, 461583. [Google Scholar] [CrossRef]
- Nasiri, M.; Ahmadzadeh, H.; Amiri, A. Organophosphorus Pesticides Extraction with Polyvinyl Alcohol Coated Magnetic Graphene Oxide Particles and Analysis by Gas Chromatography-Mass Spectrometry: Application to Apple Juice and Environmental Water. Talanta 2021, 227, 122078. [Google Scholar] [CrossRef]
- Kouser, S.; Hezam, A.; Khadri, M.J.N.; Khanum, S.A. A Review on Zeolite Imidazole Frameworks: Synthesis, Properties, and Applications. J. Porous Mater. 2022, 29, 663–681. [Google Scholar] [CrossRef]
- Krishna Murthy, T.P.; Gowrishankar, B.S.; Chandra Prabha, M.N.; Kruthi, M.; Hari Krishna, R. Studies on Batch Adsorptive Removal of Malachite Green from Synthetic Wastewater Using Acid Treated Coffee Husk: Equilibrium, Kinetics and Thermodynamic Studies. Microchem. J. 2019, 146, 192–201. [Google Scholar] [CrossRef]
- Kataria, N.; Garg, V.K. Removal of Congo Red and Brilliant Green Dyes from Aqueous Solution Using Flower Shaped ZnO Nanoparticles. J. Environ. Chem. Eng. 2017, 5, 5420–5428. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Rangabhashiyam, S.; Adeyanju, C.A.; Ogunniyi, S.; Adeniyi, A.G.; Igwegbe, C.A. Zeolitic Imidazolate Frameworks (ZIFs) for Aqueous Phase Adsorption—A Review. J. Ind. Eng. Chem. 2022, 105, 34–48. [Google Scholar] [CrossRef]
- Abdi, J.; Vossoughi, M.; Mahmoodi, N.M.; Alemzadeh, I. Synthesis of Amine-Modified Zeolitic Imidazolate Framework-8, Ultrasound-Assisted Dye Removal and Modeling. Ultrason. Sonochem. 2017, 39, 550–564. [Google Scholar] [CrossRef]
- Richard, N.; Pivarnik, L.; Ellis, P.C.; Lee, C. Effect of Matrix on Recovery of Biogenic Amines in Fish. J. AOAC Int. 2008, 91, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hui, Y.; Jiang, M.; Cai, Y.; Huang, D.; Yang, G.; Kong, C. Determination of 6 Biogenic Amines in Food Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry without Derivatization. J. Chromatogr. A 2021, 1653, 462415. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Kłodzińska, E.; Namieśnik, J.; Płotka-Wasylka, J. Literature Update of Analytical Methods for Biogenic Amines Determination in Food and Beverages. TrAC Trends Anal. Chem. 2018, 98, 128–142. [Google Scholar] [CrossRef]
- Limchoowong, N.; Sricharoen, P.; Areerob, Y.; Nuengmatcha, P.; Sripakdee, T.; Techawongstien, S.; Chanthai, S. Preconcentration and Trace Determination of Copper (II) in Thai Food Recipes Using Fe3O4@Chi–GQDs Nanocomposites as a New Magnetic Adsorbent. Food Chem. 2017, 230, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Nazari, Z.; Noshirvani, N. Synthesis of Chitosan Based Magnetic Molecularly Imprinted Polymers for Selective Separation and Spectrophotometric Determination of Histamine in Tuna Fish. Carbohydr. Polym. 2017, 177, 306–314. [Google Scholar] [CrossRef]
- Restuccia, D.; Spizzirri, U.G.; Puoci, F.; Cirillo, G.; Curcio, M.; Parisi, O.I.; Iemma, F.; Picci, N. A New Method for the Determination of Biogenic Amines in Cheese by LC with Evaporative Light Scattering Detector. Talanta 2011, 85, 363–369. [Google Scholar] [CrossRef]
LDR | RE (R2) | LOD | LOQ | Food Samples | Unspiked Results (M ± SD, mg/L) | Spiked Level | Results of Spiked Samples (M ± SD, mg/L) | MR ± RSD (%, n = 3) | ME (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day | Inter-Day | Intra-Day | Inter-Day | ||||||||
0.05–250 | y = 372.73x + 267.78 R2 = 0.9989 | 0.019 | 0.050 | LFF | 17.5 ± 0.20 | 5 | 22.40 ± 0.26 | 22.43 ± 0.41 | 98 ± 1.18 | 98.60 ± 1.85 | 96.78 |
10 | 27.20 ± 0.30 | 27.46 ± 0.40 | 97 ± 1.10 | 99.60 ± 1.47 | 101.84 | ||||||
50 | 67.01 ± 0.20 | 67.57 ± 0.42 | 99.02 ± 0.29 | 100.14 ± 0.62 | 102.20 | ||||||
HFF | 23.66 ± 0.25 | 5 | 28.70 ± 0.30 | 28.60 ± 0.30 | 102 ± 1.06 | 98.80 ± 1.04 | 93.23 | ||||
10 | 33.70 ± 0.45 | 33.50 ± 0.30 | 100.40 ± 1.36 | 98.40 ± 0.89 | 99.04 | ||||||
50 | 72.90 ± 0.8 | 73.97 ± 0.25 | 98.48 ± 1.09 | 100.62 ± 0.34 | 97.23 | ||||||
LFC | 13.87 ± 0.15 | 5 | 18.90 ± 0.20 | 19.04 ± 0.15 | 100.60 ± 1.05 | 103.40 ± 0.79 | 95.11 | ||||
10 | 23.60 ± 0.62 | 24.20 ± 0.30 | 97.30 ± 2.64 | 103.30 ± 1.23 | 104.06 | ||||||
50 | 62.13 ± 1.20 | 64.46 ± 0.70 | 96.52 ± 1.94 | 101.18 ± 1.08 | 98.77 | ||||||
HFC | 16.96 ± 0.20 | 5 | 22.10 ± 0.20 | 21.93 ± 0.25 | 102.80 ± 0.90 | 99.40 ± 1.14 | 93.63 | ||||
10 | 26.83 ± 0.30 | 26.60 ± 0.48 | 98.70 ± 1.13 | 96.40 ± 1.82 | 98.11 | ||||||
50 | 67.03 ± 0.30 | 66.7 ± 0.80 | 100.14 ± 0.45 | 99.48 ± 1.19 | 98.95 |
Analytical Method | Adsorbent | Adsorption Time | Desorption Time | LOD | Type of Samples | References |
---|---|---|---|---|---|---|
HPLC-UV | Fe3O4@MCM-41-SPE nanoparticles | 15 min | 10 min | 0.014 mg/L | Dairy product | [27] |
Spectrophotometer | CHI/MMIPs | 15 min | 10 min | 1.5 ng/mL | Tuna fish | [68] |
HPLC-UV | PEG-modified halloysite | - | - | 0.078 mg/kg | Fish | [42] |
HPLC-ELSD | C18 sorbent | - | - | 2.1 mg/L | Cheese | [69] |
HPLC-UV | C18 sorbent | - | - | 0.3 mg/kg | Cheese | [69] |
HPLC-UV | ZIF@PPHF | 7 min | 2 min | 0.019 mg/L | Fish and Cheese | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omer, A.K.; Tajik, H.; Molaei, R.; Moradi, M. Development of Zeolite Imidazole Framework-Based Adsorbent for Effective Microextraction and Preconcentration of Histamine in Food Samples. Foods 2024, 13, 2564. https://doi.org/10.3390/foods13162564
Omer AK, Tajik H, Molaei R, Moradi M. Development of Zeolite Imidazole Framework-Based Adsorbent for Effective Microextraction and Preconcentration of Histamine in Food Samples. Foods. 2024; 13(16):2564. https://doi.org/10.3390/foods13162564
Chicago/Turabian StyleOmer, Abdullah Khalid, Hossein Tajik, Rahim Molaei, and Mehran Moradi. 2024. "Development of Zeolite Imidazole Framework-Based Adsorbent for Effective Microextraction and Preconcentration of Histamine in Food Samples" Foods 13, no. 16: 2564. https://doi.org/10.3390/foods13162564
APA StyleOmer, A. K., Tajik, H., Molaei, R., & Moradi, M. (2024). Development of Zeolite Imidazole Framework-Based Adsorbent for Effective Microextraction and Preconcentration of Histamine in Food Samples. Foods, 13(16), 2564. https://doi.org/10.3390/foods13162564