A Simple High-Throughput Technology for Microorganism Detection and Quantitative Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Optimization of Medium for Three Strains
2.3. Reproducibility, Precision, and Accuracy of the High-Throughput Platform
2.4. Trace Cell Detection
2.5. Cell Viability Detection
2.6. Detection Procedure of the Microplate Reader
2.7. Data Analysis
3. Results
3.1. Detection Principle of High-Throughput Method for Microbial Detection
3.2. Effect of Different Media on the Growth of Microorganisms
3.3. Evaluation of Reproducibility, Precision, and Accuracy of the High-Throughput Method
3.4. The High-Throughput Method for Microorganism Detection at Trace Cell Level
3.5. The High-Throughput Method for Cell Viability Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ayrapetyan, M.; Oliver, J.D. The viable but non-culturable state and its relevance in food safety. Curr. Opin. Food Sci. 2016, 8, 127–133. [Google Scholar] [CrossRef]
- Khan, Z.A.; Warden, A.R.; Jiang, H.; Abdullah, A.; Ahmad, M.; Jiang, L.; Ding, X. Time-lapse proteomics unveil constant high exposure of non-antibiotic drug induces synthetic susceptibility towards regular antibiotics. Microbiol. Res. 2023, 269, 127320. [Google Scholar] [CrossRef] [PubMed]
- Sanders, E.R. Aseptic laboratory techniques: Plating methods. J. Vis. Exp. 2012, 63, e3064. [Google Scholar]
- Brugger, S.D.; Baumberger, C.; Jost, M.; Jenni, W.; Brugger, U.; Mühlemann, K. Automated counting of bacterial colony forming units on agar plates. PLoS ONE 2012, 7, e33695. [Google Scholar] [CrossRef]
- Bhuyan, S.; Yadav, M.; Giri, S.J.; Begum, S.; Das, S.; Phukan, A.; Priyadarshani, P.; Sarkar, S.; Jayswal, A.; Kabyashree, K.; et al. Microliter spotting and micro-colony observation: A rapid and simple approach for counting bacterial colony forming units. J. Microbiol. Methods 2023, 207, 106707. [Google Scholar] [CrossRef]
- Meyer, C.T.; Lynch, G.K.; Stamo, D.F.; Miller, E.J.; Chatterjee, A.; Kralj, J.M. A high-throughput and low-waste viability assay for microbes. Nat. Microbiol. 2023, 8, 2304–2314. [Google Scholar] [CrossRef]
- Hazan, R.; Que, Y.-A.; Maura, D.; Rahme, L.G. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 2012, 12, 259. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, Q.; Cheng, N. Sea hedgehog-inspired surface-enhanced Raman scattering biosensor probe for ultrasensitive determination of Staphylococcus aureus in food supplements. Biosens. Bioelectron. 2024, 252, 116146. [Google Scholar] [CrossRef]
- Singh, H.; Singh, G.; Kaur, N.; Singh, N. Pattern-based colorimetric sensor array to monitor food spoilage using automated high-throughput analysis. Biosens. Bioelectron. 2022, 196, 113687. [Google Scholar] [CrossRef]
- Santovito, E.; Elisseeva, S.; Bukulin, A.; Kerry, J.P.; Papkovsky, D.B. Facile biosensor-based system for on-site quantification of total viable counts in food and environmental swabs. Biosens. Bioelectron. 2021, 176, 112938. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.; Song, G.; Huang, K.; Luo, Y.; Liu, Q.; He, X.; Cheng, N. Intelligent biosensing strategies for rapid detection in food safety: A review. Biosens. Bioelectron. 2022, 202, 114003. [Google Scholar] [CrossRef] [PubMed]
- Murakami, C.J.; Burtner, C.R.; Kennedy, B.K.; Kaeberlein, M. A method for high-throughput quantitative analysis of yeast chronological life span. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 2008, 63, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Song, L.; Liu, S.Q.; Huang, D. A high throughput screening assay for determination of chronological lifespan of yeast. Exp. Gerontol. 2011, 46, 915–922. [Google Scholar] [CrossRef]
- Bergman, L.W. Growth and maintenance of yeast. In Two-Hybrid Systems: Methods and Protocols; MacDonald, P.N., Ed.; Humana Press: Totowa, NJ, USA, 2001; pp. 9–14. [Google Scholar]
- Freyre-González, J.A.; Treviño-Quintanilla, L.G.; Valtierra-Gutiérrez, I.A.; Gutiérrez-Ríos, R.M.; Alonso-Pavón, J.A. Prokaryotic regulatory systems biology: Common principles governing the functional architectures of Bacillus subtilis and Escherichia coli unveiled by the natural decomposition approach. J. Biotechnol. 2012, 161, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhang, H.; Guan, X.; Zhou, Z. The anti-aging potential of neohesperidin and its synergistic effects with other citrus flavonoids in extending chronological lifespan of Saccharomyces Cerevisiae BY4742. Molecules 2019, 24, 4093. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, H.; Qiao, Y.; Liu, G.; Leng, C.; Zhang, Y.; Lv, X.; Feng, Z. The nutrient requirements of Lactobacillus rhamnosus GG and their application to fermented milk. J. Dairy Sci. 2019, 102, 5971–5978. [Google Scholar] [CrossRef]
- Wise, K. Preparing spread plates protocols. Am. Soc. Microbiol. 2006, 1–8. [Google Scholar]
- Bauchop, T.; Elsden, S.R. The growth of micro-organisms in relation to their energy supply. Microbiology 1960, 23, 457–469. [Google Scholar] [CrossRef]
- Mountcastle, S.E.; Vyas, N.; Villapun, V.M.; Cox, S.C.; Jabbari, S.; Sammons, R.L.; Shelton, R.M.; Walmsley, A.D.; Kuehne, S.A. Biofilm viability checker: An open-source tool for automated biofilm viability analysis from confocal microscopy images. npj Biofilms Microbiomes 2021, 7, 44. [Google Scholar] [CrossRef]
- Alves, J.; Sargison, F.A.; Stawarz, H.; Fox, W.B.; Huete, S.G.; Hassan, A.; McTeir, B.; Pickering, A.C. A case report: Insights into reducing plastic waste in a microbiology laboratory. Access Microbiol. 2021, 3, 000173. [Google Scholar] [CrossRef]
- CODEX Alimentarius Commission. Draft Principles and Guidelines for the Conduct of Microbiological Risk Assessment; Alinorm 99/13A; FAO: Rome, Italy, 1998. [Google Scholar]
- Ross, T.; McMeekin, T.A. Modeling microbial growth within food safety risk assessments. Risk Anal. 2003, 23, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Davey Hazel, M. Life, death, and in-between: Meanings and methods in microbiology. Appl. Environ. Microb. 2011, 77, 5571–5576. [Google Scholar] [CrossRef] [PubMed]
- Azinheiro, S.; Ghimire, D.; Carvalho, J.; Prado, M.; Garrido-Maestu, A. Next-day detection of viable Listeria monocytogenes by multiplex reverse transcriptase real-time PCR. Food Control 2022, 133, 108593. [Google Scholar] [CrossRef]
Spread Plate Method | High-Throughput Method | |
---|---|---|
dish | 288 culture dishes | one 96-well plate |
volume of medium | 5760 mL | 9.6 mL |
preparation time | 5 h | 2 h |
incubation | 48 h | 24 h |
count method | Manual count | Plate reader |
experimental time | 26 h | 1.25 h |
US$ per sample | 0.9 | 0.08 |
result | CFU | lag time, doubling time, survival, CFU |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wu, Z. A Simple High-Throughput Technology for Microorganism Detection and Quantitative Analysis. Foods 2024, 13, 2954. https://doi.org/10.3390/foods13182954
Wang L, Wu Z. A Simple High-Throughput Technology for Microorganism Detection and Quantitative Analysis. Foods. 2024; 13(18):2954. https://doi.org/10.3390/foods13182954
Chicago/Turabian StyleWang, Liping, and Ziyun Wu. 2024. "A Simple High-Throughput Technology for Microorganism Detection and Quantitative Analysis" Foods 13, no. 18: 2954. https://doi.org/10.3390/foods13182954
APA StyleWang, L., & Wu, Z. (2024). A Simple High-Throughput Technology for Microorganism Detection and Quantitative Analysis. Foods, 13(18), 2954. https://doi.org/10.3390/foods13182954