Human Exposure to Trace Elements (Al, B, Ba, Cd, Cr, Li, Ni, Pb, Sr, V) from Consumption of Dried Fruits Acquired in Spain
Abstract
:1. Introduction
2. Material and Methods
2.1. Samples
2.2. Samples Treatment
2.3. Quality Control and Analysis
2.4. Statistical Analysis
2.5. Dietary Intake Assessment
3. Results and Discussion
3.1. Trace Element Levels in the Dried Fruits
3.2. Dietary Intake Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benmeziane, D.F. Drying of Fruits: A Mini-Review. Nov. Tech. Nutr. Food Sci. 2019, 3, 295–296. [Google Scholar] [CrossRef]
- Garden-Ronbinson, J. Food Conservation: Drying Fruits (Circular FN1587); North Dakota State University: Fargo, ND, USA, 2022. [Google Scholar]
- Kilic, M.; Sahin, M.; Hassan, A.; Ullah, A. Preservation of fruits through drying—A comprehensive review of experiments and modeling approaches. J. Food Process Eng. 2024, 47, e14568. [Google Scholar] [CrossRef]
- Esfandyari, C.; Bagheri, F.; Ziarati, P. Determination of Heavy Metals including Lead, Cadmium and Nickel Remained in Dried Apricots (Prunuse armeniaca linnaeus) in the sunny and spicy form in Tehran Markets. Iran. J. Food Sci. Ind. 2018, 15, 189–197. [Google Scholar]
- Randriamiarintsoa, N.; Ryser, E.T.; Marks, B.P. Effect of Air Temperature and Velocity on Listeria monocytogenes Inactivation During Drying of Apple Slices. J. Food Prot. 2024, 87, 100253. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Czarczyńska-Goślińska, B. Raisins and the other dried fruits: Chemical profile and health benefits. In The Mediterranean Diet, 2nd ed.; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 229–238. [Google Scholar]
- García Luna, P.P.; Pérez de la Cruz, A.J. Nutrientes Específicos. Hacia una Nutrición Clínica Individualizada; Grupo Aula Médica, S.L.: Madrid, Spain, 2013. [Google Scholar]
- Carughi, A.; Feeney, M.J.; Kris-Etherton, P.; Fulgoni, V., III; Kendall, C.W.K.; Bulló, M.; Webb, D. Pairing nuts and dried fruit for cardiometabolic health. Nutr. J. 2015, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Bennett, L.E.; Singh, D.P.; Clingeleffer, P.R. Micronutrient mineral and folate content of Australian and imported dried fruit products. Crit. Rev. Food Sci. Nutr. 2011, 51, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Kamiloglu, S.; Toydemir, G.; Boyacıoğlu, D.; Beekwilder, J.; Sala, R.D.; Capanoglu, E. A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2015, 56, 110–129. [Google Scholar] [CrossRef] [PubMed]
- Gil, A. Tratado de Nutrición: Composición y Calidad Nutritiva de los Alimentos, 2nd ed.; Médica Panamericana: Madrid, Spain, 2010; Volume 2. [Google Scholar]
- Vayalil, P.K. Date fruits (Phoenix dactylifera Linn): An emerging medicinal food. Crit. Rev. Food Sci. Nutr. 2012, 52, 249–271. [Google Scholar] [CrossRef]
- Borochov-Neori, H.; Judeinstein, S.; Greenberg, A.; Volkova, N.; Rosenblat, M.; Aviram, M. Date (Phoenix dactylifera L.) fruit soluble phenolics composition and anti-atherogenic properties in nine Israeli varieties. J. Agric. Food Chem. 2013, 61, 4278–4286. [Google Scholar] [CrossRef]
- MAGRAMA. Ministerio de Agricultura, Alimentación y Medio Ambiente. Frutas-Frutos Secos. 2015. Available online: https://www.mapa.gob.es/es/ministerio/servicios/informacion/plataforma-de-conocimiento-para-el-medio-rural-y-pesquero/observatorio-de-buenas-practicas/buenas-practicas-sobre-alimentacion/frutas.aspx (accessed on 7 May 2024).
- Stacewicz-Sapuntzakis, M.; Bowen, P.E.; Hussain, E.A.; Damayanti-Wood, B.I.; Farnsworth, N.R. Chemical composition and potential health effects of prunes: A functional food? Crit. Rev. Food Sci. Nutr. 2001, 41, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Stacewicz-Sapuntzakis, M. Dried plums and their products: Composition and health effects—An updated review. Crit. Rev. Food Sci. Nutr. 2013, 53, 1277–1302. [Google Scholar] [CrossRef]
- González-Weller, D.; Rubio, C.; Gutiérrez, Á.J.; González, G.L.; Mesa, J.M.C.; Gironés, C.R.; Ojeda, A.B.; Hardisson, A. Dietary intake of barium, bismuth, chromium, lithium, and strontium in a Spanish population (Canary Islands, Spain). Food Chem. Toxicol. 2020, 62, 856–868. [Google Scholar] [CrossRef]
- Al-Massaedh, A.A.; Gharaibeh, A.; Radaydeh, S.; Al-Momani, I. Assessment of Toxic and Essential Heavy Metals in Imported Dried Fruits Sold in the Local Markets of Jordan. Eur. J. Chem. 2018, 9, 394–399. [Google Scholar] [CrossRef]
- Einolghozati, M.; Talebi-Ghane, E.; Khazaei, M.; Mehri, F. The Level of Heavy Metal in Fresh and Processed Fruits: A Study Meta-analysis, Systematic Review, and Health Risk Assessment. Biol. Trace Elem. Res. 2023, 201, 2582–2596. [Google Scholar] [CrossRef] [PubMed]
- EFSA European Food Safety Authority. Statement on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. [Google Scholar]
- EFSA European Food Safety Authority. Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar]
- EFSA European Food Safety Authority. Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials on a request from European Commission on Safety of aluminium from dietary intake. EFSA J. 2008, 754, 1–34. [Google Scholar]
- EFSA European Food Safety Authority. Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J. 2014, 12, 3595. [Google Scholar]
- EFSA European Food Safety Authority. Update of the risk assessment of nickel in food and drinking water. EFSA J. 2020, 18, 6268. [Google Scholar]
- World Health Organization (WHO). Strontium and strontium compounds. Concise Int. Chem. Assess. Doc. 2010, 77, 1–63. [Google Scholar]
- Kowalczyk, E.; Givelet, L.; Amlund, H.; Sloth, J.J.; Hansen, M. Risk assessment of rare earth elements, antimony, barium, boron, lithium, tellurium, thallium and vanadium in teas. EFSA J. 2022, 20, e200410. [Google Scholar] [CrossRef]
- EFSA European Food Safety Authority. Opinion of the Scientific Panel on Dietetic products, nutrition and allergies [NDA] related to the Tolerable Upper Intake Level of Boron (Sodium Borate and Boric Acid). EFSA J. 2004, 2, 80. [Google Scholar] [CrossRef]
- Rubio, C.; Paz, S.; Tius, E.; Hardisson, A.; Gutierrez, A.J.; Gonzalez-Weller, D.; Caballero, J.M.; Revert, C. Metal Contents in the Most Widely Consumed Commercial Preparations of Four Different Medicinal Plants (Aloe, Senna, Ginseng, and Ginkgo) from Europe. Biol. Trace Elem. Res. 2018, 186, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Paz, S.; Rubio, C.; Gutiérrez, A.J.; González-Weller, D.; Hardisson, A. Dietary Intake of Essential Elements (Na, K, Mg, Ca, Mn, Zn, Fe, Cu, Mo, Co) from Tofu Consumption. Biol. Trace Elem. Res. 2021, 199, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Bethencourt-Barbuzano, E.; González-Weller, D.; Paz-Montelongo, S.; Gutiérrez-Fernández, Á.J.; Hardisson, A.; Carrascosa, C.; Cámara, M.; Rubio-Armendáriz, C. Whey Protein Dietary Supplements: Metal Exposure Assessment and Risk Characterization. Nutrients 2023, 15, 3543. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Paz, S.; Rubio-Armendáriz, C.; Frías, I.; Guillén-Pino, F.; Niebla-Canelo, D.; Alejandro-Vega, S.; Gutiérrez, Á.J.; Hardisson, A.; González-Weller, D. Toxic and Trace Elements in Seaweeds from a North Atlantic Ocean Region (Tenerife, Canary Islands). Sustainability 2022, 14, 5967. [Google Scholar] [CrossRef]
- EFSA European Food Safety Authority. On the Evaluation of a new study related to the bioavailability of aluminium in food. EFSA J. 2011, 9, 2157. [Google Scholar]
- EFSA European Food Safety Authority. Overview on Tolerable Upper Intake Levels as Derived by the Scientific Committee on Food (SCF) and the EFSA Panel on Dietetic Products. Nutrition and Allergies (NDA); European Food Safety Authority: Parma, Italy, 2023. [Google Scholar]
- Duran, A.; Tuzen, M.; Soylak, M. Trace element levels in some dried fruit samples from Turkey. Int. J. Food Sci. Nutr. 2008, 59, 581–589. [Google Scholar] [CrossRef]
- Altundag, H.; Tuzen, M. Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP-OES. Food Chem. Toxicol. 2011, 49, 2800–2807. [Google Scholar] [CrossRef]
- Manzoor, H.S.; Bukhari, I.H.; Riaz, M.; Rasool, N.; Sattar, U.; Rehman, G.; Ain, Q.U. Effect of microwave roasting and storage on the extent of heavy metals, present in dry fruits. Int. J. Chem. Biochem. Sci. 2014, 3, 74–82. [Google Scholar]
- Kulluk, D.A.; Gökmen Yılmaz, F.; Dursun, N.; Özcan, M.M.; Lemiasheuski, V. Characterization of Heavy Metals in Some Edible Dried Fruits and Nuts Using Inductively Coupled Plasma Optical Emission Spectroscopy. Erwerbs-Obstbau 2023, 65, 259–265. [Google Scholar] [CrossRef]
- Mehta, S.; Soni, N.; Satpathy, G.; Gupta, R.K. Evaluation of nutritional, phytochemical, antioxidant and antibacterial activity of dried plum (Prunus domestica). J. Pharmacogn. Phytochem. 2014, 3, 166–171. [Google Scholar]
- Ivanovic, M.; Tosic, S.; Mitic, S.; Petrovc, M.; Aksic, J. Material and methods. Symp. Biotechnol. 2016, 21, 277–282. [Google Scholar]
- Mertens, E.; Kuijsten, A.; Geleijnse, J.M.; van ’t Veer, P.; Trolle, E.; Tetens, I.; Dofkova, M.; Mistura, L.; D’Addezio, L.; Ferrari, M.; et al. Protocol for Defining the Nutritional Adequacy of Total Diets and Foods Consumed in EU Countries. SUSFANS. 2016. Available online: http://susfans.eu/system/files/public_files/Publications/Reports/SUSFANS%20D2.2_V1.pdf (accessed on 7 May 2024).
- FDA. U.S. Department of Health and Human Services. Food and Drug Administration. Center for Food Safety and Applied Nutrition. Reference Amounts Customarily Consumed: List of Products for Each Product Category: Guidance for Industry. 2018. Available online: https://www.fda.gov/media/102587/download (accessed on 7 May 2024).
- Valero Gaspar, T.; Rodríguez Alonso, P.; Ruiz Moreno, E.; Ávila Torres, J.M.; Varela Moreiras, G. La alimentación Española: Características Nutricionales de Principales Alimentos de Nuestra Dieta; Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente: Madrid, Spain, 2018. [Google Scholar]
- Silva Caldas, A.P.; Bressan, J. Dried Fruits as Components of Health Dietary Patters. In Health Benefits of Nuts and Dried Fruits; Alasalvar, C., Salas-Salvadó, J., Ros, E., Sabaté, J., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2020; pp. 513–526. [Google Scholar]
- Alasalvar, C.; Chang, S.K.; Kris-Etherton, P.M.; Sullivan, V.K.; Petersen, K.S.; Guasch-Ferré, M.; Jenkins, D.J.A. Dried Fruits: Bioactives, Effects on Gut Microbiota, and Possible Health Benefits-An Update. Nutrients 2023, 15, 1611. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Health Promotion Knowledge Gateway. Food-Based Dietary Guidelines in Europe. Available online: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/topic/food-based-dietary-guidelines-europe_en (accessed on 17 May 2024).
- Agencia Española de Consumo, Seguridad Alimentaria y Nutrición (AECOSAN). Modelo de Dieta Española Para la Determinación de la Exposición del Consumidor a Sustancias Químicas; Ministerio de Sanidad y Consumo: Madrid, Spain, 2006. [Google Scholar]
Type | No. Samples | Country Origin | Sample Collection Point |
---|---|---|---|
Plums | 9 | Spain | Tenerife, Canary Islands (Spain) |
Dates | 8 | Tunisia | |
Sultanas | 9 | Turkey | |
Apricot kernels | 8 | Spain | |
Figs | 8 | Spain | |
Total | 42 |
Element | LOD (mg/L) | LOQ (mg/L) | Wavelength (nm) |
---|---|---|---|
B | 0.008 | 0.027 | 249.6 |
Ba | 0.0006 | 0.002 | 455.4 |
Cr | 0.001 | 0.005 | 267.7 |
Sr | 0.003 | 0.011 | 407.7 |
Li | 0.013 | 0.031 | 670.8 |
Ni | 0.0009 | 0.003 | 221.6 |
V | 0.0014 | 0.004 | 292.4 |
Al | 0.005 | 0.015 | 167.0 |
Cd | 0.0007 | 0.002 | 214.4 |
Pb | 0.0009 | 0.003 | 220.3 |
Element | Parameter | Intake Limit Value | Organization | Reference |
---|---|---|---|---|
Cd | TWI | 2.5 μg/kg bw/week | EFSA | [20] |
Pb | BMDL | 0.50 μg/kg bw/day 1 0.63 μg/kg bw/day 2 1.50 μg/kg bw/day 3 | EFSA | [21] |
Al | TWI | 1 mg/kg bw/week | EFSA | [33] |
Cr | TDI | 0.3 mg/kg bw/day | EFSA | [23] |
Li | p-RfD | 2 μg/kg bw/day | EFSA | [26] |
Ni | TDI | 13 μg/kg bw/day | EFSA | [24] |
Sr | TDI | 0.13 mg/kg bw/day | WHO | [25] |
B | UL | 10 mg/day | EFSA | [34] |
V | RfD | 7 μg/kg bw/day | EFSA | [26] |
Ba | TDI | 0.2 mg/kg bw/day | EFSA | [26] |
Element | Prunes | Dates | Sultanas | Apricot Kernels | Figs | |||||
---|---|---|---|---|---|---|---|---|---|---|
Conc. ± SD | Min–Max | Conc. ± SD | Min–Max | Conc. ± SD | Min–Max | Conc. ± SD | Min–Max | Conc. ± SD | Min–Max | |
Al | 9.94 ± 3.94 | 1.74–16.3 | 7.23 ± 4.36 | 2.26–14.5 | 12.7 ± 5.13 | 5.14–12.2 | 6.12 ± 2.66 | 3.55–11.9 | 8.22 ± 3.75 | 3.21–15.1 |
B | 6.26 ± 4.45 | 1.07–14.4 | 2.72 ± 0.78 | 1.18–4.07 | 5.59 ± 2.85 | 1.45–12.2 | 3.81 ± 2.22 | 0.52–8.11 | 5.24 ± 1.23 | 3.37–7.62 |
Ba | 1.45 ± 1.91 | 0.22–8.50 | 0.50 ± 0.32 | 0.12–1.23 | 0.74 ± 0.26 | 0.36–1.41 | 0.94 ± 0.47 | 0.57–2.31 | 2.32 ± 0.90 | 0.43–4.11 |
Cd | 0.003 ± 0.0005 | <LOQ–0.01 | 0.003 ± 0.0009 | <LOQ–0.01 | 0.003 ± 0.0008 | <LOQ–0.01 | 0.003 ± 0.001 | <LOQ–0.01 | 0.02 ± 0.01 | <LOQ–0.05 |
Cr | 0.10 ± 0.13 | 0.04–0.65 | 0.04 ± 0.02 | 0.02–0.08 | 0.07 ± 0.03 | 0.04–0.12 | 0.05 ± 0.03 | 0.02–0.13 | 0.11 ± 0.06 | 0.04–0.20 |
Li | 1.61 ± 1.22 | <LOQ–4.15 | 0.85 ± 0.68 | <LOQ–2.28 | 1.45 ± 1.08 | <LOQ–4.08 | 1.01 ± 0.95 | <LOQ–2.77 | 1.26 ± 1.03 | <LOQ–3.86 |
Ni | 0.15 ± 0.10 | 0.05–0.43 | 0.07 ± 0.02 | 0.04–0.10 | 0.07 ± 0.02 | 0.04–0.12 | 0.39 ± 0.22 | 0.04–0.79 | 0.75 ± 0.41 | 0.25–1.39 |
Pb | 0.04 ± 0.03 | 0.01–0.10 | 0.02 ± 0.02 | 0.01–0.07 | 0.03 ± 0.01 | 0.01–0.05 | 0.03 ± 0.01 | 0.01–0.06 | 0.03 ± 0.01 | 0.02–0.05 |
Sr | 2.25 ± 1.52 | <LOQ–6.00 | 1.97 ± 1.37 | <LOQ–4.59 | 2.80 ± 1.58 | 1.20–6.10 | 2.10 ± 1.44 | <LOQ–4.83 | 2.79 ± 2.14 | <LOQ–5.14 |
V | 0.01 ± 0.002 | 0.01–0.02 | 0.01 ± 0.0003 | 0.01–0.01 | 0.03 ± 0.03 | 0.01–0.11 | 0.03 ± 0.05 | 0.01–0.17 | 0.01 ± 0.0003 | 0.01–0.01 |
Reference (Origen) | Dried Fruit | Toxic or Trace Elements | |||
---|---|---|---|---|---|
Al | Cd | Ni | Pb | ||
Duran et al., 2008 (Turkey) [35] | Apricot | 5.78 | 0.81 | - | - |
Figs | 4.31 | 0.28 | - | - | |
Plum | 3.58 | 0.45 | - | - | |
Plum | 9.40 | 0.63 | - | - | |
Black grapes | 2.12 | 0.63 | - | - | |
Altundag and Tuzen, 2011 (Turkey) [36] | Apricot | 1.22 | 0.16 | 1.51 | 1.45 |
Figs | 0.83 | 0.32 | 2.26 | 0.40 | |
Yellow plum | 1.03 | 0.23 | 0.95 | 0.56 | |
Black plum | 2.71 | 0.12 | 0.74 | 0.41 | |
Raisins | 7.69 | 0.21 | 1.41 | 0.67 | |
Mehta et al., 2014 (India) [39] | Plum | - | - | 1.08 | 0.21 |
Ivanovic et al., 2016 (Serbia) [40] | Apricot | 0.77 | - | 0.40 | 0.72 |
Dates | 0.36 | - | 0.08 | 0.71 | |
Figs | 0.32 | - | 1.07 | 0.41 | |
Plum | 0.72 | - | 0.72 | 0.92 | |
Al-Massaedh et al., 2018 (Jordan) [18] | Black raisins | - | 0.03 | 0.21 | 0.37 |
Figs | - | 0.02 | 0.29 | 0.29 | |
Apricot | - | 0.05 | 0.26 | 0.57 | |
Plum | - | 0.02 | 0.21 | 0.25 | |
Kulluk et al., 2023. (Turkey) [38] | Plum | - | 0.08 | 2.75 | 1.12 |
Dates | - | 0.19 | 2.80 | 2.02 | |
Black raisins | - | 0.12 | 3.31 | 2.01 | |
Apricot | - | 0.13 | 2.92 | 1.68 | |
Figs | - | 0.15 | 3.26 | 2.50 |
Sample | TDI (mg/kg bw/Day) | UL (mg/Day) | RfD (mg/Day) | BMDL (µg/kg bw/Day) | Prf-D (µg/kg bw/Day) | TWI (mg/kg bw/Week) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ba | Cr | Ni | Sr | B | V | Pb | Li | Al | Cd | ||||||||||||
EDI (mg/Day) | % | EDI (µg/Day) | % | EDI (mg/Day) | % | EDI (mg/Day) | % | EDI (mg/Day) | % | EDI (mg/Day) | % | EDI (µg/Day) | % * | % ** | EDI (µg/Day) | % | EWI (mg/Week) | % | EWI (µg/Week) | % | |
Plums | 0.44 | 0.32 | 3.00 | 0.01 | 4.50 | 0.51 | 0.07 | 0.76 | 0.19 | 0.94 | 0.0003 | 0.06 | 1.20 | 2.78 | 1.17 | 48.3 | 35.3 | 2.09 | 3.05 | 0.63 | 0.37 |
Dates | 0.02 | 0.11 | 1.20 | 0.01 | 2.10 | 0.24 | 0.06 | 0.66 | 0.08 | 0.41 | 0.0003 | 0.06 | 0.60 | 1.39 | 0.58 | 25.5 | 18.6 | 1.52 | 2.22 | 0.63 | 0.37 |
Sultanas | 0.02 | 0.16 | 2.10 | 0.01 | 2.10 | 0.24 | 0.08 | 0.94 | 0.17 | 0.84 | 0.001 | 0.21 | 0.90 | 2.09 | 0.88 | 43.5 | 31.8 | 2.67 | 3.89 | 0.63 | 0.37 |
Apricot kernels | 0.03 | 0.21 | 1.50 | 0.01 | 11.7 | 1.31 | 0.06 | 0.71 | 0.11 | 0.57 | 0.001 | 0.21 | 0.90 | 2.09 | 0.88 | 30.3 | 22.1 | 1.29 | 1.88 | 0.63 | 0.37 |
Figs | 0.07 | 0.51 | 3.30 | 0.02 | 22.5 | 2.53 | 0.08 | 0.94 | 0.16 | 0.79 | 0.0003 | 0.06 | 0.90 | 2.09 | 0.88 | 37.8 | 27.6 | 1.73 | 2.52 | 4.20 | 2.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jáudenes-Marrero, J.R.; Paz-Montelongo, S.; Darias-Rosales, J.; González-Weller, D.; Gutiérrez, Á.J.; Hardisson, A.; Rubio, C.; Alejandro-Vega, S. Human Exposure to Trace Elements (Al, B, Ba, Cd, Cr, Li, Ni, Pb, Sr, V) from Consumption of Dried Fruits Acquired in Spain. Foods 2024, 13, 2660. https://doi.org/10.3390/foods13172660
Jáudenes-Marrero JR, Paz-Montelongo S, Darias-Rosales J, González-Weller D, Gutiérrez ÁJ, Hardisson A, Rubio C, Alejandro-Vega S. Human Exposure to Trace Elements (Al, B, Ba, Cd, Cr, Li, Ni, Pb, Sr, V) from Consumption of Dried Fruits Acquired in Spain. Foods. 2024; 13(17):2660. https://doi.org/10.3390/foods13172660
Chicago/Turabian StyleJáudenes-Marrero, Juan Ramón, Soraya Paz-Montelongo, Javier Darias-Rosales, Dailos González-Weller, Ángel J. Gutiérrez, Arturo Hardisson, Carmen Rubio, and Samuel Alejandro-Vega. 2024. "Human Exposure to Trace Elements (Al, B, Ba, Cd, Cr, Li, Ni, Pb, Sr, V) from Consumption of Dried Fruits Acquired in Spain" Foods 13, no. 17: 2660. https://doi.org/10.3390/foods13172660
APA StyleJáudenes-Marrero, J. R., Paz-Montelongo, S., Darias-Rosales, J., González-Weller, D., Gutiérrez, Á. J., Hardisson, A., Rubio, C., & Alejandro-Vega, S. (2024). Human Exposure to Trace Elements (Al, B, Ba, Cd, Cr, Li, Ni, Pb, Sr, V) from Consumption of Dried Fruits Acquired in Spain. Foods, 13(17), 2660. https://doi.org/10.3390/foods13172660