Green Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Protocatechuic Acid from Mango Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of PCA-MIP
2.3. Optimization of Synthesis Conditions
2.4. Characterization of PCA-MIP
2.5. PCA-MIP Binding Study
2.6. Study of PCA-MIP Reusability
2.7. Extraction of PCA from Mango Juice
3. Results and Discussion
3.1. Preparation of PCA-MIP
3.2. Morphological and Structural Characterization of PCA-MIP
3.3. PCA-MIP Binding Study
3.3.1. Effect of pH on the Adsorption Capacity
3.3.2. Equilibrium Adsorption Isotherms
3.3.3. Kinetic Adsorption
3.3.4. Selectivity Adsorption
3.4. Reusability of PCA-MIP
3.5. Extraction of PCA from Mango Juice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PCA | Protocatechuic acid |
DES | Deep eutectic solvents |
CS | Chitosan |
Glu | Glutaraldehyde |
MAA | Methacrylic acid |
ChCl | Choline chloride |
MIP | Molecularly imprinted polymer |
NIP | Non-molecularly imprinted polymer |
SEM | Scanning electron microscope |
BET | Brunauer–Emmett–Teller |
FT-IR | Fourier transform infrared spectroscopy |
HPLC | High-performance liquid chromatography |
References
- Song, J.; He, Y.N.; Luo, C.H.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.M.; Xu, R.C.; Han, L.; Zhang, D.K. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol. Res. 2020, 161, 105109. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Chen, D.; Chen, S. Antioxidant activity and mechanism of protocatechuic acid in vitro. Funct. Foods Health Dis. 2011, 1, 232–244. [Google Scholar] [CrossRef]
- Zhang, S.; Gai, Z.; Gui, T.; Chen, J.; Chen, Q.; Li, Y. Antioxidant effects of protocatechuic acid and protocatechuic aldehyde: Old wine in a new bottle. Evid.-Based Complement. Altern. Med. 2021, 2021, 6139308. [Google Scholar] [CrossRef]
- Galvano, F.; Vitaglione, P.; Li Volti, G.; Di Giacomo, C.; Gazzolo, D.; Vanella, L.; La Fauci, L.; Fogliano, V. Protocatechuic acid: The missing human cyanidins’ metabolite. Mol. Nutr. Food Res. 2008, 52, 386. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Wei, M.C.; Huang, T.C.; Lee, S.Z. Extraction of protocatechuic acid from Scutellaria barbata D. Don using supercritical carbon dioxide. J. Supercrit. Fluid 2013, 81, 55–66. [Google Scholar] [CrossRef]
- Li, H.; Nie, L.; Li, Y.; Zhang, Z.; Shi, H.; Hu, W.; Zhang, Y. Application of molecularly imprinted column for separation and purification of bioactive compound from cirsium segetum bunge. Sep. Sci. Technol. 2009, 44, 370–385. [Google Scholar] [CrossRef]
- Zhou, T.; Ding, L.; Che, G.; Jiang, W.; Sang, L. Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: Preparation and application in sample pretreatment. TrAC Trends Anal. Chem. 2019, 114, 11–28. [Google Scholar] [CrossRef]
- Musarurwa, H.; Tavengwa, N.T. Stimuli-responsive molecularly imprinted polymers as adsorbents of analytes in complex matrices. Microchem. J. 2022, 181, 107750. [Google Scholar] [CrossRef]
- Kaya, S.I.; Cetinkaya, A.; Ozkan, S.A. Molecularly imprinted polymers as highly selective sorbents in sample preparation techniques and their applications in environmental water analysis. Trends Environ. Anal. Chem. 2023, 37, e00193. [Google Scholar] [CrossRef]
- Lamaoui, A.; García-Guzmán, J.J.; Amine, A.; Palacios-Santander, J.M.; Cubillana-Aguilera, L. Synthesis techniques of molecularly imprinted polymer composites. In Molecularly Imprinted Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 49–91. [Google Scholar]
- Hasanah, A.N.; Safitri, N.; Zulfa, A.; Neli, N.; Rahayu, D.J.M. Factors affecting preparation of molecularly imprinted polymer and methods on finding template-monomer interaction as the key of selective properties of the materials. Molecules 2021, 26, 5612. [Google Scholar] [CrossRef]
- Sobiech, M.; Lulinski, P. Molecularly imprinted solid phase extraction—Recent strategies, future prospects and forthcoming challenges in complex sample pretreatment process. TrAC-Trends Anal. Chem. 2024, 174, 117695. [Google Scholar] [CrossRef]
- Xie, X.; Wei, F.; Chen, L.; Wang, S. Preparation of molecularly imprinted polymers based on magnetic nanoparticles for the selective extraction of protocatechuic acid from plant extracts. J. Sep. Sci. 2015, 38, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Denderz, N.; Lehotay, J. Using of molecularly imprinted polymers for determination of gallic and protocatechuic acids in red wines by high performance liquid chromatography. J. Chromatogr. A 2014, 1372, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hu, X.; Zhang, Y.P.; Shi, S.Y.; Jiang, X.Y.; Chen, X.Q. High-capacity magnetic hollow porous molecularly imprinted polymers for specific extraction of protocatechuic acid. J. Chromatogr. A 2015, 1404, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Viveiros, R.; Rebocho, S.; Casimiro, T. Green Strategies for Molecularly Imprinted Polymer Development. Polymers 2018, 10, 306. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Arabi, M.; Ghaedi, M.; Ostovan, A.; Wang, X.Y.; Li, J.H.; Chen, L.X. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta 2019, 195, 390–400. [Google Scholar] [CrossRef]
- Ostovan, A.; Arabi, M.; Wang, Y.Q.; Li, J.H.; Li, B.W.; Wang, X.Y.; Chen, L.X. Greenificated molecularly imprinted materials for advanced applications. Adv. Mater. 2022, 34, 2203154. [Google Scholar] [CrossRef]
- Perna, F.M.; Vitale, P.; Capriati, V. Deep eutectic solvents and their applications as green solvents. Curr. Opin. Green Sustain. Chem. 2020, 21, 27–33. [Google Scholar] [CrossRef]
- Marć, M.; Jatkowska, N.; Płotka-Wasylka, J.; Mateu, D.G.; Turrillas, F.A.E.; De la Guardia, M. Molecularly imprinted polymers based on deep eutectic solvents as a greenest materials for selective extraction of emerging contaminants from complex samples. TrAC-Trends Anal. Chem. 2024, 178, 117837. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncube, S.; Nomngongo, P.N.; Pakade, V.E. Molecular imprinting with deep eutectic solvents: Synthesis, applications, their significance, and benefits. J. Mol. Liq. 2022, 362, 119696. [Google Scholar] [CrossRef]
- Zhang, L.P.; Hao, P.Z.; He, Y.F.; Li, S.J.; Li, T.; Wang, L.; He, S. Fabrication of magnetic molecularly imprinted polymer-based covalent-noncovalent synergistic imprinting strategies for the highly specific enrichment of luteolin from honeysuckle. Front. Sustain. Food Syst. 2024, 8, 1413458. [Google Scholar] [CrossRef]
- Zhao, L.; Han, S.; Sun, R.A.; Yan, C. UiO66-based molecularly imprinted polymers with water-compatible deep eutectic solvent as functional monomer for purification of lysozyme from egg white. Microchim. Acta 2024, 191, 56. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.W.; Wang, Y.Z.; Xu, F.T.; Wei, X.X.; Chen, J.; Li, H.Q.; He, X.Y.; Zhou, Y.G. A new magnetic molecularly imprinted polymer based on deep eutectic solvents as functional monomer and cross-linker for specific recognition of bovine hemoglobin. Anal. Chim. Acta 2020, 1129, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Fu, N.J.; Li, L.T.; Liu, X.; Fu, N.A.; Zhang, C.C.; Hu, L.D.; Li, D.H.; Tang, B.K.; Zhu, T. Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent. J. Chromatogr. A 2017, 1530, 23–34. [Google Scholar] [CrossRef]
- Fu, N.J.; Liu, X.; Li, L.T.; Tang, B.K.; Row, K.H. Ternary choline chloride/caffeic acid/ethylene glycol deep eutectic solvent as both a monomer and template in a molecularly imprinted polymer. J. Sep. Sci. 2017, 40, 2286–2291. [Google Scholar] [CrossRef]
- Cheng, G.H.; Chen, N.; Li, Z.; Zhao, K.X.; Duan, R.J.; Chen, Z.H.; Zhu, G.F. Fabrication of deep eutectic solvent-molecularly imprinted polymer in water: A green strategy for adsorption of bisphenol A. J. Environ. Chem. Eng. 2023, 11, 109651. [Google Scholar] [CrossRef]
- Wang, M.W.; Qiao, F.X.; Yan, H.Y. A simple and benign protocol for the synthesis of a deep eutectic solvent-based hydrophilic molecularly imprinted resin in water for excellent selective molecular recognition in aqueous phase. Green Chem. 2021, 23, 5179–5188. [Google Scholar] [CrossRef]
- Kou, S.; Peters, L.M.; Mucalo, M.R. Chitosan: A review of sources and preparation methods. Int. J. Biol. Macromol. 2021, 169, 85–94. [Google Scholar] [CrossRef]
- Xu, L.; Huang, Y.A.; Zhu, Q.J.; Ye, C. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects. Int. J. Mol. Sci. 2015, 16, 18328–18347. [Google Scholar] [CrossRef]
- Zhang, J.W.; Tan, L.; Yuan, J.B.; Qiao, R.F.; Wang, C.Z.; Yang, F.Q.; Zhou, L.D.; Zhang, Q.H.; Xia, Z.N.; Yuan, C.S. Extraction of activated epimedium glycosides in vivo and in vitro by using bifunctional-monomer chitosan magnetic molecularly imprinted polymers and identification by UPLC-Q-TOF-MS. Talanta 2020, 219, 121350. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhou, J.J.; Gu, H.M.; Jia, X.K.; Su, K.H.; Zhang, B.L.; Zhang, Q.Y. Preparation of anti-nonspecific adsorption chitosan-based bovine serum albumin imprinted polymers with outstanding adsorption capacity and selective recognition ability based on magnetic microspheres. Macromol. Mater. Eng. 2019, 304, 1800731. [Google Scholar] [CrossRef]
- Ansari, S.; Masoum, S. Ultrasound-assisted dispersive solid-phase microextraction of capecitabine by multi-stimuli responsive molecularly imprinted polymer modified with chitosan nanoparticles followed by HPLC analysis. Microchim. Acta 2020, 187, 366. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Z.; Rwo, K.H. Hydrophilic molecularly imprinted chitosan based on deep eutectic solvents for the enrichment of gallic acid in red ginseng tea. Polymers 2019, 11, 1434. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Dai, Y.; Row, K.H. Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea. Electrophoresis 2018, 39, 2039–2046. [Google Scholar] [CrossRef]
- Yuan, M.D.; Zhong, C.L.; Row, K.H.; Li, G.Z. Hydrophilic molecularly imprinted chitosan microspheres based on deep eutectic solvents for micro-solid phase extraction of catechin. J. Liq. Chromatogr. Relat. Technol. 2023, 46, 48–55. [Google Scholar] [CrossRef]
- Laskar, N.; Ghoshal, D.; Gupta, S. Chitosan-based magnetic molecularly imprinted polymer: Synthesis and application in selective recognition of tricyclazole from rice and water samples. Iran. Polym. J. 2021, 30, 121–134. [Google Scholar] [CrossRef]
- Xiao, X.D.; Li, Z.Q.; Liu, Y.; Jia, L. Preparation of chitosan-based molecularly imprinted material for enantioseparation of racemic mandelic acid in aqueous medium by solid phase extraction. J. Sep. Sci. 2019, 42, 3544–3552. [Google Scholar] [CrossRef]
- Husin, N.A.; Muhamad, M.; Yahaya, N.; Miskam, M.; Kamal, N.; Asman, S.; Raoov, M.; Zain, N.N.M. Application of a new choline-imidazole based deep eutectic solvents in hybrid magnetic molecularly imprinted polymer for efficient and selective removal of naproxen from aqueous samples. Mater. Chem. Phys. 2021, 261, 124228. [Google Scholar] [CrossRef]
- Xu, K.J.; Wang, Y.Z.; Wei, X.X.; Chen, J.; Xu, P.L.; Zhou, Y.G. Preparation of magnetic molecularly imprinted polymers based on a deep eutectic solvent as the functional monomer for specific recognition of lysozyme. Microchim. Acta 2018, 185, 146. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Z.; Zhu, Z.; Zhao, X.; Gao, N.; Wang, D.; Hua, Z.; Yan, Y.; Huo, P.; Song, M. Enhanced selective photocatalytic properties of a novel magnetic retrievable imprinted ZnFe2O4/PPy composite with specific recognition ability. RSC Adv. 2016, 6, 51877–51887. [Google Scholar] [CrossRef]
- Sun, Y.; Bai, L.; Wang, T.; Cao, S.; Han, C.; Sun, X. Effective scavenging and selective adsorption of salicylic acid from wastewater using a novel deep eutectic solvents-based chitosan-acrylamide surface molecularly imprinted hydrogel. Appl. Surf. Sci. 2023, 608, 155102. [Google Scholar] [CrossRef]
- Khapre, M.A.; Pandey, S.; Jugade, R.M. Glutaraldehyde-cross-linked chitosan–alginate composite for organic dyes removal from aqueous solutions. Int. J. Biol. Macromol. 2021, 190, 862–875. [Google Scholar] [CrossRef] [PubMed]
- Sing, K.; Everett, D.; Haul, R.; Moscou, L.; Pierotti, R.; Rouquerol, J.; Siemieniewska, T. Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Zhang, L.P.; Zhu, F.H.; Guo, Y.; Yang, H.; Wang, L.; He, Y.F.; Li, S.J.; Li, T. Synthesis of molecularly imprinted polymer based on cooperative imprinting for enrichment of gallic acid in Puer tea. J. Appl. Polym. Sci. 2023, 140, e53712. [Google Scholar] [CrossRef]
- Xie, L.W.; Guo, J.F.; Zhang, Y.P.; Shi, S.Y. Efficient Determination of Protocatechuic Acid in Fruit Juices by Selective and Rapid Magnetic Molecular Imprinted Solid Phase Extraction Coupled with HPLC. J. Agric. Food Chem. 2014, 62, 8221–8228. [Google Scholar] [CrossRef]
- Xie, L.; Guo, J.; Zhang, Y.; Hu, Y.; You, Q.; Shi, S. Novel molecular imprinted polymers over magnetic mesoporous silica microspheres for selective and efficient determination of protocatechuic acid in Syzygium aromaticum. Food Chem. 2015, 178, 18–25. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, A.; Li, Y.; Liu, S. Magnetic molecular imprinted polymers-based nanozyme for specific colorimetric detection of protocatechuic acid. Coatings 2023, 13, 1374. [Google Scholar] [CrossRef]
- Quirós-Sauceda, A.E.; Chen, C.Y.O.; Blumberg, J.B.; Astiazaran-Garcia, H.; Wall-Medrano, A.; González-Aguilar, G.A. Processing ‘ataulfo’ mango into juice preserves the bioavailability and antioxidant capacity of its phenolic compounds. Nutrients 2017, 9, 1082. [Google Scholar] [CrossRef]
- Cruz-Cansino, N.D.; Cariño-Cortés, R.; Neria-de la Cruz, R.; Sandoval-Gallegos, E.M.; Sumaya-Martínez, M.T.; Ramírez-Moreno, E.; Fernández-Martínez, E. Ultrasound with controlled temperature as an emerging technology for extraction of antioxidant compounds from by-products of mango (Mangifera indica L. varAtaulfo) juice. Emir. J. Food Agric. 2023, 35, 162–169. [Google Scholar] [CrossRef]
- Dars, A.G.; Hu, K.; Liu, Q.D.; Abbas, A.; Xie, B.J.; Sun, Z.D. Effect of thermo-sonication and ultra-high pressure on the quality and phenolic profile of mango juice. Foods 2019, 8, 298. [Google Scholar] [CrossRef]
Polymer | Qexp (mg/g) | Freundlich Model | Low-Affinity Sites | High-Affinity Sites | ||||||
---|---|---|---|---|---|---|---|---|---|---|
KF (L/g) | n | R2 | KD (mg/mL) | Qmax (mg/g) | R2 | KD (mg/mL) | Qmax (mg/g) | R2 | ||
PCA-MIP | 38.07 | 1.078 | 1.85 | 0.997 | 0.671 | 74.23 | 0.971 | 0.074 | 23.30 | 0.992 |
PCA-NIP | 31.70 | 0.594 | 1.66 | 0.993 | 0.649 | 58.83 | 0.930 | / | / | / |
Polymer | Qe (mg/g) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
Qf (mg/g) | K1 (mg/g/min) | R2 | Qs (mg/g) | K2 (g/mg/min) | R2 | ||
PCA-MIP | 30.56 | 2.55 | 0.005 | 0.671 | 30.49 | 0.089 | 0.999 |
PCA-NIP | 27.68 | 1.77 | 0.005 | 0.867 | 27.80 | 0.161 | 0.999 |
Polymer | Functional Monomer | Solvent | Synthesis Time (Hours) | Adsorption Capacity (mg/g) | Equilibrium Time (min) | Ref |
---|---|---|---|---|---|---|
MMIPs | 4-vinylpyridine | Acetonitrile | 24 | 7.5 | 40 | [13] |
Fe3O4@mSiO2@MIP | 4-vinylpyridine | Acetonitrile | 24 | 17.2 | 140 | [47] |
MMIPs | acrylamide | Acetonitrile | 24 | - | 30 | [48] |
MIPs@Fe3O4-NH2 | dopamine | Tris-HCl | 3.5 | 46.48 | 50 | [49] |
PCA-MIP | DES and CS | Aqueous solution | 3 | 30.56 | 30 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Song, X.; Dong, Y.; Zhao, X. Green Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Protocatechuic Acid from Mango Juice. Foods 2024, 13, 2955. https://doi.org/10.3390/foods13182955
Zhang L, Song X, Dong Y, Zhao X. Green Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Protocatechuic Acid from Mango Juice. Foods. 2024; 13(18):2955. https://doi.org/10.3390/foods13182955
Chicago/Turabian StyleZhang, Liping, Xin Song, Yuxiao Dong, and Xiyan Zhao. 2024. "Green Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Protocatechuic Acid from Mango Juice" Foods 13, no. 18: 2955. https://doi.org/10.3390/foods13182955
APA StyleZhang, L., Song, X., Dong, Y., & Zhao, X. (2024). Green Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Protocatechuic Acid from Mango Juice. Foods, 13(18), 2955. https://doi.org/10.3390/foods13182955