Assessment of Changes in the Fat Profile of House Cricket Flour during 12 Months of Storage in Various Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Infrared Measurements
2.3. Fat Determination and Gas Chromatographic Analysis
2.4. Dietary Indicators
2.5. Oxidative Stability
2.6. Statistical Analysis
2.7. Ethical Statement
3. Results and Discussion
Study Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Orkusz, A. Edible insects versus meat—Nutritional comparison: Knowledge of their composition is the key of good health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Merten, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Fao Forestry Papers 2013; Food and Agriculture Organisation of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Statista Edible Insects. Digital & Trends. 2018, pp. 1–25. Available online: https://www.statista.com/study/56817/edible-insects/ (accessed on 28 February 2022).
- Ramos-Elorduy, J.; Moreno, J.M.P.; Prado, E.E.; Perez, M.A.; Otero, J.L.; De Guevara, O.L. Nutritional value of edible in sects from the state of Oaxaca, Mexico. J. Food Compos. Anal. 1997, 10, 142–157. [Google Scholar] [CrossRef]
- Van Huis, A. Insects as food in sub-Saharan Africa. Insect Sci. Appl. 2003, 23, 163–185. [Google Scholar] [CrossRef]
- Nonaka, K. Feasting on insects. J. Entomol. Res. 2009, 39, 304–312. [Google Scholar] [CrossRef]
- Papastavropoulou, K.; Xiao, J.; Proestos, C. Edible insects: Tendency or necessity (a review). eFood 2022, 4, e58. [Google Scholar] [CrossRef]
- Hlongwane, Z.T.; Slotow, R.; Munyai, T.C. Indigenous Knowledge about Consumption of Edible Insects in South Africa. Insects 2021, 12, 22. [Google Scholar] [CrossRef]
- Looy, H.; Dunkel, F.V.; Wood, J.R. How then shall we eat? Insect-eating attitudes and sustainable foodways. Agric. Hum. Values 2014, 31, 131–141. [Google Scholar] [CrossRef]
- Iriti, M.; Vallone, L.; Vitalini, S. Edible insects—A new trend in functional food science. Funct. Food Sci. 2022, 2, 157–162. [Google Scholar] [CrossRef]
- Orkusz, A.; Orkusz, M. Edible Insects in Slavic Culture: Between Tradition and Disgust. Insects 2024, 15, 306. [Google Scholar] [CrossRef]
- Chan, E.Y. Mindfulness and willingness to try insects as food: The role of disgust. Food Qual. Prefer. 2019, 71, 375–383. [Google Scholar] [CrossRef]
- Jensen, N.H.; Lieberoth, A. We will eat disgusting foods together—Evidence of the normative basis of Western entomophagy-disgust from an insect tasting. Food. Qual. Prefer. 2019, 72, 109–115. [Google Scholar] [CrossRef]
- Orkusz, A.; Wolańska, W.; Harasym, J.; Piwowar, A.; Kapelko, M. Consumers’ Attitudes Facing Entomophagy: Polish Case Perspectives. Int. J. Environ. Res. Public Health 2020, 17, 2427. [Google Scholar] [CrossRef] [PubMed]
- Carpentieri, S.; Orkusz, A.; Ferrari, S.; Harasym, S. Effect of replacing durum wheat semolina with Tenebrio molitor larvae powder on the techno-functional properties of the binary blends. Curr. Res. Food Sci. 2024, 8, 100672. [Google Scholar] [CrossRef] [PubMed]
- Gaglio, R.; Barbera, M.; Tesoriere, L.; Osimani, A.; Busetta, G.; Matraxia, M.; Attanzio, A.; Restivo, I.; Aquilanti, L.; Settanni, L. Sourdough “ciabatta” bread enriched with powdered insects: Physicochemical, microbiological, and simulated intestinal digesta functional properties. Innov. Food Sci. Emerg. Technol. 2021, 72, 102755. [Google Scholar] [CrossRef]
- Khuenpet, K.; Pakasap, C.; Vatthanakul, S.; Kitthawee, S. Effect of larval-stage mealworm (Tenebrio molitor) powder on qualities of bread. Int. J. Agric. Technol. 2020, 16, 283–296. [Google Scholar]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT 2022, 159, 113220. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; Raffaelli, N.; et al. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; et al. Protein fortification with mealworm (Tenebrio molitor L.) powder: Effect on textural, microbiological, nutritional and sensory features of bread. PLoS ONE 2019, 14, e0211747. [Google Scholar] [CrossRef]
- Bartkiene, E.; Zokaityte, E.; Starkute, V.; Zokaityte, G.; Kaminskaite, A.; Mockus, E.; Klupsaite, D.; Cernauskas, D.; Rocha, J.M.; Özogul, F.; et al. Crickets (Acheta domesticus) as Wheat Bread Ingredient: Influence on Bread Quality and Safety Characteristics. Foods 2023, 12, 325. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Bonaccorsi, G.; Lorini, C.; Cini, E. Assessment of the rheological properties and bread characteristics obtained by innovative protein sources (Cicer arietinum, Acheta domesticus, Tenebrio molitor): Novel food or potential improvers for wheat flour? LWT 2020, 118, 108867. [Google Scholar] [CrossRef]
- Biró, B.; Fodor, R.; Szedljak, I.; Pásztor-Huszár, K.; Gere, A. Buckwheat-pasta enriched with silkworm powder: Technological analysis and sensory evaluation. LWT 2019, 116, 108542. [Google Scholar] [CrossRef]
- Çabuk, B.; Yılmaz, B. Fortification of traditional egg pasta (eriște) with edible insects: Nutritional quality, cooking properties and sensory characteristics evaluation. J. Food Sci. Technol. 2020, 57, 2750–2757. [Google Scholar] [CrossRef]
- Carcea, M. Quality and Nutritional/Textural Properties of Durum Wheat Pasta Enriched with Cricket Powder. Editorial. Foods 2020, 9, 1298. [Google Scholar] [CrossRef]
- Duda, A.; Adamczak, J.; Chełmińska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and Nutritional/Textural Properties of Durum Wheat Pasta Enriched with Cricket Powder. Foods 2019, 8, 46. [Google Scholar] [CrossRef]
- Pasini, G.; Cullere, M.; Vegro, M.; Simonato, B.; Dalle Zotte, A. Potentiality of protein fractions from the house cricket (Acheta domesticus) and yellow mealworm (Tenebrio molitor) for pasta formulation. LWT 2022, 164, 113638. [Google Scholar] [CrossRef]
- Ho, I.; Peterson, A.; Madden, J.; Huang, E.; Amin, S.; Lammert, A. Will It Cricket? Product Development and Evaluation of Cricket (Acheta domesticus) Powder Replacement in Sausage, Pasta, and Brownies. Foods 2022, 11, 3128. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, A.; Palka, A.; Skotnicka, M.; Kowalski, S. Consumer Attitudes and Acceptability of Wheat Pancakes with the Addition of Edible Insects: Mealworm (Tenebrio molitor), Buffalo Worm (Alphitobius diaperinus), and Cricket (Acheta domesticus). Foods 2023, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Skotnicka, M.; Mazurek, A.; Karwowska, K.; Folwarski, M. Satiety of Edible Insect-Based Food Products as a Component of Body Weight Control. Nutrients 2022, 14, 2147. [Google Scholar] [CrossRef]
- Ruszkowska, M.; Tańska, M.; Kowalczewski, P.Ł. Extruded Corn Snacks with Cricket Powder: Impact on Physical Parameters and Consumer Acceptance. Sustainability 2022, 14, 16578. [Google Scholar] [CrossRef]
- Igual, M.; García-Segovia, P.; Martínez-Monz, J. Effect of Acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded products. J. Food Eng. 2020, 282, 110032. [Google Scholar] [CrossRef]
- Smarzyński, K.; Sarbak, P.; Kowalczewski, P.Ł.; Różańska, M.B.; Rybicka, I.; Polanowska, K.; Fedko, M.; Kmiecik, D.; Masewicz, Ł.; Nowicki, M.; et al. Low-Field NMR Study of Shortcake Biscuits with Cricket Powder, and Their Nutritional and Physical Characteristics. Molecules 2021, 26, 5417. [Google Scholar] [CrossRef]
- Bas, A.; Ei, S.N. Nutritional evaluation of biscuits enriched with cricket flour (Acheta domesticus). Int. J. Gastron. Food Sci. 2022, 29, 500183. [Google Scholar] [CrossRef]
- Adámek, M.; Adámková, A.; Mlcek, J.; Borkovcová, M.; Bednárová, M. Acceptability and sensory evaluation of energy bars and protein bars enriched with edible insect. Potravin. Slovak J. Food Sci. 2018, 12, 431–437. [Google Scholar] [CrossRef]
- Cicatiello, C.; Vitali, A.; Lacetera, N. How does it taste? Appreciation of insect-based snacks and its determinants. Int. J. Gastron. Food Sci. 2020, 21, 100211. [Google Scholar] [CrossRef]
- Gurdian, C.E.; Torrico, D.D.; Li, B.; Tuuri, G.; Prinyawiwatkul, W.; Guinard, J.-X. Effect of Informed Conditions on Sensory Expectations and Actual Perceptions: A Case of Chocolate Brownies Containing Edible-Cricket Protein. Foods 2021, 10, 1480. [Google Scholar] [CrossRef]
- Megido, R.C.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Kim, T.-K.; Choi, H.-D.; Park, J.-D.; Sung, J.-M.; Jeon, K.-H.; Paik, H.-D.; Kim, Y.-B. Optimization of Replacing Pork Meat with Yellow Worm (Tenebrio molitor L.) for Frankfurters. Korean J. Food Sci. Anim. Resour. 2017, 37, 617–625. [Google Scholar] [CrossRef]
- Lammers, P.; Ullmann, L.M.; Fiebelkorn, F. Acceptance of insects as food in Germany: Is it about sensation seeking, sustainability consciousness, or food disgust? Food Qual. Prefer. 2019, 77, 78–88. [Google Scholar] [CrossRef]
- Warwick, M.J.; Farrington, W.H.H.; Shearer, G. Changes in total fatty acids and individual lipid classes on prolonged storage of wheat flour. J. Sci. Food Agric. 1979, 30, 1131–1138. [Google Scholar] [CrossRef]
- Wang, L.; Flores, R.A. The effects of storage on flour quality and baking performance. Food Rev. Int. 1999, 15, 215–234. [Google Scholar] [CrossRef]
- Lancelot, E.; Fontaine, J.; Grua-Prior, E.; Le-Bail, A. Effect of long-term storage conditions on wheat flour and bread baking properties. Food Chem. 2021, 346, 128902. [Google Scholar] [CrossRef]
- Hruškova, M.A.R.I.E.; Machová, D. Changes of wheat flour properties during short term storage. Czech J. Food Sci. 2002, 20, 125–130. [Google Scholar] [CrossRef]
- Yadav, D.N.; Anand, T.; Kaur, J.; Singh, A.K. Improved storage stability of pearl millet flour through microwave treatment. Agric. Res. 2012, 1, 399–404. [Google Scholar] [CrossRef]
- Ahmed, M.S.H. Effect of storage temperature and periods on some characteristics of wheat flour quality. Food Nutr. Sci. 2015, 6, 1148–1159. [Google Scholar] [CrossRef]
- Beigh, M.A.; Hussain, S.Z.; Naseer, B.; Rouf, A.; Ahmad Raja, T. Storage studies of water chestnut flour. J. Food Process. Pres. 2020, 44, e14321. [Google Scholar] [CrossRef]
- Zhang, Y.; Truzzi, F.; D’Amen, E.; Dinelli, G. Effect of storage conditions and time on the polyphenol content of wheat flours. Processes 2021, 9, 248. [Google Scholar] [CrossRef]
- Akullo, J.O.; Kiage-Mokua, B.N.; Nakimbugwe, D.; Ng’Ang’A, J.; Kinyuru, J. Color, pH, microbiological, and sensory quality of crickets (Gryllus bimaculatus) flour preserved with ginger and garlic extracts. Food Sci. Nutr. 2023, 11, 2838–2851. [Google Scholar] [CrossRef]
- Zhou Zhong Kai, Z.Z.; Robards, K.; Helliwell, S.; Blanchard, C. Effect of rice storage on pasting properties of rice flour. Food Res. Int. 2003, 36, 625–634. [Google Scholar] [CrossRef]
- Salman, H.; Copeland, L. Effect of storage on fat acidity and pasting characteristics of wheat flour. Cereal Chem. 2007, 84, 600–606. [Google Scholar] [CrossRef]
- Nakamura, C.; Seguchi, M. Improving Effects of Stored Wheat Flour on Pancake Texture. Food Sci. Technol. Res. 2007, 13, 221–226. [Google Scholar] [CrossRef]
- Anupama Misra, A.M.; Kalpana Kulshrestha, K.K. Effect of storage on microbial safety of potato flour. J. Food Sci. Technol. 2002, 39, 517–519. [Google Scholar]
- Nidhi, B.; Indira, V. Effect of storage on nutritional and sensory qualities of grain amaranth (Amaranthus hypochondriacus) flour. Asian J. Dairy. Foods Res. 2012, 31, 297–300. [Google Scholar]
- Vanhanen, L.; Savage, G. The use of peroxide value as a measure of quality for walnut flour stored at five different temperatures using three different types of packaging. Food Chem. 2006, 99, 64–69. [Google Scholar] [CrossRef]
- Opara, U.; Caleb, O.; Uchechukwu-Agua, A. Evaluating the Impacts of Selected Packaging Materials on the Quality Attributes of Cassava Flour (cvs. TME 419 and UMUCASS 36). J. Food Sci. 2016, 81, C324–C331. [Google Scholar] [CrossRef]
- Fasoyiro, S.; Gourama, H.; Cutter, C. Stability and safety of maize–legume-fortified flours stored in various packaging materials. Eur. Food Res. Technol. 2017, 243, 1861–1868. [Google Scholar] [CrossRef]
- Orkusz, A.; Dymińska, L.; Banaś, K.; Harasym, J. Chemical and Nutritional Fat Profile of Acheta domesticus, Gryllus bimaculatus, Tenebrio molitor and Rhynchophorus ferrugineus. Foods 2024, 13, 32. [Google Scholar] [CrossRef]
- Kamau, E.; Mutungi, C.; Kinyuru, J.; Imathiu, S.; Tanga, C.; Affognon, H.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Moisture adsorption properties and shelf-life estimation of dried and pulverised edible house cricket Acheta domesticus (L.) and black soldier fly larvae Hermetia illucens (L.). Food Res. Int. 2018, 106, 420–427. [Google Scholar] [CrossRef]
- Singh, Y.; Cullere, M.; Kovitvadhi, A.; Chundang, P.; Dalle Zotte, A. Effect of different killing methods on physicochemical traits, nutritional characteristics, in vitro human digestibility and oxidative stability during storage of the house cricket (Acheta domesticus L.). Innov. Food Sci. Emerg. Technol. 2020, 65, 102444. [Google Scholar] [CrossRef]
- Marzoli, F.; Tata, A.; Zacometti, C.; Malabusini, S.; Jucker, C.; Piro, R.; Ricci, A.; Belluco, S. Microbial and chemical stability of Acheta domesticus powder during one year storage period at room temperature. Front. Sustain. Food Syst. 2023, 7, 1179088. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Moussavi Javardi, M.S.; Madani, Z.; Movahedi, A.; Karandish, M.; Abbasi, B. The correlation between dietary fat quality indices and lipid profile with Atherogenic index of plasma in obese and non-obese volunteers: A cross-sectional descriptive-analytic case-control study. Lipids Health Dis. 2020, 19, 2013. [Google Scholar] [CrossRef] [PubMed]
- Dymińska, L.; Calik, M.; Albegar, A.M.M.; Zając, A.; Kostyń, K.; Lorenc, J.; Hanuza, J. Quantitative Determination of the Iodine Values of Unsaturated Plant Oils Using Infrared and Raman Spectroscopy Methods. Int. J. Food Prop. 2017, 20, 2003–2015. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International. In Agricultural Chemicals, Contaminants; William, H., Ed.; AOAC International: Gaithersburg, MD, USA, 2010; Volume I, ISBN 0-935584-67-6. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemistry Society, 2nd ed.; American Oil Chemistry Society: Champaign, IL, USA, 1997; pp. 1–2. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary disease seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernandez, M.; Ordonez, J.A.; Cambero, I.; Santos, C.; Pin, C.; De la Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- ISO 660:2009; Determination of Acidic Value and Acidity. PKN Press: Warsaw, Poland, 2009.
- ISO 3960:2007; Determination of Peroxide Value–Iodometric (Visual) Endpoint Determination (Corrected Version 2009-05-15). PKN Press: Warsaw, Poland, 2010.
- ISO 6885:2008 E; Determination of Anisidine Value. PKN Press: Warsaw, Poland, 2008.
- Grajzer, M.; Prescha, A.; Korzonek, K.; Wojakowska, A.; Dziadas, M.; Kulma, A.; Grajeta, H. Characteristics of rose hip (Rosa canina L.) cold-pressed oil and its oxidative stability studied by the differential scanning calorimetry method. Food Chem. 2015, 188, 459–466. [Google Scholar] [CrossRef] [PubMed]
- StatSoft, Inc. Statistica Software Program, version 13.0; StatSoft, Inc.: Tulsa, OK, USA, 2013. [Google Scholar]
- Durak, R.; Ciak, B.; Durak, T. Highly Efficient Use of Infrared Spectroscopy (ATR-FTIR) to Identify Aphid Species. Biology 2022, 11, 1232. [Google Scholar] [CrossRef]
- Karunathilaka, S.R.; Mossoba, M.M.; Chung, J.K.; Haile, E.A.; Srigley, C.T. Rapid Prediction of Fatty Acid Content in Marine Oil Omega 3 Dietary Supplements Using a Portable Fourier Transform Infrared (FTIR) Device and Partial Least-Squares Regression (PLSR) Analysis. J. Agric. Food Chem. 2017, 65, 224–233. [Google Scholar] [CrossRef]
- Liu, Z.; Rady, A.; Wijewardane, N.K.; Shan, Q.; Chen, H.; Yang, S.; Li, J.; Li, M. Fourier transform infrared spectroscopy and machine learning to predict fatty acid content of nine commercial insects. J. Food Meas. Charact. 2021, 15, 953–960. [Google Scholar] [CrossRef]
- Réjasse, A.; Waeytensb, J.; Deniset-Besseauc, A.; Crapartd, N.; Nielsen-Lerouxa, C.; Sandt, C. Plastic biodegradation: Do Galleria mellonella larvae–bio-assimilate polyethylene? A spectral histology approach using isotopic labelling and infrared microspectroscopy. Environ. Sci. Technol. 2022, 56, 525–534. [Google Scholar] [CrossRef]
- Zhong, J.; Yu, W.; Tang, Y.; Zhou, X. Synchrotron Radiation FTIR Micro spectroscopy Study of Biomolecular Alterations in Vincristine-Treated WRL68 Cells at the Single-Cell Level. ACS Omega 2022, 7, 47274–47284. [Google Scholar] [CrossRef]
- Bel’skaya, L.V.; Sarf, E.A.; Kosenok, V.K. Analysis of Saliva Lipids in Breast and Prostate Cancer by IR Spectroscopy. Diagnostics 2021, 11, 1325. [Google Scholar] [CrossRef]
- Kaneko, F.; Katagiri, C.; Sazaki, G.; Nagashima, K. ATR FTIR Spectroscopic Study on Insect Body Surface Lipids Rich in Methylene-Interrupted Diene. J. Phys. Chem. 2018, 122, 12322–12330. [Google Scholar] [CrossRef]
- Messina, C.M.; Gaglio, R.; Morghese, M.; Arena, R.; Moschetti, G.; Santulli, A.; Tolone, M.; Francesca, N.; Settanni, L. Microbiological Profile and Bioactive Properties of Insect Powders Used in Food and Feed Formulations. Foods 2019, 8, 400. [Google Scholar] [CrossRef]
- World Health Organization. Saturated Fatty Acids and Trans-Fatty Acid Intake for Adults and Children: WHO Guideline Summary. Geneva. 2023. Available online: https://iris.who.int/bitstream/handle/10665/375034/9789240083592-eng.pdf?sequence=1&isAllowed=y (accessed on 10 August 2024).
- Oehrl, L.L.; Hansen, A.P.; Rohrer, C.A.; Fenner, G.P.; Boyd, L.C. Oxidation of phytosterols in a test of food system. J. Am. Oil Chem. Soc. 2001, 78, 1073–1078. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Villafranca, M.J.; Castellano, J.M. Changes in the main components and quality indices of virgin olive oil during oxidation. J. Am. Oil Chem. Soc. 2002, 79, 669–676. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.G.; Choi, Y.; Jeong, H.S.; Lee, J. Changes in tocopherols, tocotrienols, and fatty acid contents in grape seed oils during oxidation. J. Am. Oil Chem. Soc. 2008, 85, 487–489. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Geldenhuys, G.; Hoffman, L.C.; Muller, N. Aspects of the nutritional value of cooked Egyptian goose (Alopochen aegyptiacus) meat compared with other well-known fowl species. Poultry Sci. 2013, 92, 3050–3059. [Google Scholar] [CrossRef] [PubMed]
- Omri, B.; Chalghoumi, R.; Izzo, L.; Ritieni, A.; Lucarini, M.; Durazzo, A.; Abdouli, H.; Santini, A. Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens’ Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients 2019, 11, 813. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.; Matos, E.; Ramos, R.; Campos, I.; Valente, L.M.P. A Blend of Land Animal Fats Can Replace up to 75% Fish Oil without Affecting Growth and Nutrient Utilization of European Seabass. Aquaculture 2018, 487, 22–31. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Fu, P.P.; Xia, Q.; Yin, J.J.; Cherng, S.-H.; Yan, J.; Mei, N.; Chen, T.; Boudreau, M.D.; Howard, P.C.; Wamer, W.G. Photodecomposition of Vitamin A and Photobiological Implications for the Skin. Photochem. Photobiol. 2007, 83, 409–424. [Google Scholar] [CrossRef]
- Lin, D.; Sun, L.; Huo, W.; Zhang, L.; Chen, Y.; Miao, S.; Cao, M. Improved functionality and safety of peptides by the formation of peptide-polyphenol complexes. Trends Food Sci. Technol. 2023, 141, 104193. [Google Scholar] [CrossRef]
- Fadiji, T.; Ashtiani, S.M.; Onwude, D.I.; Li, Z.; Opara, U.L. Finite Element Method for Freezing and Thawing Industrial Food Processes. Foods 2021, 10, 869. [Google Scholar] [CrossRef]
- Ferrero, C. Hydrocolloids in wheat breadmaking: A concise review. Food Hydrocoll. 2017, 68, 15–22. [Google Scholar] [CrossRef]
Storage Location | Temperature | Access to Light | Humidity [%] |
---|---|---|---|
Refrigerator | 4 °C | No access | 55 |
Freezer | −18 °C | No access | 20 |
In the laboratory cabinet | 20 °C | No access | 45 |
Outside the laboratory Cabinet | 20 °C | With access (illumination intensity 500 lx) | 45 |
Wavenumber (cm−1) | PC1 (%) | PC2 (%) | Total Variance (%) |
---|---|---|---|
3007 | 83.46 | 16.38 | 99.84 |
964 | 83.26 | 16.40 | 99.66 |
716 | 83.32 | 16.40 | 99.72 |
1745 | 82.6 | 16.41 | 99.01 |
1736 | 83.45 | 16.39 | 99.84 |
1171 | 83.25 | 16.40 | 99.65 |
1237 | 83.41 | 16.40 | 99.81 |
Fatty Acids and Dietary Indicators | A (Control Sample) | B (4 °C) | C (20 °C) | D (20 °C + Light) | E (−18 °C) |
---|---|---|---|---|---|
SFA | 36.22 a ± 1.84 | 38.40 ab ± 1.23 | 40.49 bc ± 1.06 | 42.44 c ± 1.00 | 37.28 a ± 1.70 |
C 12:0 | - | ||||
C 14:0 | 0.47 a ± 0.02 | 0.62 b ± 0.00 | 0.76 c ± 0.00 | 1.10 d ± 0.03 | 0.45 a ± 0.02 |
C 16:0 | 25.57 a ± 1.30 | 25.23 a ± 0.81 | 26.81 ab ± 0.70 | 27.59 b ± 0.65 | 25.03 a ± 1.13 |
C 17:0 | 0.2 ± 0.01 | - | |||
C 18:0 | 8.98 a ± 0.46 | 11.15 bc ± 0.36 | 11.38 bc ± 0.30 | 11.63 cd ± 0.27 | 10.70 b ± 0.48 |
C 20:0 | 0.63 a ± 0.03 | 0.87 b ± 0.03 | 0.84 b ± 0.02 | 0.85 b ± 0.02 | 0.61 a ± 0.02 |
C 22:0 | 0.2 ± 0.01 | 0.22 b ± 0.01 | |||
MUFA | 28.66 a ± 1.46 | 27.86 a ± 0.80 | 28.88 a ± 0.76 | 29.63 a ± 0.70 | 28.23 a ± 1.30 |
C 16:1 | 0.63 a ± 0.03 | 0.62 a ± 0.02 | 0.69 c ± 0.02 | 0.76 d ± 0.02 | 0.57 b ± 0.03 |
C 18:1 | 27.63 a ± 1.25 | 25.84 b ± 0.66 | 27.65 a ± 0.65 | 27.76 a ± 0.59 | 24.29 b ± 1.10 |
C 24:1 | 0.42 ± 0.01 | - | |||
PUFA | 35.16 a ± 1.79 | 33.70 a ± 1.17 | 30.63 b ± 1.06 | 27.84 c ± 0.66 | 34.50 a ± 1.55 |
C 18:2 n-6 | 33.27 a ± 1.69 | 32.32 a ± 1.11 | 29.11 b ± 1.01 | 26.15 c ± 0.62 | 32.82 a ± 1.50 |
C 18:3 n-3 | 1.14 a ± 0.06 | 0.75 c ± 0.02 | 0.86 b ± 0.03 | 0.85 b ± 0.00 | 0.87 b ± 0.03 |
UFA | 63.82 a ± 3.24 | 61.56 ab ± 1.98 | 59.51 ab ± 1.82 | 57.56 b ± 1.36 | 62.72 a ± 2.85 |
PUFA/SFA | 0.97 a ± 0.00 | 0.91 b ± 0.00 | 0.74 d ± 0.02 | 0.66 e ± 0.00 | 0.92 b ± 0.00 |
PUFA n-3 | 1.38 a ± 0.07 | 1.11 b ± 0.04 | 1.07 b ± 0.03 | 1.02 b ± 0.02 | 1.10 b ± 0.05 |
PUFA n-6 | 33.30 a ± 1.69 | 32.40 a ± 1.12 | 29.56 b ± 1.01 | 26.32 c ± 0.62 | 32.91 a ± 1.50 |
PUFA n-6/PUFA n-3 | 24.18 a ± 0.00 | 29.64 b ± 0.05 | 27.65 c ± 0.17 | 25.83 d ± 0.10 | 29.92 b ± 0.00 |
AI | 0.43 a ± 0.00 | 0.45 a ± 0.00 | 0.50 c ± 0.00 | 0.56 d ± 0.00 | 0.43 a ± 0.00 |
TI | 1.00 a ± 0.00 | 1.10 b ± 0.00 | 1.20 c ± 0.00 | 1.30 d ± 0.00 | 1.07 b ± 0.00 |
h/H | 2.38 a ± 0.01 | 2.20 b ± 0.00 | 2.09 c ± 0.01 | 1.91 d ± 0.00 | 2.27 b ± 0.00 |
Indicators | A (Control Sample) | B (4 °C) | C (20 °C) | D (20 °C + Light) | E (−18 °C) |
---|---|---|---|---|---|
AV (mg KOH/g of fat) | 0.15 a ± 0.00 | 0.611 a ± 0.00 | 1.704 b ± 0.22 | 6.178 c ± 0.41 | 0.596 a ± 0.04 |
PV (μEq O2/g of fat) | 0.82 a ± 0.08 | 3.20 b ± 0.33 | 3.71 b ± 0.36 | 6.03 c ± 0.27 | 0.038 d ± 0.02 |
p-AV | 2.53 a ± 0.14 | 2.23 a ± 0.16 | 2.35 a ± 0.12 | 6.63 b ± 0.02 | 2.18 a ± 0.16 |
DSC Ton (°C) | 225.59 a ± 8.59 | 188.91 b ± 0.61 | 194.45 b ± 4.27 | 185.56 b ± 0.63 | 212.46 c ± 3.04 |
DSC Tmax (°C) | 319.03 ± 1.18 | 318.17 ± 1.89 | 317.15 ± 2.21 | 321.26 ± 0.18 | 318.78 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orkusz, A.; Dymińska, L.; Prescha, A. Assessment of Changes in the Fat Profile of House Cricket Flour during 12 Months of Storage in Various Conditions. Foods 2024, 13, 2566. https://doi.org/10.3390/foods13162566
Orkusz A, Dymińska L, Prescha A. Assessment of Changes in the Fat Profile of House Cricket Flour during 12 Months of Storage in Various Conditions. Foods. 2024; 13(16):2566. https://doi.org/10.3390/foods13162566
Chicago/Turabian StyleOrkusz, Agnieszka, Lucyna Dymińska, and Anna Prescha. 2024. "Assessment of Changes in the Fat Profile of House Cricket Flour during 12 Months of Storage in Various Conditions" Foods 13, no. 16: 2566. https://doi.org/10.3390/foods13162566
APA StyleOrkusz, A., Dymińska, L., & Prescha, A. (2024). Assessment of Changes in the Fat Profile of House Cricket Flour during 12 Months of Storage in Various Conditions. Foods, 13(16), 2566. https://doi.org/10.3390/foods13162566