Study on Single Nucleotide Polymorphism of LAP3 Gene and Its Correlation with Dairy Quality Traits of Gannan Yak
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Animal Selection
2.3. Sample Collection and DNA Extraction
2.4. Genotyping
2.5. Analysis of Milk Composition of Gannan Yak
2.6. Statistical Analysis of Data
3. Results
3.1. Genotyping Results of LAP3 and Analysis of Genetic Parameters of LAP3 Gene Locus in Gannan Yak
3.2. Correlation Analysis of LAP3 Genotype and Dairy Quality Traits in Gannan Yak
3.3. SNPs Linkage Disequilibrium Analysis and KEGG Functional Enrichment Analysis of LAP3 Gene in Gannan Yak
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qi, X.; Zhang, Q.; He, Y.; Yang, L.; Zhang, X.; Shi, P.; Yang, L.; Liu, Z.; Zhang, F.; Liu, F.; et al. The Transcriptomic Landscape of Yaks Reveals Molecular Pathways for High Altitude Adaptation. Genome Biol. Evol. 2019, 11, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chu, M.; Bao, Q.; Bao, P.; Guo, X.; Liang, C.; Yan, P. Two Different Copy Number Variations of the SOX5 and SOX8 Genes in Yak and Their Association with Growth Traits. Animals 2022, 12, 1587. [Google Scholar] [CrossRef] [PubMed]
- Ruan, C.; Wang, J.; Yang, Y.; Hu, J.; Ma, Y.; Zhang, Y.; Zhao, X. Proteomic analysis of Tianzhu White Yak (Bos grunniens) testis at different sexual developmental stages. Anim. Sci. J. Nihon Chikusan Gakkaiho 2019, 90, 333–343. [Google Scholar] [CrossRef]
- Wu, J.; He, S.; Yu, Z.; Lan, D.; Xiong, X.; Li, Z. Transcriptomic study of yak mammary gland tissue during lactation. Anim. Biotechnol. 2022, 33, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ma, X.; Ma, C.; Wu, X.; ZhaXi, T.; Yin, L.; Li, W.; Li, Y.; Liang, C.; Yan, P. Whole genome resequencing-based analysis of plateau adaptation in Meiren yak (Bos grunniens). Anim. Biotechnol. 2024, 35, 2298406. [Google Scholar] [CrossRef]
- Liu, H.; Hao, L.; Cao, X.; Yang, G.; Degen, A.; Xiao, L.; Liu, S.; Zhou, J. Effects of supplementary concentrate and/or rumen-protected lysine plus methionine on productive performance, milk composition, rumen fermentation, and bacterial population in Grazing, Lactating Yaks. Anim. Feed Sci. Technol. 2023, 297, 115591. [Google Scholar] [CrossRef]
- Aro, N.; Ercili-Cura, D.; Andberg, M.; Silventoinen, P.; Lille, M.; Hosia, W.; Nordlund, E.; Landowski, C.P. Production of bovine beta-lactoglobulin and hen egg ovalbumin by Trichoderma reesei using precision fermentation technology and testing of their techno-functional properties. Food Res. Int. 2023, 163, 112131. [Google Scholar] [CrossRef]
- Yang, F.; He, X.; Chen, T.; Liu, J.; Luo, Z.; Sun, S.; Qin, D.; Huang, W.; Tang, Y.; Liu, C.; et al. Peptides Isolated from Yak Milk Residue Exert Antioxidant Effects through Nrf2 Signal Pathway. Oxidative Med. Cell. Longev. 2021, 2021, 9426314. [Google Scholar] [CrossRef]
- Yang, Z.; Lian, Z.; Liu, G.; Deng, M.; Sun, B.; Guo, Y.; Liu, D.; Li, Y. Identification of genetic markers associated with milk production traits in Chinese Holstein cattle based on post genome-wide association studies. Anim. Biotechnol. 2021, 32, 67–76. [Google Scholar] [CrossRef]
- Zwane, A.A.; Schnabel, R.D.; Hoff, J.; Choudhury, A.; Makgahlela, M.L.; Maiwashe, A.; Van Marle-Koster, E.; Taylor, J.F. Genome-Wide SNP Discovery in Indigenous Cattle Breeds of South Africa. Front. Genet. 2019, 10, 273. [Google Scholar] [CrossRef]
- Ma, X.; Yang, G.; Zhang, J.; Ma, R.; Shen, J.; Feng, F.; Yu, D.; Huang, C.; Ma, X.; La, Y.; et al. Association between Single Nucleotide Polymorphisms of PRKD1 and KCNQ3 Gene and Milk Quality Traits in Gannan Yak (Bos grunniens). Foods 2024, 13, 781. [Google Scholar] [CrossRef] [PubMed]
- El-Komy, S.M.; Saleh, A.A.; Abdel-Hamid, T.M.; El-Magd, M.A. Association of GHR Polymorphisms with Milk Production in Buffaloes. Animals 2020, 10, 1203. [Google Scholar] [CrossRef] [PubMed]
- Abousoliman, I.; Reyer, H.; Oster, M.; Murani, E.; Mohamed, I.; Wimmers, K. Genome-Wide SNP Analysis for Milk Performance Traits in Indigenous Sheep: A Case Study in the Egyptian Barki Sheep. Animals 2021, 11, 1671. [Google Scholar] [CrossRef]
- Zhou, C.; Li, C.; Cai, W.; Liu, S.; Yin, H.; Shi, S.; Zhang, Q.; Zhang, S. Genome-Wide Association Study for Milk Protein Composition Traits in a Chinese Holstein Population Using a Single-Step Approach. Front. Genet. 2019, 10, 72. [Google Scholar] [CrossRef]
- Tsujimoto, M.; Goto, Y.; Maruyama, M.; Hattori, A. Biochemical and enzymatic properties of the M1 family of aminopeptidases involved in the regulation of blood pressure. Heart Fail. Rev. 2008, 13, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, P.A.; Riley, L.G.; Raadsma, H.W.; Williamson, P.; Wynn, P.C. A functional genomics approach to evaluate candidate genes located in a QTL interval for milk production traits on BTA6. Anim. Genet. 2009, 40, 492–498. [Google Scholar] [CrossRef]
- Cohen-Zinder, M.; Seroussi, E.; Larkin, D.M.; Loor, J.J.; Everts-van der Wind, A.; Lee, J.H.; Drackley, J.K.; Band, M.R.; Hernandez, A.G.; Shani, M.; et al. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 2005, 15, 936–944. [Google Scholar] [CrossRef]
- Allan, M.F.; Thallman, R.M.; Cushman, R.A.; Echternkamp, S.E.; White, S.N.; Kuehn, L.A.; Casas, E.; Smith, T.P. Association of a single nucleotide polymorphism in SPP1 with growth traits and twinning in a cattle population selected for twinning rate. J. Anim. Sci. 2007, 85, 341–347. [Google Scholar] [CrossRef]
- Olsen, H.G.; Lien, S.; Gautier, M.; Nilsen, H.; Roseth, A.; Berg, P.R.; Sundsaasen, K.K.; Svendsen, M.; Meuwissen, T.H. Mapping of a milk production quantitative trait locus to a 420-kb region on bovine chromosome 6. Genetics 2005, 169, 275–283. [Google Scholar] [CrossRef]
- Mardis, E.; McCombie, W.R. Library Quantification: Fluorometric Quantitation of Double-Stranded or Single-Stranded DNA Samples Using the Qubit System. Cold Spring Harb. Protoc. 2017, 6, pdb.prot94730. [Google Scholar] [CrossRef]
- Ai, C.; Kong, L. CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways. J. Genet. Genom. Yi Chuan Xue Bao 2018, 45, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhang, W.; Cheng, Y.; Wu, Y.; Wu, H.; He, M.; Chen, S.; Man, C.; Gao, H.; Du, L.; et al. Development and verification of a 10K liquid chip for Hainan black goat based on genotyping by pinpoint sequencing of liquid captured targets. BMC Genom. Data 2024, 25, 44. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zha, X.; Ma, X.; La, Y.; Guo, X.; Chu, M.; Bao, P.; Yan, P.; Wu, X.; Liang, C. Polymorphisms of ITGA9 Gene and Their Correlation with Milk Quality Traits in Yak (Bos grunniens). Foods 2024, 13, 1613. [Google Scholar] [CrossRef]
- Soysal, E.; Ulutaş, F.; Tepeli, E.; Kaymaz, S.; Çobankara, V. IL-23R gene polymorphisms in rheumatoid arthritis. Rheumatol. Int. 2022, 42, 555–562. [Google Scholar] [CrossRef]
- Dong, S.; Long, R.; Kang, M. Milking performance of China yak (Bos grunniens): A preliminary report. Afr. J. Agric. Res. 2007, 2, 52–57. [Google Scholar]
- Lin, K.; Zhang, L.; Han, X.; Xin, L.; Meng, Z.X.; Gong, P.M.; Cheng, D.Y. Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chem. 2018, 254, 340–347. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, Y.; Zheng, X.; Guo, J.; Duan, H.; Zhou, S.; Yan, W. Yak Milk: Nutritional Value, Functional Activity, and Current Applications. Foods 2023, 12, 2090. [Google Scholar] [CrossRef] [PubMed]
- Malacarne, M.; Martuzzi, F.; Summer, A.; Mariani, P. Protein and fat composition of mare’s milk: Some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 2002, 12, 869–877. [Google Scholar] [CrossRef]
- St-Gelais, D.; Haché, S. Effect of β-casein concentration in cheese milk on rennet coagulation properties, cheese composition and cheese ripening. Food Res. Int. 2005, 38, 523–531. [Google Scholar] [CrossRef]
- HPark, C.W.; Drake, M.A. The distribution of fat in dried dairy particles determines flavor release and flavor stability. J. Food Sci. 2014, 79, R452–R459. [Google Scholar]
- Yang, J.; Zheng, N.; Wang, J.; Yang, Y. Comparative milk fatty acid analysis of different dairy species. Int. J. Dairy Technol. 2018, 71, 544–550. [Google Scholar] [CrossRef]
- Li, H.; Xi, B.; Yang, X.; Wang, H.; He, X.; Li, W.; Gao, Y. Evaluation of change in quality indices and volatile flavor components in raw milk during refrigerated storage. LWT 2022, 165, 113674. [Google Scholar] [CrossRef]
- Drinkwater, N.; Malcolm, T.R.; McGowan, S. M17 aminopeptidases diversify function by moderating their macromolecular assemblies and active site environment. Biochimie 2019, 166, 38–51. [Google Scholar] [CrossRef]
- Mizutani, S.; Shibata, K.; Kikkawa, F.; Hattori, A.; Tsujimoto, M.; Ishii, M.; Kobayashi, H. Essential role of placental leucine aminopeptidase in gynecologic malignancy. Expert Opin. Ther. Targets 2007, 11, 453–461. [Google Scholar] [CrossRef]
- Huang, H.; Tanaka, H.; Hammock, B.D.; Morisseau, C. Novel and highly sensitive fluorescent assay for leucine aminopeptidases. Anal. Biochem. 2009, 391, 11–16. [Google Scholar] [CrossRef]
- Huang, S.; Wu, Y.; Zeng, F.; Chen, J.; Wu, S. A turn-on fluorescence probe based on aggregation-induced emission for leucine aminopeptidase in living cells and tumor tissue. Anal. Chim. Acta 2018, 1031, 169–177. [Google Scholar] [CrossRef]
- Trumbly, R.J.; Bradley, G. Isolation and characterization of aminopeptidase mutants of Saccharomyces cerevisiae. J. Bacteriol. 1983, 156, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Matsui, M.; Fowler, J.H.; Walling, L.L. Leucine aminopeptidases: Diversity in structure and function. Biol. Chem. 2006, 387, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Osana, S.; Murayama, K.; Nagatomi, R. The impact of intracellular aminopeptidase on C2C12 myoblast proliferation and differentiation. Biochem. Biophys. Res. Commun. 2020, 524, 608–613. [Google Scholar]
- Gazave, E.; Marqués-Bonet, T.; Fernando, O.; Charlesworth, B.; Navarro, A. Patterns and rates of intron divergence between humans and chimpanzees. Genome Biol. 2007, 8, R21. [Google Scholar] [CrossRef]
- Nott, A.; Meislin, S.H.; Moore, M.J. A quantitative analysis of intron effects on mammalian gene expression. RNA 2003, 9, 607–617. [Google Scholar]
- Zheng, X.; Ju, Z.; Wang, J.; Li, Q.; Huang, J.; Zhang, A.; Zhong, J.; Wang, C. Single nucleotide polymorphisms, haplotypes and combined genotypes of LAP3 gene in bovine and their association with milk production traits. Mol. Biol. Rep. 2011, 38, 4053–4061. [Google Scholar] [CrossRef]
- Weintraub, A.S.; Lin, X.; Itskovich, V.V.; Aguinaldo, J.G.; Chaplin, W.F.; Denhardt, D.T.; Fayad, Z.A. Prenatal detection of embryo resorption in osteopontin-deficient mice using serial noninvasive magnetic resonance microscopy. Pediatr. Res. 2004, 55, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Worku, D.; Gowane, G.R.; Mukherjee, A.; Alex, R.; Joshi, P.; Verma, A. Associations between polymorphisms of LAP3 and SIRT1 genes with clinical mastitis and milk production traits in Sahiwal and Karan Fries dairy cattle. Vet. Med. Sci. 2022, 8, 2593–2604. [Google Scholar] [CrossRef]
SNPs | Position | Genotypic Frequencies | Allelic Frequencies | He | Ho | PIC | HW p Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
g.4494G > A | Intron | GG | GA | AA | G | A | 0.317 | 0.683 | 0.267 | 0.250 | |
0.630 | 0.346 | 0.025 | 0.802 | 0.198 | |||||||
g.5919A > G | Intron | AA | AG | GG | A | G | 0.317 | 0.683 | 0.267 | 0.250 | |
0.630 | 0.346 | 0.025 | 0.802 | 0.198 | |||||||
g.8033G > C | Intron | GG | GC | CC | G | C | 0.356 | 0.644 | 0.293 | 0.560 | |
0.599 | 0.340 | 0.062 | 0.769 | 0.231 | |||||||
g.15,615A > G | Intron | AA | AG | A | G | 0.121 | 0.879 | 0.114 | 0.378 | ||
0.870 | 0.130 | 0.935 | 0.065 |
g.4494G > A | ||||||||
---|---|---|---|---|---|---|---|---|
Genotype | Casein/% | Protein/% | Fat/% | TS/% | SNF/% | Lactose/% | FPD/μm | Acidity/°T |
GG | 4.11 ± 0.28 | 4.91 ± 0.39 ab | 5.64 ± 2.67 | 16.81 ± 2.56 | 11.30 ± 0.49 | 5.00 ± 0.15 | 0.71 ± 0.27 | 12.38 ± 1.38 |
GA | 4.04 ± 0.32 | 4.85 ± 0.41 b | 5.52 ± 2.61 | 16.60 ± 2.67 | 11.18 ± 0.45 | 4.96 ± 0.16 | 0.71 ± 0.30 | 12.35 ± 1.12 |
AA | 4.22 ± 0.17 | 5.21 ± 0.41a | 4.18 ± 2.69 | 15.57 ± 2.43 | 11.54 ± 0.31 | 4.87 ± 0.28 | 0.70 ± 0.00 | 13.33 ± 1.11 |
g.5919A > G | ||||||||
Genotype | Casein/% | Protein/% | Fat/% | TS/% | SNF/% | Lactose/% | FPD/μm | Acidity/°T |
AA | 4.11 ± 0.28 | 4.91 ± 0.39 ab | 5.64 ± 2.67 | 16.81 ± 2.56 | 11.30 ± 0.49 | 5.00 ± 0.15 | 0.71 ± 0.27 | 12.38 ± 1.38 |
AG | 4.04 ± 0.32 | 4.85 ± 0.41 b | 5.52 ± 2.61 | 16.60 ± 2.67 | 11.18 ± 0.45 | 4.96 ± 0.16 | 0.71 ± 0.30 | 12.35 ± 1.12 |
GG | 4.22 ± 0.17 | 5.21 ± 0.41 a | 4.18 ± 2.69 | 15.57 ± 2.43 | 11.54 ± 0.31 | 4.87 ± 0.28 | 0.70 ± 0.00 | 13.33 ± 1.11 |
g.8033G > C | ||||||||
Genotype | Casein/% | Protein/% | Fat/% | TS/% | SNF/% | Lactose/% | FPD/μm | Acidity/°T |
GG | 4.11 ± 0.27b | 4.92 ± 0.39 b | 5.84 ± 2.90 | 16.98 ± 2.77 | 11.24 ± 0.49 b | 4.96 ± 0.15 | 0.71 ± 0.28 | 12.43 ± 1.34 ab |
GC | 4.00 ± 0.32b | 4.81 ± 0.40 b | 5.06 ± 2.18 | 16.16 ± 2.23 | 11.24 ± 0.46 b | 5.02 ± 0.16 | 0.70 ± 0.27 | 12.21 ± 1.26 b |
CC | 4.29 ± 0.18a | 5.16 ± 0.21a | 5.64 ± 2.27 | 17.09 ± 2.31 | 11.59 ± 0.26 a | 5.02 ± 0.12 | 0.71 ± 0.32 | 13.00 ± 0.74 a |
g.15,615A > G | ||||||||
Genotype | Casein/% | Protein/% | Fat/% | TS/% | SNF/% | Lactose/% | FPD/μm | Acidity/°T |
AA | 4.10 ± 0.30 | 4.91 ± 0.41 | 5.62 ± 2.73 | 16.77 ± 2.67 | 11.27 ± 0.48 | 4.98 ± 0.15 | 0.71 ± 0.03 a | 12.42 ± 1.32 |
AG | 4.01 ± 0.20 | 4.80 ± 0.29 | 5.19 ± 2.05 | 16.31 ± 1.92 | 11.23 ± 0.41 | 5.04 ± 0.15 | 0.70 ± 0.00 b | 12.21 ± 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Ma, X.; Feng, F.; Zheng, F.; Zheng, Q.; Zhang, J.; Zhang, M.; Ma, C.; Deng, J.; Guo, X.; et al. Study on Single Nucleotide Polymorphism of LAP3 Gene and Its Correlation with Dairy Quality Traits of Gannan Yak. Foods 2024, 13, 2953. https://doi.org/10.3390/foods13182953
Wang T, Ma X, Feng F, Zheng F, Zheng Q, Zhang J, Zhang M, Ma C, Deng J, Guo X, et al. Study on Single Nucleotide Polymorphism of LAP3 Gene and Its Correlation with Dairy Quality Traits of Gannan Yak. Foods. 2024; 13(18):2953. https://doi.org/10.3390/foods13182953
Chicago/Turabian StyleWang, Tong, Xiaoming Ma, Fen Feng, Fei Zheng, Qingbo Zheng, Juanxiang Zhang, Minghao Zhang, Chaofan Ma, Jingying Deng, Xian Guo, and et al. 2024. "Study on Single Nucleotide Polymorphism of LAP3 Gene and Its Correlation with Dairy Quality Traits of Gannan Yak" Foods 13, no. 18: 2953. https://doi.org/10.3390/foods13182953
APA StyleWang, T., Ma, X., Feng, F., Zheng, F., Zheng, Q., Zhang, J., Zhang, M., Ma, C., Deng, J., Guo, X., Chu, M., La, Y., Bao, P., Pan, H., Liang, C., & Yan, P. (2024). Study on Single Nucleotide Polymorphism of LAP3 Gene and Its Correlation with Dairy Quality Traits of Gannan Yak. Foods, 13(18), 2953. https://doi.org/10.3390/foods13182953