The Influence of Processing Using Conventional and Hybrid Methods on the Composition, Polysaccharide Profiles and Selected Properties of Wheat Flour Enriched with Baking Enzymes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Enzymatic Hydrolysis
2.3. Dry Heat Treatment
2.4. Hydrothermal Treatment
2.5. Low-Temperature Extrusion-Cooking Treatment
2.6. Proximate Composition Analysis
2.7. Content and Fractions of Non-Starch Polysaccharides and Arabinoxylan Analysis
2.8. Hydration and Retention Properties
2.9. Pasting Properties
2.10. Rheological Tests
2.11. X-ray Diffraction Analysis
2.12. Microstructure Observations
2.13. Statistical Analysis
3. Results and Discussion
3.1. Effect of Treatment Method on Proximate Composition
3.2. Influence of Modification Conditions on Polysaccharide Fractions
3.3. Effect of Treatment on Hydration and Retention Properties
3.4. Impact of Heat Treatment Processes on Pasting Properties
3.5. Heat Treatment Impact on Rheological Dough Properties
Sample | Hyd (%) | DT (min) | S (min) | C2 (Nm) | C3 (Nm) | C4 (Nm) | C5 (Nm) |
---|---|---|---|---|---|---|---|
F | 60.5 ± 0.1 b | 1.92 ± 0.19 a | 9.73 ± 0.12 e | 0.477 ± 0.01 c | 1.709 ± 0.01 c,d | 1.479 ± 0.01 e | 2.519 ± 0.00 e,f |
FC | 60.6 ± 0.1 b | 2.66 ± 0.76 a,b | 9.60 ± 0.36 d,e | 0.432 ± 0.00 a,b | 1.673 ± 0.006 c | 1.433 ± 0.03 d,e | 2.414 ± 0.03 d,e |
FCX | 61.2 ± 0.2 b | 3.22 ± 0.34 b | 9.37 ± 0.15 c,d,e | 0.423 ± 0.00 a | 1.674 ± 0.01 c | 1.351 ± 0.01 c | 2.173 ± 0.04 c |
TF | 57.6 ± 0.3 a | 4.94 ± 0.39 c | 9.23 ± 0.06 b,c,d | 0.454 ± 0.01 b,c | 1.665 ± 0.01 c | 1.352 ± 0.02 c | 2.343 ± 0.07 d |
TFC | 60.8 ± 0.2 b | 4.81 ± 0.20 c | 9.03 ± 0.15 b,c | 0.448 ± 0.01 a,b | 1.666 ± 0.01 c | 1.393 ± 0.01 c,d | 2.402 ± 0.06 d,e |
TFCX | 61.6 ± 0.2 b | 4.68 ± 0.07 c | 8.83 ± 0.23 b | 0.441 ± 0.01 a,b | 1.657 ± 0.01 c | 1.382 ± 0.02 c,d | 2.330 ± 0.05 c,d |
HF | 58.1 ± 0.4 a | 2.37 ± 0.38 a,b | 10.87 ± 0.23 f | 0.572 ± 0.01 e | 1.781 ± 0.01 d | 1.571 ± 0.05 f | 2.675 ± 0.13 f |
HFC | 58.3 ± 0.2 a | 7.40 ± 0.94 d | 11.90 ± 0.10 g | 0.770 ± 0.00 g | 1.985 ± 0.00 e | 1.832 ± 0.01 g | 3.072 ± 0.02 g |
HFCX | 58.7 ± 1.1 a | 3.14 ± 0.54 a,b | 11.77 ± 0.15 g | 0.699 ± 0.01 f | 1.939 ± 0.02 e | 1.801 ± 0.01 g | 2.952 ± 0.07 g |
EF | 94.3 ± 1.5 c | 2.59 ± 0.01 a,b | 3.83 ± 0.06 a | 0.524 ± 0.02 d | 0.745 ± 0.02 b | 0.491 ± 0.02 b | 0.844 ± 0.03 b |
EFC | 95.2 ± 0.1 c | 2.13 ± 0.20 a,b | 3.87 ± 0.06 a | 0.529 ± 0.00 d | 0.639 ± 0.10 a | 0.443 ± 0.00 b | 0.777 ± 0.01 a,b |
EFCX | 101.2 ± 0.3 d | 2.66 ± 0.01 a,b | 3.42 ± 0.03 a | 0.566 ± 000 e | 0.576 ± 0.00 a | 0.366 ± 0.00 a | 0.657 ± 0.01 a,b |
Sample | P (mm) | L (mm) | W (10−4 J) | P/L (-) | Ie (%) | SH (-) |
---|---|---|---|---|---|---|
F | 111 ± 3 b | 77 ± 6 c,d | 273 ± 18 d | 1.45 ± 0.10 a | 49.27 ± 0.81 c | 1.66 ± 0.02 c |
FC | 105 ± 1 b,c,d | 74 ± 6 c | 253 ± 12 c,d | 1.42 ± 0.12 a | 48.87 ± 0.46 c | 1.67 ± 0.03 c |
FCX | 107 ± 1 c,d | 78 ± 3 c,d | 266 ± 8 c,d | 1.37 ± 0.03 a | 49.60 ± 0.61 c | 1.66 ± 0.02 c |
TF | 82 ± 3 a | 87 ± 1 d | 199 ± 6 b | 0.95 ± 0.04 a | 44.83 ± 0.29 a | 1.48 ± 0.05 a |
TFC | 98 ± 2 b,c | 86 ± 3 d | 243 ± 10 c,d | 1.12 ± 0.02 a | 46.50 ± 0.70 b | 1.54 ± 0.02 a,b |
TFCX | 101 ± 5 b,c | 84 ± 3 c,d | 249 ± 16 c,d | 1.21 ± 0.03 a | 46.47 ± 0.35 b | 1.55 ± 0.01 a,b |
HF | 140 ± 6 e | 38 ± 1 b | 227 ± 13 c | 3.71 ± 0.21 b | ND | 2.08 ± 0.02 e |
HFC | 97 ± 3 b | 26 ± 7 a | 134 ± 31 a | 3.97 ± 0.96 b,c | ND | 1.84 ± 0.03 d |
HFCX | 147 ± 4 e | 31 ± 1 a,b | 194 ± 7 b | 4.70 ± 0.19 c | ND | 1.61 ± 0.06 b,c |
3.6. Treatment Effect on X-ray-Detected Structure
3.7. Microstructure of Native and Processed Flours
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, L.M.; Choi, I.; Park, C.S.; Baik, B.K. Bran hydration and physical treatments improve the bread-baking quality of whole grain wheat flour. Cereal Chem. 2015, 92, 557–564. [Google Scholar] [CrossRef]
- Arcila, J.A.; Weier, S.A.; Rose, D.J. Changes in dietary fiber fractions and gut microbial fermentation properties of wheat bran after extrusion and bread making. Food Res. Int. 2015, 74, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Long, D.; Ye, F.; Zhao, G. Optimization and characterization of wheat bran modified by in situ enhanced CO2 blasting extrusion. LWT-Food Sci. Technol. 2014, 59, 605–611. [Google Scholar] [CrossRef]
- Bucsella, B.; Takács, Á.; Vizer, V.; Schwendener, U.; Tömösközi, S. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours. Food Chem. 2016, 190, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-Q.; Luo, S.-Z.; Zhong, X.-Y.; Cai, J.; Jiang, S.-T.; Zheng, Z. Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation. Food Chem. 2017, 214, 393–399. [Google Scholar] [CrossRef]
- Schofield, J.D.; Bottomley, R.C.; Timms, M.F.; Booth, M.R. The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions. J. Cereal Sci. 1983, 1, 241–253. [Google Scholar] [CrossRef]
- Xu, K.; Kuang, J. Effects of thermal treatment on the physicochemical and structural properties of wheat gluten proteins: Insights from gluten, glutenin, and gliadin fractions. Int. J. Food Sci. Technol. 2024, 59, 2275–2285. [Google Scholar] [CrossRef]
- Guerrieri, N.; Cerletti, P. Effect of high-temperature short-time treatment of wheat flour on gluten vitality and structure. Cereal Chem. 1996, 73, 375–378. [Google Scholar]
- Ma, F.; Lee, Y.Y.; Park, E.; Luo, Y.; Delwiche, S.; Baik, B.K. Influences of hydrothermal and pressure treatments of wheat bran on the quality and sensory attributes of whole wheat Chinese steamed bread and pancakes. J. Cereal Sci. 2021, 102, 103356. [Google Scholar] [CrossRef]
- Chiu, C.; Solarek, D. Modification of Starches. In Starch: Chemistry and Technology, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Academic Press: Cambridge, MA, USA; Elsevier Inc.: Amsterdam, The Netherlands, 2009; pp. 629–648. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, K.; Zhang, S.; Shi, M.; Liao, L. Impact of oat supplementation on the structure, digestibility, and sensory properties of extruded instant rice. Foods 2024, 13, 217. [Google Scholar] [CrossRef]
- Kong, C.; Duan, C.; Zhang, S.; Liu, R.; Sun, Y.; Zhou, S. Effects of co-modification by extrusion and enzymatic hydrolysis on physicochemical properties of black wheat bran and its prebiotic potential. Foods 2023, 12, 2367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jia, X.; Xu, L.; Xue, Y.; Pan, Q.; Shen, W.; Wang, Z. Effect of extrusion and semi-solid enzymatic hydrolysis modifications on the quality of wheat bran and steamed bread containing bran. J. Cereal Sci. 2022, 108, 103577. [Google Scholar] [CrossRef]
- Melim Miguel, A.S.; Souza, T.; da Costa Figueiredo, E.V.; Paulo Lobo, B.W.; Maria, G. Enzymes in Bakery: Current and Future Trends. In Food Industry; Muzzalupo, I., Ed.; InTech Open (ebook): London, UK, 2013. [Google Scholar] [CrossRef]
- Bender, D.; Nemeth, R.; Wimmer, M.; Gotschhofer, S.; Biolchi, M.; Török, K.; Tömösközi, S.; D’Amico, S.; Schoenlechner, R. Optimization of arabinoxylan isolation from rye bran by adapting extraction solvent and use of enzymes. J. Food Sci. 2017, 82, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Fadel, A.; Ashworth, J.; Plunkett, A.; Mahmoud, A.M.; Ranneh, Y.; Li, W. Improving the extractability of arabinoxylans and the molecular weight of wheat endosperm using extrusion processing. J. Cereal Sci. 2018, 84, 55–61. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Andersson, R.; Jonsäll, A.; Andersson, J.; Fredriksson, H. Effect of different extrusion parameters on dietary fiber in wheat bran and rye bran. J. Food Sci. 2017, 82, 1344–1350. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Kang, J.; Wang, N.; Xiao, M.; Li, Z.; Wang, C.; Guo, Q.; Hu, X. Arabinoxylan from wheat bran: Molecular degradation and functional investigation. Food Hydrocol. 2020, 107, 105914. [Google Scholar] [CrossRef]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional aspects of food extrusion: A review. Int. J. Food Sci. Technol. 2007, 42, 916–929. [Google Scholar] [CrossRef]
- Werner, K.; Pommer, L.; Broström, M. Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis 2014, 110, 130–137. [Google Scholar] [CrossRef]
- Demuth, T.; Betschart, J.; Nystrom, L. Structural modifications to water-soluble wheat bran arabinoxylan through milling and extrusion. Carb. Polym. 2020, 240, 116328. [Google Scholar] [CrossRef]
- Singkhornart, S.; Lee, S.G.; Ryu, G.H. Influence of twin-screw extrusion on soluble arabinoxylans and corn fiber gum from corn fiber. J. Sci. Food Agric. 2013, 93, 3046–3054. [Google Scholar] [CrossRef]
- Lewko, P.; Wójtowicz, A.; Gancarz, M. Distribution of arabinoxylans and their relationship with physiochemical and rheological properties in wheat flour mill streams as an effective way to predict flour functionality. Appl. Sci. 2023, 13, 5458. [Google Scholar] [CrossRef]
- ICC Standard Methods. Vienna, Austria: International Association for Cereal Science and Technology (On-Line Version). 2018. Available online: https://icc.or.at/icc-standards/standards-overview (accessed on 2 August 2023).
- AACC Approved Methods of Analysis; American Association of Cereal Chemists: St. Paul, MN, USA, 2009.
- AOAC Official Methods of Analysis, 15th ed.; The Association of Official Analytical Chemists: Arlington, VA, USA, 1990.
- McCleary, B.; DeVries, J.; Rader, J.; Cohen, G.; Prosky, L.; Mugford, D.; Champ, M.; Okuma, K. Determination of insoluble, soluble, and total dietary fiber (CODEX Definition) by enzymatic-gravimetric method and liquid chromatography: Collaborative study. J. AOAC Int. 2012, 95, 824–844. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.; Cummings, J. Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 1984, 109, 937–942. [Google Scholar] [CrossRef]
- Fraś, A. Analiza Zmienności Zawartości Błonnika Pokarmowego i Alkilorezorcynoli w Ziarnie Pszenicy Zwyczajnej (Triticum Aestivum L.) (Analysis of the Variability of the Content of Dietary Fiber and Alkylresorcinols in Common Wheat Grain (Triticum Aestivum L.). Ph.D. Thesis, The Plant Breeding and Acclimatization Institute—National Research Institute in Radzików (IHAR-PIB), Radzików, Błonie, Poland, 2011. [Google Scholar]
- Vukić, M.; Janić Hajnal, E.; Mastilović, J.; Vujadinović, D.; Ivanović, M.; Šoronja-Simović, D. Application of solvent retention capacity tests for prediction of rheological parameters of wheat flour mill streams. Hem. Ind. 2020, 74, 37–49. [Google Scholar] [CrossRef]
- Szafrańska, A.; Rachoń, L.; Szumiło, G. Estimation of protein-starch complex of selected wheat species depending on production technology intensity. Zesz. Probl. Postęp. Nauk Rol. 2015, 582, 81–90. [Google Scholar]
- Dubat, A. A New AACC International Approved Method to measure rheological properties of a dough sample. Cereal Foods World 2010, 55, 150–153. [Google Scholar] [CrossRef]
- Hu, J.; Wang, L.; Zhu, H.; Li, Z. Superheated steam treatment improved flour qualities of wheat in suitable conditions. J. Food Proces. Preserv. 2017, 41, 13238. [Google Scholar] [CrossRef]
- Codină, G.G.; Mironeasa, S.; Bordei, D.; Leahu, A. Mixolab versus Alveograph and falling number. Czech J. Food Sci. 2010, 28, 185–191. [Google Scholar] [CrossRef]
- Jødal, A.S.; Larsen, K.L. Investigation of the relationships between the alveograph parameters. Sci. Rep. 2021, 11, 5349. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Rudyk, H.; Dobrowolski, P.; Donaldson, J.; Świetlicka, I.; Puzio, I.; Kamiński, D.; Wiącek, D.; Kushnir, V.; Brezvyn, O.; et al. Changes in the intestinal histomorphometry, the expression of intestinal tight junction proteins, and the bone structure and liver of pre-laying hens following oral administration of fumonisins for 21 days. Toxins 2021, 13, 375. [Google Scholar] [CrossRef]
- Bouasla, A.; Wójtowicz, A.; Zidoune, M.N.; Olech, M.; Nowak, R.; Mitrus, M.; Oniszczuk, A. Gluten-free precooked rice-yellow pea pasta: Effect of extrusion-cooking conditions on phenolic acids composition, selected properties and microstructure. J. Food Sci. 2016, 81, C1070–C1079. [Google Scholar] [CrossRef] [PubMed]
- Tebben, L.; Shen, Y.; Li, Y. Improvers and functional ingredients in whole wheat bread: A review of their effects on dough properties and bread quality. Trends Food Sci. Technol. 2018, 81, 10–24. [Google Scholar] [CrossRef]
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Critic. Rev. Food Sci. Nutr. 2016, 56, 445–475. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Y.; Ma, F.; Byars, J.A.; Felker, F.C.; Liu, S.; Mosier, N.S.; Lee, J.H.; Kenar, J.A.; Baik, B.K. Influences of hydrothermal and pressure treatments on compositional and hydration properties of wheat bran and dough mixing properties of whole wheat meal. Cereal Chem. 2021, 98, 673–682. [Google Scholar] [CrossRef]
- Yağcı, S.; Kocabaş, D.S.; Çalışkanb, R.; Özbek, H.N. Statistical investigation of the bioprocess conditions of alkali combined twin-screw extrusion pretreatment to enhance fractionation and enzymatic hydrolysis of bulgur bran. J. Sci. Food Agric. 2022, 102, 4770–4779. [Google Scholar] [CrossRef]
- Kweon, M.; Slade, L.; Levine, H. Solvent Retention Capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding—A review. Cereal Chem. 2011, 88, 537–552. [Google Scholar] [CrossRef]
- Van Steertegem, B.; Pareyt, B.; Slade, L.; Levine, H.; Brijs, K.; Delcour, J.A. Impact of heat treatment on wheat flour solvent retention capacity (SRC) profiles. Cereal Chem. 2013, 90, 608–610. [Google Scholar] [CrossRef]
- Keppler, S.; Bakalis, S.; Leadley, C.E.; Sahi, S.S.; Fryer, P.J. Evaluation of dry heat treatment of soft wheat flour for the production of high ratio cakes. Food Res. Int. 2018, 107, 360–370. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Lin, L.; Li, E.; Cao, Q.; Wei, C. Relationships between X-ray diffraction peaks, molecular components, and heat properties of C-type starches from different sweet potato varieties. Molecules 2022, 27, 3385. [Google Scholar] [CrossRef]
- Cham, S.; Suwannaporn, P. Effect of hydrothermal treatment of rice flour on various rice noodles quality. J. Cereal Sci. 2010, 51, 284–291. [Google Scholar] [CrossRef]
- McCann, T.H.; Leder, A.; Buckow, R.; Day, L. Modification of structure and mixing properties of wheat flour through high-pressure processing. Food Res. Int. 2013, 53, 352–361. [Google Scholar] [CrossRef]
- Hong, T.; Ma, Y.; Wu, F.; Jin, Y.; Xu, D.; Xu, X. Understanding the effects of dry heat treatment on wheat flour pasting: Insights from protein and starch structural changes. J. Cereal Sci. 2023, 113, 103740. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Bajaj, R.; Kaur, A. Wheat starch production, structure, functionality and applications—A review. Int. J. Food Sci. Technol. 2017, 52, 38–58. [Google Scholar] [CrossRef]
- Ma, Y.; Sang, S.; Xu, D.; Jin, Y.; Chen, Y.; Xu, X. The contribution of superheated steam treatment of wheat flour to the cake quality. LWT-Food Sci. Technol. 2021, 141, 110958. [Google Scholar] [CrossRef]
- Deng, F.; Hu, X.; Wang, Y.; Luo, S.; Liu, C. Improving the yield of feruloyl oligosaccharides from rice bran through enzymatic extrusion and its mechanism. Foods 2023, 12, 1369. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Luo, S.; Li, C.; Ye, J.; Liu, C.; Gilbert, R.G. Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology. Carb. Polym. 2017, 175, 265–272. [Google Scholar] [CrossRef]
- Román, L.; Martínez, M.; Rosell, C.; Gómez, M. Changes in physicochemical properties and in vitro starch digestion of native and extruded maize flours subjected to branching enzyme and maltogenic α-amylase treatment. Int. J. Biological Macromol. 2017, 101, 326–333. [Google Scholar] [CrossRef]
- Lewko, P.; Wójtowicz, A.; Różańska-Boczula, M. Effect of extruder configuration and extrusion cooking processing parameters on selected characteristics of non-starch polysaccharide-rich wheat flour as hybrid treatment with xylanase addition. Processes 2024, 12, 1159. [Google Scholar] [CrossRef]
- Gómez, M.; Jiménez, S.; Ruiz, E.; Oliete, B. Effect of extruded wheat bran on dough rheology and bread quality. LWT-Food Sci. Technol. 2011, 44, 2231–2237. [Google Scholar] [CrossRef]
- Tayefe, M.; Shahidi, S.A.; Milani, J.M.; Sadeghi, S.M. Development, optimization, and critical quality characteristics of new wheat-flour dough formulations fortified with hydrothermally-treated rice bran. J. Food Meas. Charact. 2020, 14, 2878–2888. [Google Scholar] [CrossRef]
- Tao, H.; Zhu, X.F.; Nan, B.X.; Jiang, R.Z.; Wang, H.L. Effect of extruded starch on the structure, farinograph characteristics and baking behavior of wheat dough. Food Chem. 2021, 348, 129017. [Google Scholar] [CrossRef]
- Zeng, J.; Li, G.; Gao, H.; Ru, Z. Comparison of A and B starch granules from three wheat varieties. Molecules 2011, 16, 10570–10591. [Google Scholar] [CrossRef]
- Liu, S.; Du, C.; Feng, J.; Jia, Y.; Hao, Z.; Xie, Y.; Wang, C.; Ma, D. Characterization of starch physicochemical properties and grain transcriptome reveal the mechanism for resistant starch accumulation. Agronomy 2023, 13, 1482. [Google Scholar] [CrossRef]
- Merayo, Y.A.; González, R.J.; Drago, S.R.; Torres, R.L.; De Greef, D.M. Extrusion conditions and zea mays endosperm hardness affecting gluten-free spaghetti quality. Int. J. Food Sci. Technol. 2011, 46, 2321–2328. [Google Scholar] [CrossRef]
- He, W.; Tian, J.; Li, J.; Jin, H.; Li, Y. Characterization and properties of cellulose nanofiber/polyaniline film composites synthesized through insitu polymerization. BioResources 2016, 11, 8535–8547. [Google Scholar] [CrossRef]
- Lu, H.; Wang, C.; Guo, T.; Xie, Y.; Feng, W.; Li, S. Starch composition and its granules distribution in wheat grains in relation to post-anthesis high temperature and drought stress treatments. Starch/Starke 2014, 66, 419–428. [Google Scholar] [CrossRef]
- Cervantes-Ramírez, J.; Cabrera-Ramirez, A.; Morales-Sánchez, E.; Rodriguez-García, M.; Reyes-Vega, M.; Ramírez-Jiménez, A.; Contreras-Jiménez, B.; Gaytán-Martínez, M. Amylose-lipid complex formation from extruded maize starch mixed with fatty acids. Carb. Polym. 2020, 246, 116555. [Google Scholar] [CrossRef]
Sample | Moisture (%) | Protein (%) | Fat (%) | Ash (%) | IDF (%) | SDF (%) | TDF (%) | IDF/ SDF (-) |
---|---|---|---|---|---|---|---|---|
F | 13.93 0.08 e | 14.62 ± 0.06 a,b | 1.31 ± 0.01 d | 0.72 ± 0.02 a | 3.94 ± 0.04 d | 2.86 ± 0.01 e | 6.80 ± 0.03 e | 1.38 |
FC | 13.89 ± 0.09 e | 14.52 ± 0.03 a | 1.39 ± 0.02 f | 0.74 ± 0.02 a,b,c,d | 3.81 ± 0.03 c | 2.33 ± 0.03 b | 6.14 ± 0.05 c | 1.63 |
FCX | 13.76 ± 0.07 e | 14.64 ± 0.01 a,b,c | 1.30 ± 0.01 d | 0.73 ± 0.01 a,b | 4.10 ± 0.03 e | 2.56 ± 0.01 c | 6.66 ± 006 d | 1.61 |
TF | 7.01 ± 0.06 a | 14.75 ± 0.05 c,d | 1.34 ± 0.03 d,e | 074 ± 0.01 a,b,c | 4.70 ± 0.02 h | 2.87 ± 0.02 e | 7.57 ± 0.01 h | 1.64 |
TFC | 7.17 ± 0.13 a | 14.92 ± 0.04 e,f | 1.38 ± 0.01 e,f | 0.76 ± 0.01 b,c,d,e | 4.25 ± 0.03 f | 2.79 ± 0.01 d | 7.04 ± 0.04 f,g | 1.52 |
TFCX | 7.23 ± 0.11 a | 15.11 ± 0.05 g | 1.36 ± 0.02 e,f | 0.82 ± 0.02 f | 4.22 ± 0.01 f | 2.74 ± 0.03 d | 6.96 ± 0.03 f | 1.54 |
HF | 8.98 ± 0.09 c | 14.85 ± 0.03 d,e | 1.37 ± 0.02 e,f | 0.76 ± 0.02 b,c,d,e | 3.91 ± 0.04 d | 3.12 ± 0.01 g | 7.02 ± 0.07 f,g | 1.25 |
HFC | 9.17 ± 0.12 c,d | 14.81 ± 0.04 d,e | 1.30 ± 0.01 d | 0.78 ± 0.01 d,e | 4.60 ± 0.03 g | 2.89 ± 0.01 e,f | 7.49 ± 0.03 h | 1.59 |
HFCX | 9.28 ± 0.06 d | 15.02 ± 0.06 f,g | 1.30 ± 0.02 d | 0.73 ± 0.02 a,b | 4.05 ± 0.04 e | 2.55 ± 0.03 c | 6.60 ± 0.06 d | 1.58 |
EF | 8.18 ± 0.06 b | 14.76 ± 0.04 c,d | 0.22 ± 0.02 b | 0.77 ± 0.01 c,d,e | 3.05 ± 0.03 a | 2.24 ± 0.02 a | 5.29 ± 0.05 a | 1.37 |
EFC | 8.06 ± 0.08 b | 14.67 ± 0.05 b,c | 0.16 ± 0.02 a | 0.78 ± 0.01 e | 4.20 ± 0.03 f | 2.95 ± 0.03 f | 7.15 ± 0.06 g | 1.42 |
EFCX | 8.26 ± 0.13 b | 14.89 ± 0.05 e,f | 0.29 ± 0.02 c | 0.83 ± 0.01 f | 3.15 ± 0.02 b | 2.57 ± 0.02 c | 5.73 ± 0.03 b | 1.23 |
Sample | Insoluble Polysaccharides | |||||
---|---|---|---|---|---|---|
I-Mannose (%) | I-Galactose (%) | I-Glucose (%) | I-Arabinose (%) | I-Xylose (%) | I-A/X (-) | |
F | 0.131 ± 0.002 a,b | 0.078 ± 0.003 a,b,c | 0.548 ± 0.024 b,c | 0.549 ± 0.019 d | 0.759 ± 0.019 e,f | 0.723 ± 0.007 a |
FC | 0.133 ± 0.005 a,b | 0.074 ± 0.002 a,b | 0.535 ± 0.005 b,c | 0.458 ± 0.027 b,c | 0.674 ± 0.004 c,d | 0.680 ± 0.044 a |
FCX | 0.142 ± 0.017 a,b | 0.081 ± 0.007 a,b,c | 0.528 ± 0.003 a,b,c | 0.518 ± 0.020 b,c,d | 0.651 ± 0.033 b,c | 0.798 ± 0.072 a |
TF | 0.137 ± 0.016 a,b | 0.097 ± 0.008 b,c | 0.662 ± 0.018 e | 0.582 ± 0.009 d | 0.842 ± 0.024 g | 0.692 ± 0.009 a |
TFC | 0.129 ± 0.009 a,b | 0.081 ± 0.005 a,b,c | 0.538 ± 0.012 b,c | 0.536 ± 0.013 c,d | 0.735 ± 0.010 d,e,f | 0.729 ± 0.027 a |
TFCX | 0.168 ± 0.013 b | 0.072 ± 0.013 a,b | 0.630 ± 0.015 d,e | 0.498 ± 0.031 b,c,d | 0.691 ± 0.019 c,d,e | 0.721 ± 0.025 a |
HF | 0.154 ± 0.015 a,b | 0.087 ± 0.009 a,b,c | 0.654 ± 0.001 e | 0.503 ± 0.004 b,c,d | 0.695 ± 0.007 c,d,e | 0.723 ± 0.013 a |
HFC | 0.231 ± 0.031 c | 0.100 ± 0.001 c | 0.657 ± 0.001 e | 0.539 ± 0.040 c,d | 0.787 ± 0.002 f,g | 0.685 ± 0.052 a |
HFCX | 0.153 ± 0.006 a,b | 0.081 ± 0.004 a,b,c | 0.569 ± 0.012 c | 0.446 ± 0.009 b | 0.589 ± 0.022 b | 0.758 ± 0.013 a |
EF | 0.120 ± 0.005 a | 0.074 ± 0.001 a,b | 0.573 ± 0.003 c,d | 0.507 ± 0.007 b,c,d | 0.694 ± 0.014 c,d,e | 0.731 ± 0.005 a |
EFC | 0.131 ± 0.014 a,b | 0.069 ± 0.014 a | 0.469 ± 0.052 a | 0.516 ± 0.078 b,c,d | 0.642 ± 0.043 b,c | 0.800 ± 0.068 a |
EFCX | 0.129 ± 0.003 a,b | 0.091 ± 0.016 a,b,c | 0.496 ± 0.028 a,b | 0.353 ± 0.013 a | 0.474 ± 0.057 a | 0.749 ± 0.063 a |
Sample | Soluble Polysaccharides | |||||
---|---|---|---|---|---|---|
S-Mannose (%) | S-Galactose (%) | S-Glucose (%) | S-Arabinose (%) | S-Xylose (%) | S-A/X (-) | |
F | 0.265 ± 0.008 b,c | 0.118 ± 0.000 a | 0.352 ± 0.017 a,b,c,d | 0.276 ± 0.008 a,b | 0.328 ± 0.012 b | 0.842 ± 0.008 c,d |
FC | 0.275 ± 0.001 c,d | 0.123 ± 0.003 a | 0.313 ± 0.012 a | 0.281 ± 0.002 a,b | 0.335 ± 0.003 b | 0.839 ± 0.000 c,d |
FCX | 0.274 ± 0.006 c,d | 0.124 ± 0.002 a | 0.381 ± 0.005 d,e | 0.287 ± 0.001 a,b | 0.351 ± 0.007 b | 0.819 ± 0.013 b,c,d |
TF | 0.239 ± 0.014 a,b | 0.121 ± 0.00 a | 0.356 ± 0.004 b,c,d | 0.296 ± 0.002 b | 0.324 ± 0.022 b | 0.916 ± 0.069 d |
TFC | 0.242 ± 0.012 a,b | 0.131 ± 0.005 a | 0.382 ± 0.002 d,e | 0.263 ± 0.006 a | 0.322 ± 0.009 b | 0.818 ± 0.002 a,b,c,d |
TFCX | 0.249 ± 0.013 a,b,c | 0.115 ± 0.004 a | 0.324 ± 0.025 a,b | 0.271 ± 0.004 a,b | 0.342 ± 0.004 b | 0.791 ± 0.002 a,b,c |
HF | 0.295 ± 0.005 d | 0.131 ± 0.002 a | 0.392 ± 0.008 d,e | 0.275 ± 0.017 a,b | 0.396 ± 0.024 c | 0.698 ± 0.085 a |
HFC | 0.227 ± 0.007 a | 0.118 ± 0.013 a | 0.420 ± 0.024 e | 0.281 ± 0.012 a,b | 0.268 ± 0.011 a | 1.048 ± 0.00 e |
HFCX | 0.241 ± 0.008 a,b | 0.121 ± 0.011 a | 0.415 ± 0.004 e | 0.360 ± 0.001 c | 0.468 ± 0.009 d | 0.769 ± 0.018 a,b,c |
EF | 0.257 ± 0.001 b,c | 0.119 ± 0.000 a | 0.322 ± 0.000 a,b | 0.268 ± 0.008 a,b | 0.341 ± 0.007 b | 0.788 ± 0.005 a,b,c |
EFC | 0.300 ± 0.020 d | 0.121 ± 0.013 a | 0.369 ± 0.025 c,d | 0.283 ± 0.025 a,b | 0.401 ± 0.013 c | 0.708 ± 0.087 a,b |
EFCX | 0.262 ± 0.006 b,c | 0.104 ± 0.025 a | 0.328 ± 0.008 a,b | 0.418 ± 0.005 d | 0.590 ± 0.010 e | 0.709 ± 0.002 a,b |
Sample | Polysaccharide Fractions | |||||
---|---|---|---|---|---|---|
I-AX (%) | S-AX (%) | T-AX (%) | I-NSP (%) | S-NSP (%) | T-NSP (%) | |
F | 1.31 ± 0.04 d,e,f | 0.604 ± 0.020 b,c | 1.912 ± 0.058 b,c | 2.064 ± 0.009 d,e | 1.340 ± 0.004 a | 3.404 ± 0.004 b,c |
FC | 1.13 ± 0.02 b,c | 0.616 ± 0.005 b,c | 1.749 ± 0.018 a | 1.875 ± 0.025 b,c | 1.327 ± 0.012 a | 3.202 ± 0.037 a |
FCX | 1.17 ± 0.01 b,c,d | 0.638 ± 0.009 c,d | 1.807 ± 0.004 a,b | 1.921 ± 0.008 b,c,d | 1.416 ± 0.001 b | 3.337 ± 0.007 a,b,c |
TF | 1.42 ± 0.03 f | 0.620 ± 0.020 b,c | 2.044 ± 0.013 c | 2.319 ± 0.074 f | 1.335 ± 0.037 a | 3.654 ± 0.037 e |
TFC | 1.27 ± 0.00 c,d,e | 0.585 ± 0.015 a,b | 1.856 ± 0.012 a,b | 2.020 ± 0011 c,d,e | 1.340 ± 0.004 a | 3.360 ± 0.015 a,b,c |
TFCX | 1.19 ± 0.05 c,d,e | 0.613 ± 0.007 b,c | 1.802 ± 0.042 a,b | 2.059 ± 0.064 d,e | 1.301 ± 0.035 a | 3.361 ± 0.099 a,b,c |
HF | 1.20 ± 0.00 c,d,e | 0.671 ± 0.007 d,e | 1.869 ± 0.010 a,b | 2.093 ± 0.027 e | 1.489 ± 0.018 c | 3.581 ± 0.045 d,e |
HFC | 1.33 ± 0.04 e,f | 0.548 ± 0.023 a | 1.875 ± 0.016 a,b | 2.314 ± 0.069 f | 1.313 ± 0.027 a | 3.627 ± 0.042 e |
HFCX | 1.04 ± 0.03 b | 0.828 ± 0.008 f | 1.863 ± 0.023 a,b | 1.838 ± 0.018 b | 1.605 ± 0.015 d | 3.443 ± 0.003 d |
EF | 1.20 ± 0.02 c,d,e | 0.609 ± 0.015 b,c | 1.810 ± 0.036 a,b | 1.967 ± 0.014 b,c,d,e | 1.307 ± 0.016 a | 3.274 ± 0.030 a,b |
EFC | 1.16 ± 0.12 b,c | 0.684 ± 0.012 e | 1.842 ± 0.134 a,b | 1.828 ± 0.041 b | 1.473 ± 0.021 b,c | 3.302 ± 0.062 a,b,c |
EFCX | 0.83 ± 0.07 a | 1.009 ± 0.015 g | 1.836 ± 0.055 a,b | 1.543 ± 0.111 a | 1.703 ± 0.012 e | 3.246 ± 0.123 a,b |
Sample | SRCWa (%) | SRCSu (%) | SRCLa (%) | SRCSc (%) | GPI (-) |
---|---|---|---|---|---|
F | 70.005 ± 0.062 d | 114.973 ± 0.770 c,d | 118.294 ± 0.595 c,d | 87.839 ± 0.256 b,c | 0.583 ± 0.005 c |
FC | 70.427 ± 0.049 d | 116.916 ± 1.228 d | 118.289 ± 0.624 c,d | 86.971 ± 0.080 b,c | 0.580 ± 0.001 b,c |
FCX | 75.496 ± 0.278 e | 119.827 ± 0.876 e | 126.504 ± 0.950 e | 88.702 ± 0.153 c | 0.607 ± 0.003 d |
TF | 66.757 ± 0.171 b | 113.042 ± 0.921 c | 112.155 ± 0.959 b | 85.038 ± 0.233 b | 0.566 ± 0.002 b |
TFC | 68.594 ± 0.097 c | 115.545 ± 0.407 d | 115.279 ± 1.645 b,c | 87.596 ± 0.073 b,c | 0.567 ± 0.007 b,c |
TFCX | 70.049 ± 0.820 d | 119.550 ± 1.698 e | 120.105 ± 1.256 d | 87.912 ± 0.360 b,c | 0.579 ± 0.011 b,c |
HF | 64.765 ± 0.292 a | 100.706 ± 0.493 b | 102.786 ± 1.578 a | 81.098 ± 0.066 a | 0.565 ± 0.008 b |
HFC | 66.656 ± 0.169 b | 96.238 ± 0.761 a | 102.717 ± 0.601 a | 81.218 ± 0.424 a | 0.579 ± 0.001 b,c |
HFCX | 66.324 ± 0.146 b | 99.793 ± 0.774 b | 105.804 ± 1.943 a | 81.667 ± 0.422 a | 0.583 ± 0.010 c |
EF | 167.158 ± 0.227 f | 161.398 ± 0.224 f | 172.324 ± 0.952 f | 235.073 ± 1.585 d | 0.435 ± 0.001 a |
EFC | 177.957 ± 0.609 g | 166.261 ± 0.363 g | 183.706 ± 1.429 g | 248.603 ± 2.871 e | 0.443 ± 0.001 a |
EFCX | 216.286 ± 0.156 h | 184.618 ± 0.087 h | 210.365 ± 0.588 h | 295.415 ± 0.440 f | 0.438 ± 0.001 a |
Sample | Maximum Viscosity (mPas) | Through Viscosity (mPas) | Final Viscosity (mPas) | Breakdown (mPas) | Setback (mPas) | Beginning of Gelatinization (°C) | End of Gelatinization (°C) |
---|---|---|---|---|---|---|---|
F | 1564 ± 9 h | 436 ± 3 i | 1225 ± 2 g | 1128 ± 6 g | 789 ± 4 h | 60.2 ± 0.0 c | 86.6 ± 0.1 i |
FC | 1313 ± 4 e | 322 ± 1 e | 935 ± 3 e | 990 ± 3 e | 612 ± 2 e | 60.5 ± 0.0 c | 85.5 ± 0.0 f |
FCX | 1204 ± 3 d | 281 ± 3 d | 783 ± 9 c | 923 ± 4 d | 502 ± 7 c | 60.2 ± 0.1 c | 85.2 ± 0.1 e |
TF | 1014 ± 15 a | 194 ± 3 a | 496 ± 12 a | 820 ± 12 b | 302 ± 9 a | 60.3 ± 0.1 c | 83.2 ± 0.1 a |
TFC | 1108 ± 17 b | 240 ± 2 b | 643 ± 2 b | 867 ± 16 c | 402 ± 1 b | 60.3 ± 0.1 c | 83.9 ± 0.1 b |
TFCX | 1148 ± 10 c | 256 ± 4 c | 661 ± 7 b | 901 ± 2 c,d | 404 ± 2 b | 60.0 ± 0.1 c | 84.3 ± 0.1 c |
HF | 1432 ± 26 g | 351 ± 3 f | 892 ± 9 d | 1073 ± 29 f | 540 ± 9 d | 60.2 ± 0.1 c | 84.6 ± 0.1 d |
HFC | 1975 ± 7 j | 623 ± 1 l | 1519 ± 6 j | 1353 ± 7 i | 896 ± 4 j | 60.3 ± 0.1 c | 85.8 ± 0.1 g |
HFCX | 1785 ± 6 i | 533 ± 5 k | 1290 ± 12 h | 1253 ± 2 h | 757 ± 7 g | 60.1 ± 0.1 c | 85.3 ± 0.1 e,f |
EF | 1363 ± 4 f | 480 ± 1 j | 1362 ± 4 i | 883 ± 3 c | 882 ± 5 j | 38.2 ± 0.9 b | 86.7 ± 0.2 i |
EFC | 1215 ± 16 d | 405 ± 5 h | 1221 ± 10 g | 810 ± 12 a,b | 816 ± 5 i | 37.2 ± 0.8 b | 86.3 ± 0.1 h |
EFCX | 1150 ± 16 c | 366 ± 4 g | 1092 ± 7 f | 781 ± 13 a | 726 ± 5 f | 35.2 ± 0.6 a | 86.2 ± 0.1 h |
Sample | WA500 (%) | WA 14% (%) | DT (min) | S (min) | DoS (BU) | DoS12 (BU) | QN (-) |
---|---|---|---|---|---|---|---|
F | 60.7 ± 0.3 a | 59.5 ± 0.3 c | 3.1 ± 0.6 a | 14.1 ± 0.7 c | 21.7 ± 3.2 d,e,f | 38.0 ± 2.6 c | 118.3 ± 10.3 a |
FC | 61.0 ± 0.1 a,b | 60.2 ± 0.1 d | 2.7 ± 0.3 a | 12.1 ± 0.9 a,b | 29.3 ± 5.0 f | 46.3 ± 3.1 d,e | 96.3 ± 9.9 a |
FCX | 61.3 ± 0.0 b | 60.5 ± 0.0 d,e | 3.8 ± 0.1 a,b | 13.1 ± 0.1 b,c | 19.7 ± 1.2 c,d,e | 42.0 ± 0.0 c,d | 128.0 ± 1.7 a,b |
TF | 66.0 ± 0.2 e | 58.5 ± 0.2 b | 5.9 ± 0.8 b,c | 11.5 ± 0.4 a | 17.0 ± 1.0 c,d,e | 58.7 ± 2.5 f | 126.0 ± 2.6 a,b |
TFC | 67.9 ± 0.1 f | 60.8 ± 0.1 e | 6.1 ± 0.9 c | 11.5 ± 0.3 a | 15.3 ± 3.1 b,c,d | 57.7 ± 3.5 f | 126.7 ± 5.5 a,b |
TFCX | 68.2 ± 0.1 f | 61.8 ± 0.1 f | 6.5 ± 0.9 c | 11.5 ± 0.6 a | 12.0 ± 2.0 a,b,c | 53.3 ± 2.5 e,f | 132.7 ± 2.5 a,b |
HF | 64.6 ± 0.1 d | 57.3 ± 0.1 a | 2.9 ± 0.1 a | 18.4 ± 0.1 d | 24.3 ± 4.7 e,f | 27.7 ± 3.8 b | 161.3 ± 36.3 b |
HFC | 63.5 ± 0.1 c | 58.3 ± 0.1 b | 18.5 ± 1.6 d | 17.3 ± 0.6 d | 7.7 ± 2.1 a,b | ND | 200.0 ± 0.0 c |
HFCX | 63.7 ± 0.1 c | 58.5 ± 0.2 b | 6.8 ± 0.2 c | 18.4 ± 0.1 d | 5.7 ± 0.6 a | 7.3 ± 1.2 a | 200.0 ± 0.0 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewko, P.; Wójtowicz, A.; Kamiński, D.M. The Influence of Processing Using Conventional and Hybrid Methods on the Composition, Polysaccharide Profiles and Selected Properties of Wheat Flour Enriched with Baking Enzymes. Foods 2024, 13, 2957. https://doi.org/10.3390/foods13182957
Lewko P, Wójtowicz A, Kamiński DM. The Influence of Processing Using Conventional and Hybrid Methods on the Composition, Polysaccharide Profiles and Selected Properties of Wheat Flour Enriched with Baking Enzymes. Foods. 2024; 13(18):2957. https://doi.org/10.3390/foods13182957
Chicago/Turabian StyleLewko, Piotr, Agnieszka Wójtowicz, and Daniel M. Kamiński. 2024. "The Influence of Processing Using Conventional and Hybrid Methods on the Composition, Polysaccharide Profiles and Selected Properties of Wheat Flour Enriched with Baking Enzymes" Foods 13, no. 18: 2957. https://doi.org/10.3390/foods13182957
APA StyleLewko, P., Wójtowicz, A., & Kamiński, D. M. (2024). The Influence of Processing Using Conventional and Hybrid Methods on the Composition, Polysaccharide Profiles and Selected Properties of Wheat Flour Enriched with Baking Enzymes. Foods, 13(18), 2957. https://doi.org/10.3390/foods13182957