Fermented Fish Products: Balancing Tradition and Innovation for Improved Quality
Abstract
:1. Introduction
2. Ingredients Used for Fish Fermentation
2.1. Raw Materials for Fermentation
2.2. Seasoning Ingredients for Fermented Fish Products
2.3. Starter Cultures for Fermented Fish Products
2.3.1. Bacteria and Archaea as Starter Cultures
2.3.2. Fungi as Starter Cultures
2.4. Addition of Exogeneous Enzymes
2.5. General Discussion on Ingredients Used for Fish Fermentation
3. Flavor Compounds in Fermented Fish Products
3.1. Free Amino Acids and Peptides
3.2. Volatiles of Fermented Fish Products
3.2.1. Aldehydes and Ketones
Volatiles | CAS# | Sensory Note | Threshold (μg/kg) | Content (μg/kg) |
---|---|---|---|---|
Aldehydes | ||||
Acetaldehyde | 75-07-0 | Pungent | 15 1 | 31,545 1 |
Hexanal | 66-25-1 | Grass, tallow, fat | 5 1 | 19,597.95 2–56,580 1 |
Heptanal | 111-71-7 | Green, rancid | 2.8 3 | 10.09 3–21.3 4 |
(E)-2-Nonenal | 18829-56-6 | Green, fatty, tallow | 0.19 5 | 50.13 5–30.9 6 |
Nonanal | 124-19-6 | Fat, citrus, green | 1 1 | 372.32 2–6227 1 |
Octanal | 124-13-0 | Mushroom, grassy | 1 1 | 173.86 2–2360 1 |
Benzaldehyde | 100-52-7 | Fruity, almond, sweet | 350 1 | 41.14 7–9100 1 |
Decanal | 112-31-2 | Fruity, orange | 2 4 | 2.93 3–31 4 |
Ketones | ||||
2,3-Pentanedione | 600-14-6 | Cream, popcorn | 1 1 | 6300 1 |
3-Hydroxy-2-butanone | 51555-24-9 | Cream | 800 1 | 39,040 1 |
2-Nonanone | 821-55-6 | Fruity, sweet, waxy | 5–200 6 | 4.79 7–41 6 |
Alcohols | ||||
1-Octen-3-ol | 3391-86-4 | Mushroom, grassy | 1 6 | 174.5 6–580.27 2 |
3-Methyl-1-butanol | 123-51-3 | Brandy smell | 250 1 | 17.30 8–21,500 1 |
Linalool | 78-70-6 | Fruity, floral | 6 4 | 96.9 6–600 4 |
Esters | ||||
Ethyl acetate | 141-78-6 | Fruity, floral | 5 1 | 949.75 2–7500 1 |
Ethyl caproate | 123-66-0 | Fruity, sweet | 1 2 | 653.12 2 |
Ethyl heptanoate | 106-30-9 | Fruity, pineapple | 2.2 2 | 145.97 2 |
Isoamyl acetate | 123-92-2 | Fruity, banana | 2 1 | 3200 1 |
Acids | ||||
Acetic acid | 64-19-7 | Acidic, sour | 22,000 1 | 1574.4 6–22,000 1 |
Butanoic acid | 107-92-6 | Cheesy | 240 1 | 1176 1–2477.09 8 |
Hexanoic acid | 142-62-1 | Fatty | 3000 1 | 5100 1 |
Others | ||||
Indole | 120-72-9 | Fecal, floral | 11 5 | 30.06 8–4877.31 5 |
Trimethylamine | 75-50-3 | Fishy astringency | 8 5 | 358.56 5 |
Dimethyl disulfide | 624-92-0 | Sulfur, rotten cabbage | 1.1 5 | 20.65 8–94.85 5 |
Dimethyl trisulfide | 3658-80-8 | Sulfur, rotten cabbage | 1 5 | 32.10 8–41.15 5 |
3.2.2. Alcohols and Esters
3.2.3. Other Flavor Compounds
3.3. General Discussion on Characteristic Compounds
4. Strategies for Accelerating Fermentation for Fermented Fish Products
4.1. Effects of Inoculum
4.2. Effects of Enzyme Addition
4.3. Effects of Thermal Treatment
4.4. General Discussion on Accelerating Fermentation
5. Potential Biological Properties of Fermented Fish Products
5.1. Antioxidant Effect
Products (Region) | Functional Components | Biological Effects and Methods | Major Results | Ref. |
---|---|---|---|---|
Ka-pi-plaa (Thailand) | Whole | Antioxidant effect: DPPH, ABTS, FRAP, and metal chelating activity |
| [107] |
Budu (Malaysia) | Peptides (LDDPVFIH and VAAGRTDAGVH) | Antioxidant effect: DPPH, ABTS, and reducing power |
| [108] |
Pekasam (Malaysia) | Peptides (AIPPHPYP and IAEVFLITDPK) | Antioxidant effect: DPPH and ABTS |
| [109] |
Monascus purpureus-fermented fish bone (Taiwan) | Whole | Antioxidant effect: DPPH, ABTS, and reducing power, hydrogen peroxide-induced Clone-9 cells |
| [35] |
Hentak (India) | LAB isolate | Antioxidant effect: DPPH and reducing power |
| [110] |
Monascus purpureus-fermented fish bone (Taiwan) | Whole | Anti-inflammation: lipopolysaccharide-induced RAW 264.7 cells |
| [112] |
Chao (South Sulawesi, Indonesia) | LAB isolates | Antimicrobial effect: inhibition on Staphylococcus aureus and Escherichia coli |
| [113] |
Fermented tilapia (Malaysia) | LAB isolates with various spices (9% turmeric, 6% chili and 9% black pepper) | Antimicrobial effect: inhibition on Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, Bacillus cereus |
| [44] |
Tilapia residue fermented with Enterococcus faecalis and Lactobacillus rhamnosus (Taiwan) | Whole | Anti-fatigue effect: male senescence-accelerated prone-8 mice |
| [114] |
Chouguiyu (China) | Peptides | Dipeptidyl peptidase-IV inhibitory effect: screening assay kit, molecular docking |
| [115] |
Chouguiyu (China) | Peptides | Dipeptidyl peptidase-IV inhibitory effect: screening assay kit, molecular docking |
| [36] |
Monascus purpureus-fermented grass carp (China) | whole | Regulation of gut microbiota: simulated in vitro fermentation |
| [25] |
Surströmming (Sweden) | Whole | Regulation of gut microbiota: human study |
| [11] |
5.2. Anti-Diabetic Effect
5.3. Regulation of Gut Microbiota
5.4. Other Biological Functions
5.5. General Discussion on Potential Biological Properties
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belton, B.; Johnson, D.S.; Thrift, E.; Olsen, J.; Hossain, M.A.R.; Thilsted, S.H. Dried fish at the intersection of food science, economy, and culture: A global survey. Fish Fish. 2022, 23, 941–962. [Google Scholar] [CrossRef]
- Abré, M.G.; Kouakou-Kouamé, C.A.; N’guessan, F.K.; Teyssier, C.; Montet, D. Occurrence of biogenic amines and their correlation with bacterial communities in the Ivorian traditional fermented fish adjuevan during the storage. Folia Microbiol. 2023, 68, 257–275. [Google Scholar] [CrossRef]
- Hori, M.; Kawai, Y.; Nakamura, K.; Shimada, M.; Iwahashi, H.; Nakagawa, T. Characterization of the bacterial community structure in traditional Gifu ayu-narezushi (fermented sweetfish). J. Biosci. Bioeng. 2022, 134, 331–337. [Google Scholar] [CrossRef]
- Wan, W.; Meng, J.; Yang, Q.; Yu, S.; Zeng, X.; Deng, L. Determination of cooking state of a Chinese traditional fish dish (Suantangyu) and flavor characterization by modeling, sensory evaluation, and instrumental analysis. J. Food Process. Preserv. 2022, 46, e16953. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, S.; Lv, J.; Sun, Z.; Xu, W.; Ji, C.; Liang, H.; Li, S.; Yu, C.; Lin, X. Microbial succession and the changes of flavor and aroma in Chouguiyu, a traditional Chinese fermented fish. Food Biosci. 2020, 37, 100725. [Google Scholar] [CrossRef]
- Belleggia, L.; Milanović, V.; Cesaro, C.; Cardinali, F.; Garofalo, C.; Aquilanti, L.; Osimani, A. Exploratory study on histamine content and histidine decarboxylase genes of gram-positive bacteria in hákarl. J. Aquat. Food Prod. Technol. 2021, 30, 907–913. [Google Scholar] [CrossRef]
- Chrun, R.; Born, P.; Huon, T.; Buntong, B.; Chay, C.; Inatsu, Y. Application of lactic acid bacteria for enhanced food safety of Cambodian fermented small fish (Pha-ork Kontrey). Food Sci. Technol. Res. 2020, 26, 687–694. [Google Scholar] [CrossRef]
- Pongsetkul, J.; Benjakul, S. Development of modified atmosphere packaging (MAP) on shelf-life extension of pla-duk-ra (dried fermented catfish) stored at room temperature. Food Control 2021, 124, 107882. [Google Scholar] [CrossRef]
- Pongsetkul, J.; Benjakul, S. Impact of sous vide cooking on quality and shelf-life of dried sour-salted fish. J. Food Process. Preserv. 2022, 46, e16142. [Google Scholar] [CrossRef]
- Axelsson, L.; Bjerke, G.A.; McLeod, A.; Berget, I.; Holck, A.L. Growth behavior of Listeria monocytogenes in a traditional Norwegian fermented fish product (rakfisk), and its inhibition through bacteriophage addition. Foods 2020, 9, 119. [Google Scholar] [CrossRef]
- Kallner, A.; Debelius, J.; Schuppe-Koistinen, I.; Pereira, M.; Engstrand, L. Effects of consuming fermented fish (Surströmming) on the fecal microflora in healthy individuals. J. Med. Food 2023, 26, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Lestari, S.D.; Hussin, A.S.M.; Mustafa, S.; Sew, Y.S.; Gan, H.M.; Hashim, A.M.; Hussain, N. Bacterial community structure, predicted metabolic activities, and formation of volatile compounds attributed to Malaysian fish sauce flavour. Food Chem. 2023, 426, 136568. [Google Scholar] [CrossRef] [PubMed]
- Corona, O.; Cinquanta, L.; Li Citra, C.; Mazza, F.; Ferrantelli, V.; Cammilleri, G.; Marconi, E.; Cuomo, F.; Messia, M.C. Evolution of free amino acids, histamine and volatile compounds in the Italian anchovies (Engraulis encrasicolus L.) sauce at different ripening times. Foods 2023, 12, 126. [Google Scholar] [CrossRef] [PubMed]
- Noma, S.; Koyanagi, L.; Kawano, S.; Hayashi, N. Application of pressurized carbon dioxide during salt-reduced sardine fish sauce production. Food Sci. Technol. Res. 2020, 26, 195–204. [Google Scholar] [CrossRef]
- Ghayoomi, H.; Najafi, M.B.H.; Dovom, M.R.E.; Pourfarzad, A. Low salt and biogenic amines fermented fish sauce (Mahyaveh) as potential functional food and ingredient. LWT Food Sci. Technol. 2023, 182, 114801. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Li, C.; Li, L.; Yang, D.; Wang, Y.; Chen, S.; Wang, D.; Wu, Y. Novel insight into flavor and quality formation in naturally fermented low-salt fish sauce based on microbial metabolism. Food Res. Int. 2023, 166, 112586. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Sang, X.; Yan, C.; Zhang, Y.; Bi, J.; Zhang, G.; Hao, H.; Hou, H. Dynamics of bacterial composition and association with quality formation and biogenic amines accumulation during fish sauce spontaneous fermentation. Appl. Environ. Microbiol. 2022, 88, e0069022. [Google Scholar] [CrossRef] [PubMed]
- Marui, J.; Phouphasouk, S.; Giavang, Y.; Yialee, Y.; Boulom, S. Relationship between salinity and histamine accumulation in padaek, a salt-fermented freshwater fish paste from Laos. J. Food Prot. 2021, 84, 429–436. [Google Scholar] [CrossRef]
- Hua, Q.; Sun, Y.; Xu, Y.; Gao, P.; Xia, W. Contribution of mixed commercial starter cultures to the quality improvement of fish-chili paste, a Chinese traditional fermented condiment. Food Biosci. 2022, 46, 101559. [Google Scholar] [CrossRef]
- Chen, J.; Tang, H.; Zhang, M.; Sang, S.; Jia, L.; Ou, C. Exploration of the roles of microbiota on biogenic amines formation during traditional fermentation of Scomber japonicus. Front. Microbiol. 2022, 13, 1030789. [Google Scholar] [CrossRef]
- Cui, Q.; Li, L.; Huang, H.; Yang, Y.; Chen, S.; Li, C. Novel insight into the formation and improvement mechanism of physical property in fermented tilapia sausage by cooperative fermentation of newly isolated lactic acid bacteria based on microbial contribution. Food Res. Int. 2024, 187, 114456. [Google Scholar] [CrossRef] [PubMed]
- Heilbronner, S.; Krismer, B.; Brötz-Oesterhelt, H.; Peschel, A. The microbiome-shaping roles of bacteriocins. Nat. Rev. Microbiol. 2021, 19, 726–739. [Google Scholar] [CrossRef] [PubMed]
- Udomsil, N.; Pongjanla, S.; Rodtong, S.; Tanasupawat, S.; Yongsawatdigul, J. Extremely halophilic strains of Halobacterium salinarum as a potential starter culture for fish sauce fermentation. J. Food Sci. 2022, 87, 5375–5389. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Zhang, Z.; Ge, Y.; Cao, S.; Zhang, X.; Jiang, Q.; Xu, Y.; Xia, W.; Liu, S. Co-inoculation of Lactiplantibacillus pentosus 1 and Saccharomyces cerevisiae 31 for a salt-free fish sauce production from channel catfish (Ietalurus punetaus) bone. Food Biosci. 2022, 50, 102137. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Wang, S.; Xie, J.; Wang, Y.; Chai, T.-T.; Ong, M.K.; Wu, J.; Tian, L.; Bai, W. Effects of Monascus application on in vitro digestion and fermentation characteristics of fish protein. Food Chem. 2022, 377, 132000. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Yu, D.; Zhang, P.; Xu, Y.; Xia, W. The key enzymes and flavor precursors involved in formation of characteristic flavor compounds of low-salt fermented common carp (Cyprinus carpio L.). LWT Food Sci. Technol. 2022, 154, 112806. [Google Scholar] [CrossRef]
- Ding, A.; Zhu, M.; Qian, X.; Shi, L.; Huang, H.; Xiong, G.; Wang, J.; Wang, L. Effect of fatty acids on the flavor formation of fish sauce. LWT Food Sci. Technol. 2020, 134, 110259. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Zhao, Y.; Li, L.; Yang, X.; Wu, Y.; Chen, S.; Cen, J.; Yang, S.; Yang, D. Novel insight into the formation mechanism of volatile flavor in Chinese fish sauce (Yu-lu) based on molecular sensory and metagenomics analyses. Food Chem. 2020, 323, 126839. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, Y.; Xiang, H.; Chen, S.; Zhao, Y.; Cai, Q.; Wang, D.; Wang, Y. In-depth discovery and taste presentation mechanism studies on umami peptides derived from fermented sea bass based on peptidomics and machine learning. Food Chem. 2024, 448, 138999. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, Y.; Wang, Y.; Li, L.; Li, C.; Zhao, Y.; Yang, S. Contribution of autochthonous microbiota succession to flavor formation during Chinese fermented mandarin fish (Siniperca chuatsi). Food Chem. 2021, 348, 129107. [Google Scholar] [CrossRef]
- Chen, J.-N.; Zhang, Y.-Y.; Huang, X.-H.; Dong, M.; Dong, X.-P.; Zhou, D.-Y.; Zhu, B.-W.; Qin, L. Integrated volatolomics and metabolomics analysis reveals the characteristic flavor formation in Chouguiyu, a traditional fermented mandarin fish of China. Food Chem. 2023, 418, 135874. [Google Scholar] [CrossRef] [PubMed]
- Kamala, K.; Sivaperumal, P.; Paray, B.A.; Al-Sadoon, M.K. Identification of haloarchaea during fermentation of Sardinella longiceps for being the starter culture to accelerate fish sauce production. Int. J. Food Sci. Technol. 2021, 56, 5717–5725. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, M.; Yan, X.; Bao, R.; Liu, A.; Wang, W.; Zhang, Z.; Liang, H.; Ji, C.; Zhang, S.; et al. Lipase addition promoted the growth of proteus and the formation of volatile compounds in Suanzhayu, a traditional fermented fish product. Foods 2021, 10, 2529. [Google Scholar] [CrossRef]
- Kim, H.J.; Mireles DeWitt, C.A.; Park, J.W. Application of ohmic heating for accelerating Pacific whiting fish sauce fermentation. LWT-Food Sci. Technol. 2023, 174, 114299. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Hsieh, S.-L.; Gao, W.-S.; Yin, L.-J.; Dong, C.-D.; Chen, C.-W.; Singhania, R.-R.; Hsieh, S.; Chen, S.-J. Evaluation of chemical compositions, antioxidant capacity and intracellular antioxidant action in fish bone fermented with Monascus purpureus. Molecules 2021, 26, 5288. [Google Scholar] [CrossRef]
- Yang, D.; Li, C.; Li, L.; Yang, X.; Chen, S.; Wu, Y.; Feng, Y. Novel insight into the formation and inhibition mechanism of dipeptidyl peptidase-IV inhibitory peptides from fermented mandarin fish (Chouguiyu). Food Sci. Hum. Well. 2023, 12, 2408–2416. [Google Scholar] [CrossRef]
- Zhao, D.; Chong, Y.; Hu, J.; Zhou, X.; Xiao, C.; Chen, W. Proteomics and metagenomics reveal the relationship between microbial metabolism and protein hydrolysis in dried fermented grass carp using a lactic acid bacteria starter culture. Curr. Res. Food Sci. 2022, 5, 2316–2328. [Google Scholar] [CrossRef]
- Zang, J.; Yu, D.; Li, T.; Xu, Y.; Regenstein, J.M.; Xia, W. Identification of characteristic flavor and microorganisms related to flavor formation in fermented common carp (Cyprinus carpio L.). Food Res. Int. 2022, 155, 111128. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.; Wu, Y.; Li, C.; Li, L.; Zhao, Y.; Hu, X.; Wei, Y.; Huang, H. Comparison of the microbial community and flavor compounds in fermented mandarin fish (Siniperca chuatsi): Three typical types of Chinese fermented mandarin fish products. Food Res. Int. 2021, 144, 110365. [Google Scholar] [CrossRef]
- Gao, P.; Li, L.; Xia, W.; Xu, Y.; Liu, S. Valorization of Nile tilapia (Oreochromis niloticus) fish head for a novel fish sauce by fermentation with selected lactic acid bacteria. LWT Food Sci. Technol. 2020, 129, 109539. [Google Scholar] [CrossRef]
- Zhong, C.; Geng, J.-T.; Okazaki, E.; Osako, K. Characterization of the antioxidant and angiotensin I-converting enzyme inhibitory activities of lizardfish Saurida wanieso viscera sauce and their correlation with the amino acid profiles. Fish. Sci. 2022, 88, 831–843. [Google Scholar] [CrossRef]
- Meng, J.; Yang, Q.; Wan, W.; Zhu, Q.; Zeng, X. Physicochemical properties and adaptability of amine-producing Enterobacteriaceae isolated from traditional Chinese fermented fish (Suan yu). Food Chem. 2022, 369, 130885. [Google Scholar] [CrossRef]
- Sang, X.; Ma, X.; Hao, H.; Bi, J.; Zhang, G.; Hou, H. Evaluation of biogenic amines and microbial composition in the Chinese traditional fermented food grasshopper sub shrimp paste. LWT Food Sci. Technol. 2020, 134, 109979. [Google Scholar] [CrossRef]
- Ismail, A.; Lani, M.N.; Zakeri, H.A.; Hasim, N.; Alias, R.; Mansor, A. Synergistic of antimicrobial activities of lactic acid bacteria in fermented Tilapia nicoliticus incorporated with selected spices. Food Res. 2021, 5, 163–173. [Google Scholar] [CrossRef]
- Sun, Y.; Hua, Q.; Tian, X.; Xu, Y.; Gao, P.; Xia, W. Effect of starter cultures and spices on physicochemical properties and microbial communities of fermented fish (Suanyu) after fermentation and storage. Food Res. Int. 2022, 159, 111631. [Google Scholar] [CrossRef]
- Xiao, H.; Yu, J.; Hu, M.; Liu, H.; Yuan, Z.; Xue, Y.; Xue, C. Development of novel fermented stinky sea bass and analysis of its taste active compounds, flavor compounds, and quality. Food Chem. 2023, 401, 134186. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Zhou, J.; Leng, W.; Shi, T.; Jin, W.; Yuan, L. Screening of a Planococcus bacterium producing a cold-adapted protease and its application in low-salt fish sauce fermentation. J. Food Process. Preserv. 2020, 44, e14625. [Google Scholar] [CrossRef]
- Tagawa, J.; Noma, S.; Demura, M.; Hayashi, N. Comparison of reduced-salt fish sauces produced under pressurized carbon dioxide treatment from Sardinops melanostictus, Trachurus japonicus, Konosirus punctatus, Odontamblyopus lacepedii, and their mixture. Food Bioprocess Technol. 2023, 16, 434–446. [Google Scholar] [CrossRef]
- Gao, P.; Cao, X.; Jiang, Q.; Liu, S.; Xia, W. Improving the quality characteristics of rice mash grass carp using different microbial inoculation strategies. Food Biosci. 2021, 44, 101443. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, N.; Xu, H.; Tian, Z.; Li, B.; Qiu, W.; Shi, W. Changes of physicochemical characteristics and flavor during Suanyu fermentation with Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Foods 2022, 11, 4085. [Google Scholar] [CrossRef]
- Yang, J.; Lu, J.; Zhu, Q.; Tao, Y.; Zhu, Q.; Guo, C.; Fang, Y.; Chen, L.; Koyande, A.K.; Wang, S.; et al. Isolation and characterization of a novel Lactobacillus plantarum MMB-07 from traditional Suanyu for Acanthogobius hasta fermentation. J. Biosci. Bioeng. 2021, 132, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, J.; Lin, X.; Liang, H.; Li, S.; Yu, C.; Zhu, B.; Ji, C. Effect of autochthonous lactic acid bacteria on fermented Yucha quality. LWT Food Sci. Technol. 2020, 123, 109060. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, N.; Xu, J.; Guo, Q.; Shi, W. Effect of Lactobacillus plantarum and Flavourzyme on physicochemical and safety properties of grass carp during fermentation. Food Chem. X 2022, 15, 100392. [Google Scholar] [CrossRef]
- Li, L.; Xu, Y. Influence of Lactobacillus plantarum on managing lipolysis and flavor generation of Staphylococcus xylosus and Saccharomyces cerevisiae in fish paste. LWT Food Sci. Technol. 2021, 140, 110709. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, X.; Wu, J.; Razak, M.A.; Yuan, L.; Gao, R. NMR-based metabolic analysis of Bacillus velezensis DZ11 applied to low-salt fermented coarse fish involved in the formation of flavor precursors. Food Sci. Technol. 2023, 43, e117022. [Google Scholar] [CrossRef]
- Li, C.; Chen, S.; Huang, H.; Li, J.; Zhao, Y. Improvement mechanism of volatile flavor in fermented tilapia surimi by cooperative fermentation of Pediococcus acidilactici and Latilactobacillus sakei: Quantization of microbial contribution through influence of genus. Food Chem. 2024, 449, 139239. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, S.; Peng, Y.; Jin, Y.; Xu, D.; Xu, X. Effect of lactic acid bacteria on mackerel (Pneumatophorus japonicus) seasoning quality and flavor during fermentation. Food Biosci. 2021, 41, 100971. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Li, X.; Bi, J.; Zhang, G.; Hao, H.; Hou, H. Impacts of salt-tolerant Staphylococcus nepalensis 5-5 on bacterial composition and biogenic amines accumulation in fish sauce fermentation. Int. J. Food Microbiol. 2022, 361, 109464. [Google Scholar] [CrossRef] [PubMed]
- Chancharoonpong, C.; Hsieh, P.-C. Effect of black bean koji enzyme on fermentation, chemical properties and biogenic amine formation of fermented fish sauce. J. Aquat. Food Prod. Technol. 2022, 31, 259–270. [Google Scholar] [CrossRef]
- Liu, J.; Lin, C.; Zhang, W.; Yang, Q.; Meng, J.; He, L.; Deng, L.; Zeng, X. Exploring the bacterial community for starters in traditional high-salt fermented Chinese fish (Suanyu). Food Chem. 2021, 358, 129863. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, H.; Zhao, J.; Ross, R.P.; Stanton, C.; Zhang, H.; Chen, W.; Yang, B. Exploiting lactic acid bacteria for inflammatory bowel disease: A recent update. Trends Food Sci. Technol. 2023, 138, 126–140. [Google Scholar] [CrossRef]
- Ye, L.; Wang, Y.; Sun, L.; Fang, Z.; Deng, Q.; Huang, Y.; Zheng, P.; Shi, Q.; Liao, J.; Zhao, J. The effects of removing aflatoxin B1 and T-2 toxin by lactic acid bacteria in high-salt fermented fish product medium under growth stress. LWT-Food Sci. Technol. 2020, 130, 109540. [Google Scholar] [CrossRef]
- Hou, D.; Tang, J.; Feng, Q.; Niu, Z.; Shen, Q.; Wang, L.; Zhou, S. Gamma-aminobutyric acid (GABA): A comprehensive review of dietary sources, enrichment technologies, processing effects, health benefits, and its applications. Crit. Rev. Food Sci. Nutr. 2023. [Google Scholar] [CrossRef]
- Phuengjayaem, S.; Pakdeeto, A.; Kingkaew, E.; Tunvongvinis, T.; Somphong, A.; Tanasupawat, S. Genome sequences and functional analysis of Levilactobacillus brevis LSF9-1 and Pediococcus acidilactici LSF1-1 from fermented fish cake (Som-fak) with gamma-aminobutyric acid (GABA) production. Funct. Integr. Genomics 2023, 23, 158. [Google Scholar] [CrossRef]
- Thuy, D.T.B.; Nguyen, A.T.; Khoo, K.S.; Chew, K.W.; Cnockaert, M.; Vandamme, P.; Ho, Y.-C.; Huy, N.D.; Cocoletzi, H.H.; Show, P.L. Optimization of culture conditions for gamma-aminobutyric acid production by newly identified Pediococcus pentosaceus MN12 isolated from ‘mam nem’, a fermented fish sauce. Bioengineered 2021, 12, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Das, O.; Kumar, S.H.; Nayak, B.B. Relative abundance of halophilic archaea and bacteria in diverse salt-fermented fish products. LWT 2020, 117, 108688. [Google Scholar] [CrossRef]
- Zang, J.; Xu, Y.; Xia, W.; Regenstein, J.M.; Yu, D.; Yang, F.; Jiang, Q. Correlations between microbiota succession and flavor formation during fermentation of Chinese low-salt fermented common carp (Cyprinus carpio L.) inoculated with mixed starter cultures. Food Microbiol. 2020, 90, 103487. [Google Scholar] [CrossRef]
- Pleadin, J.; Lešić, T.; Milićević, D.; Markov, K.; Šarkanj, B.; Vahčić, N.; Kmetič, I.; Zadravec, M. Pathways of mycotoxin occurrence in meat products: A review. Processes 2021, 9, 2122. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Y.; Deng, Q.; Sun, L.; Wang, R.; Ye, L.; Tao, S.; Liao, J.; Gooneratne, R. Fungal diversity and mycotoxin contamination in dried fish products in Zhanjiang market, China. Food Control 2021, 121, 107614. [Google Scholar] [CrossRef]
- Xu, W.; Jiang, C.; Liu, A.; Bao, R.; Wang, W.; Zhang, Z.; Ji, C.; Liang, H.; Zhang, S.; Lin, X. Moderate papain addition improves the physicochemical, microbiological, flavor and sensorial properties of Chouguiyu, traditional Chinese fermented fish. Food Biosci. 2022, 46, 101587. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, R.; Xu, W.; Cocolin, L.; Liang, H.; Ji, C.; Zhang, S.; Chen, Y.; Lin, X. Combined effects of lipase and Lactiplantibacillus plantarum 1-24-LJ on physicochemical property, microbial succession and volatile compounds formation in fermented fish product. J. Sci. Food Agric. 2023, 103, 2304–2312. [Google Scholar] [CrossRef]
- Li, J.; Zhu, F. Whey protein hydrolysates and infant formulas: Effects on physicochemical and biological properties. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13337. [Google Scholar] [CrossRef] [PubMed]
- Satari, L.; Guillén, A.; Latorre-Pérez, A.; Porcar, M. Beyond archaea: The table salt bacteriome. Front. Microbiol. 2021, 12, 714110. [Google Scholar] [CrossRef]
- Hao, Y.; Sun, B. Analysis of bacterial diversity and biogenic amines content during fermentation of farmhouse sauce from Northeast China. Food Control 2020, 108, 106861. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, C.; Lou, X.; Han, F.; Li, S.; Shi, Y.; Huang, D. Survey of the biogenic amines in typical foods commonly consumed from the Chinese market. Food Control 2024, 157, 110130. [Google Scholar] [CrossRef]
- Cicero, A.; Cammilleri, G.; Galluzzo, F.G.; Calabrese, I.; Pulvirenti, A.; Giangrosso, G.; Cicero, N.; Cumbo, V.; Vella, A.; MaCaluso, A.; et al. Histamine in fish products randomly collected in southern Italy: A 6-year study. J. Food Prot. 2020, 83, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Wang, X.; Chen, H.; Zhao, Z.; Liu, D.; Zhang, Y.; Nie, X. The contribution of microorganisms to the quality and flavor formation of Chinese traditional fermented meat and fish products. Foods 2024, 13, 608. [Google Scholar] [CrossRef]
- Wang, D.; Yamaki, S.; Kawai, Y.; Yamazaki, K. Histamine production behaviors of a psychrotolerant histamine-producer, Morganella psychrotolerans, in various environmental conditions. Curr. Microbiol. 2020, 77, 460–467. [Google Scholar] [CrossRef]
- Hou, J.; Li, X.-X.; Sun, Y.; Li, Y.; Yang, X.-Y.; Sun, Y.-P.; Cui, H.-L. Novel archaeal histamine oxidase from Natronobeatus ordinarius: Insights into histamine degradation for enhancing food safety. J. Agric. Food Chem. 2024, 72, 6519–6525. [Google Scholar] [CrossRef]
- Tran, T.T.H.; Nguyen, T.P.A.; Pham, T.D.; Nguyen, T.H.; Nguyen, T.L.D.; Nguyen, T.T.T.; Tran, T.L.H.; Giang, T.K.; Bui, T.T.H.; Do, B.-C.; et al. Histamine-degrading halophilic bacteria from traditional fish sauce: Characterization of Virgibacillus campisalis TT8.5 for histamine reduction. J. Biotechnol. 2023, 366, 46–53. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Lin, X.; Liang, H.; Zhang, S.; Ji, C. Lactobacillus strains inhibit biogenic amine formation in salted mackerel (Scomberomorus niphonius). LWT Food Sci. Technol. 2022, 155, 112851. [Google Scholar] [CrossRef]
- Zhu, W.; Luan, H.; Bu, Y.; Li, J.; Li, X.; Zhang, Y. Changes in taste substances during fermentation of fish sauce and the correlation with protease activity. Food Res. Int. 2021, 144, 110349. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, C.; Takahashi, H.; Insang, S.; Phraephaisarn, C.; Techaruvichit, P.; Khumthong, R.; Haraguchi, H.; Lopetcharat, K.; Keeratipibul, S. Next-generation sequencing reveals predominant bacterial communities during fermentation of Thai fish sauce in large manufacturing plants. LWT Food Sci. Technol. 2019, 114, 108375. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, X.; Liu, S.; Hong, P.; Zhou, C.; Zhong, S.; Zhu, C.; Chen, J.; Chen, K. Changes in protein and volatile flavor compounds of low-salt wet-marinated fermented Golden Pomfret during processing. Food Chem. 2024, 456, 140029. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, T.-T.; Guo, R.-R.; Ye, Q.; Zhao, H.-L.; Huang, X.-H. The regulation of key flavor of traditional fermented food by microbial metabolism: A review. Food Chem. X 2023, 19, 100871. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Li, C.; Li, L.; Wang, Y.; Wu, Y.; Chen, S.; Zhao, Y.; Wei, Y.; Wang, D. Novel insight into the formation mechanism of umami peptides based on microbial metabolism in Chouguiyu, a traditional Chinese fermented fish. Food Res. Int. 2022, 157, 111211. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Hu, J.; Chen, W. Analysis of the relationship between microorganisms and flavour development in dry-cured grass carp by high-throughput sequencing, volatile flavour analysis and metabolomics. Food Chem. 2022, 368, 130889. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.; Li, L.; Wang, Y.; Wu, Y.; Li, C.; Chen, S.; Zhao, Y.; Wang, D.; Xiang, H.; Wei, Y. Discrimination and characterization of volatile organic compound fingerprints during sea bass (Lateolabrax japonicas) fermentation by combining GC-IMS and GC-MS. Food Biosci. 2022, 50, 102048. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Wu, Y.; Li, C.; Li, L.; Yang, X.; Chen, S.; Zhao, Y.; Cen, J.; Yang, S.; et al. Investigation of fermentation-induced changes in the volatile compounds of Trachinotus ovatus (meixiangyu) based on molecular sensory and interpretable machine-learning techniques: Comparison of different fermentation stages. Food Res. Int. 2021, 150, 110739. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Sun, Z.-G.; Zhang, C.-Y.; Zhang, Q.-Z.; Guo, X.-W.; Xiao, D.-G. Comparative transcriptome analysis reveals the key regulatory genes for higher alcohol formation by yeast at different α-amino nitrogen concentrations. Food Microbiol. 2021, 95, 103713. [Google Scholar] [CrossRef]
- Hazelwood, L.A.; Daran, J.M.; van Maris, A.J.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef]
- Filipowska, W.; Jaskula-Goiris, B.; Ditrych, M.; Bustillo Trueba, P.; De Rouck, G.; Aerts, G.; Powell, C.; Cook, D.; De Cooman, L. On the contribution of malt quality and the malting process to the formation of beer staling aldehydes: A review. J. Inst. Brew. 2021, 127, 107–126. [Google Scholar] [CrossRef]
- Han, J.; Kong, T.; Jiang, J.; Zhao, X.; Zhao, X.; Li, P.; Gu, Q. Characteristic flavor metabolic network of fish sauce microbiota with different fermentation processes based on metagenomics. Front. Nutr. 2023, 10, 1121310. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Wu, Y.; Xiang, H.; Zhao, Y.; Chen, S.; Qi, B.; Li, L. Insights into lipid oxidation and free fatty acid profiles to the development of volatile organic compounds in traditional fermented golden pomfret based on multivariate analysis. LWT Food Sci. Technol. 2022, 171, 114112. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, P.; Xia, W.; Jiang, Q.; Liu, S.; Xu, Y. Characterization of key aroma compounds in low-salt fermented sour fish by gas chromatography-mass spectrometry, odor activity values, aroma recombination and omission experiments. Food Chem. 2022, 397, 133773. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Z.; Sun, L.; Dong, L.; Wang, Z.; Du, M. Dynamics of microbial communities, texture and flavor in Suan zuo yu during fermentation. Food Chem. 2020, 332, 127364. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Wang, Y. Whole-genome sequencing of a potential ester-synthesizing bacterium isolated from fermented golden pomfret and identification of its lipase encoding genes. Foods 2022, 11, 1954. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, L.; Mindt, M.; Suarez-Diez, M.; Jilg, T.; Zagorščak, M.; Lee, J.-H.; Gruden, K.; Wendisch, V.F.; Cankar, K. Fermentative indole production via bacterial tryptophan synthase alpha subunit and plant indole-3-glycerol phosphate lyase enzymes. J. Agric. Food Chem. 2022, 70, 5634–5645. [Google Scholar] [CrossRef] [PubMed]
- Gisladottir, R.S.; Ivarsdottir, E.V.; Helgason, A.; Jonsson, L.; Hannesdottir, N.K.; Rutsdottir, G.; Arnadottir, G.A.; Skuladottir, A.; Jonsson, B.A.; Norddahl, G.L.; et al. Sequence variants in TAAR5 and other loci affect human odor perception and naming. Curr. Biol. 2020, 30, 4643–4653. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-N.; Zhao, H.-L.; Zhang, Y.-Y.; Zhou, D.-Y.; Qin, L.; Huang, X.-H. Comprehensive multi-spectroscopy and molecular docking understanding of interactions between fermentation-stinky compounds and mandarin fish myofibrillar proteins. Foods 2023, 12, 2054. [Google Scholar] [CrossRef]
- Sriram, S.; Wong, J.W.C.; Pradhan, N. Recent advances in electro-fermentation technology: A novel approach towards balanced fermentation. Bioresour. Technol. 2022, 360, 127637. [Google Scholar] [CrossRef] [PubMed]
- Gavahian, M.; Tiwari, B.K. Moderate electric fields and ohmic heating as promising fermentation tools. Innov. Food Sci. Emerg. Technol. 2020, 64, 102422. [Google Scholar] [CrossRef]
- Guzmán-Armenteros, T.M.; Ruales, J.; Villacís-Chiriboga, J.; Guerra, L.S. Experimental prototype of electromagnetic emissions for biotechnological research: Monitoring cocoa bean fermentation parameters. Foods 2023, 12, 2539. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Gao, P.; Xu, Y.; Xia, W.; Jiang, Q. Reduction of biogenic amines accumulation with improved flavor of low-salt fermented bream (Parabramis pekinensis) by two-stage fermentation with different temperature. Food Biosci. 2021, 44, 101438. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Liu, F.; Jin, Z.; Xia, X. Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Crit. Rev. Food Sci. Nutr. 2023, 63, 5841–5855. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Xu, Y.; Xia, W.; Regenstein, J.M. Quality, functionality, and microbiology of fermented fish: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1228–1242. [Google Scholar] [CrossRef] [PubMed]
- Sripokar, P.; Hansen, E.B.; Zhang, Y.; Maneerat, S.; Klomklao, S. Ka-pi-plaa fermented using beardless barb fish: Physicochemical, microbiological and antioxidant properties as influenced by production processes. Int. J. Food Sci. Technol. 2022, 57, 1161–1172. [Google Scholar] [CrossRef]
- Najafian, L.; Babji, A.S. Purification and identification of antioxidant peptides from fermented fish sauce (Budu). J. Aquat. Food Prod. Technol. 2019, 28, 14–24. [Google Scholar] [CrossRef]
- Najafian, L.; Babji, A.S. Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). J. Food Meas. Charact. 2018, 12, 2174–2183. [Google Scholar] [CrossRef]
- Aarti, C.; Khusro, A. Functional and technological properties of exopolysaccharide producing autochthonous Lactobacillus plantarum strain AAS3 from dry fish based fermented food. LWT Food Sci. Technol. 2019, 114, 108387. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; Camp, J.v.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Chen, S.-J.; Yin, L.-J.; Hu, C.-Y.; Dong, C.-D.; Singhania, R.R.; Hsieh, S.-L. Anti-inflammatory effects of fish bone fermented using Monascus purpureus in LPS-induced RAW264.7 cells by regulating NF-κB pathway. J. Food Sci. Technol. 2023, 60, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Nurhikmayani, R.; Daryono, B.S.; Retnaningrum, E. The Isolation and molecular identification of antimicrobial-producing lactic acid bacteria from chao, South Sulawesi (Indonesia) fermented fish product. Biodiversitas 2019, 20, 1063–1068. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Kuo, C.-Y.; Kong, Z.-L.; Lai, C.-Y.; Chen, G.-W.; Yang, A.-J.; Lin, L.-H.; Wang, M.-F. Anti-fatigue effect of a dietary supplement from the fermented by-products of Taiwan tilapia aquatic waste and Monostroma nitidum oligosaccharide complex. Nutrients 2021, 13, 1688. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Li, C.; Li, L.; Wang, Y.; Chen, S.; Zhao, Y.; Hu, X.; Rong, H. Discovery and functional mechanism of novel dipeptidyl peptidase IV inhibitory peptides from Chinese traditional fermented fish (Chouguiyu). Curr. Res. Food Sci. 2022, 5, 1676–1684. [Google Scholar] [CrossRef]
- Deacon, C.F. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2020, 16, 642–653. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef]
- Mente, A.; O’Donnell, M.; Rangarajan, S.; McQueen, M.; Dagenais, G.; Wielgosz, A.; Lear, S.; Ah, S.T.L.; Wei, L.; Diaz, R.; et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: A community-level prospective epidemiological cohort study. Lancet 2018, 392, 496–506. [Google Scholar] [CrossRef]
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
Starter Strains | Fish Species | Local Name | Fermentation Conditions | Main Results | Ref. |
---|---|---|---|---|---|
Solid fermented fish | |||||
Pediococcus pentosaceus, Staphylococcus xylosus, Saccharomyces cerevisiae, and their mixture | Grass carp (Ctenopharyngodon idellus) | Not applicable | 24 °C for 30 d |
| [49] |
Monascus purpureus Went M 3.439 | Grass carp (Ctenopharyngodon idellus) | Not applicable | 30 °C for 18 h |
| [25] |
Lactiplantibacillus plantarum, Saccharomyces cerevisiae, and their combination | Grass carp (Ctenopharyngodon idellus) | Suanyu (China) | 30 °C for 15 d |
| [50] |
Lactiplantibacillus plantarum CGMCC 20032 | Acanthogobius hasta | Suanyu (China) | 37 °C for 24 h |
| [51] |
Two strains of Lactiplantibacillus plantarum and one strain of Lactococcus lactis | Grass carp (Ctenopharyngodon Idella) | Yucha (China) | 20 °C for 35 d |
| [52] |
Latilactobacillus sakei and Pediococcus acidilactici | Tilapia (Oreochromis mossambicus) | Not applicable | 25 °C for 45 h |
| [21] |
Lactiplantibacillus plantarum and Flavourzyme® | Grass carp (Ctenopharyngodon idellus) | Not applicable | 25 °C with 75% humidity for 15 d |
| [53] |
Fish paste | |||||
Combination of different lactic bacteria and yeasts | Silver carp (Hypophthalmichthys molitrix) | Not applicable | Ambient temperature (25 °C) for 8 weeks |
| [19] |
Lactiplantibacillus plantarum 120, Staphylococcus xylosus 135, and Saccharomyces cerevisiae 31 | Common carp (Cyprinus carpio) | Not applicable | 35 °C for 5 d |
| [54] |
Bacillus velezensis DZ11 | Hemiculter leucisculus | Not applicable | 25 °C for 40 d |
| [55] |
Pediococcus acidilactici and Latilactobacillus sakei | Tilapia (Oreochromis mossambicus) | Not applicable | 25 °C for 45 h |
| [56] |
Fish sauce | |||||
Limosilactobacillus fermentum PCC, Lactiplantibacillus plantarum 299v, and Lactococcus lactis subsp. cremoris 20069 | Nile tilapia (Oreochromis niloticus) fish head | Not applicable | 37 °C for 3 d |
| [40] |
Latilactobacillus sakei, Lactiplantibacillus plantarum, and Weissella cibaria | Mackerel (Pneumatophorus japonicus) | Not applicable | 30 °C for 5 d |
| [57] |
Staphylococcus nepalensis 5-5 | Not applicable | Not applicable | From a fish sauce factory |
| [58] |
Halobacterium sp. S12FS1 in the form of red yeast rice | Indian oil sardine (Sardinella longiceps) | Not applicable | 35 °C for 120 d |
| [32] |
Halobacterium salinarum | Anchovies (Stolephorus spp.) | Not applicable | ~30−35 °C for up to 180 d |
| [23] |
Aspergillus oryzae S NPUST-FS-206-A1 in the form of black bean koji | Milkfish (Chanos chanos) | Not applicable | 30 °C for 6 months |
| [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, G.; Bi, Y.; Liu, S. Fermented Fish Products: Balancing Tradition and Innovation for Improved Quality. Foods 2024, 13, 2565. https://doi.org/10.3390/foods13162565
Li H, Li G, Bi Y, Liu S. Fermented Fish Products: Balancing Tradition and Innovation for Improved Quality. Foods. 2024; 13(16):2565. https://doi.org/10.3390/foods13162565
Chicago/Turabian StyleLi, Hang, Guantian Li, Yunchen Bi, and Song Liu. 2024. "Fermented Fish Products: Balancing Tradition and Innovation for Improved Quality" Foods 13, no. 16: 2565. https://doi.org/10.3390/foods13162565
APA StyleLi, H., Li, G., Bi, Y., & Liu, S. (2024). Fermented Fish Products: Balancing Tradition and Innovation for Improved Quality. Foods, 13(16), 2565. https://doi.org/10.3390/foods13162565