Effect of the Addition of Yellow Mealworm (Tenebrio molitor) on the Physicochemical, Antioxidative, and Sensory Properties of Oatmeal Cookies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Proximate Composition
2.3. Minerals
2.3.1. Reagents and Materials
2.3.2. Determination of Minerals
2.4. Determination of Total Phenolic Content (TPC) and Antioxidant Activity
2.4.1. Extract Preparation
2.4.2. Total Phenolic Content (TPC)
2.4.3. Antioxidant Activity
2.5. Determination of Fatty Acid Profile (FAs)
2.5.1. Fat Extraction
2.5.2. Fatty Acid Profile
2.6. Instrumental Texture Analysis
2.7. Color Measurement
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Minerals Analysis
3.3. Antioxidant Properties
3.4. Fatty Acid Composition
3.5. Texture Analysis
3.6. Color
3.7. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as ingredients for bakery goods. A comparison study of H. illucens, A. domestica and T. molitor flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Zielińska, E.; Pankiewicz, U.; Sujka, M. Nutritional, physiochemical, and biological value of muffins enriched with edible insects flour. Antioxidants 2021, 10, 1122. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, S.; Garcia-Garcia, G.; Duong, L.; Swainson, M.; Martindale, W. Codesign of food system and circular economy approaches for the development of livestock feeds from insect larvae. Foods 2021, 10, 1701. [Google Scholar] [CrossRef]
- Orkusz, A. Edible insects versus meat—Nutritional comparison: Knowledge of their composition is the key to good health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef]
- Jongema, Y. List of Edible Insects of the World; Wageningen University & Research: Wageningen, ND, USA, 2017; Available online: https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edibleinsects/Worldwide-species-list.htm (accessed on 13 September 2019).
- Global Market Insight. Edible Insects Market; Report ID: GMI501; Global Market Insights Inc.: Selbyville, DE, USA. 2020; Available online: https://www.gminsights.com/industry-analysis/edible-insects-market (accessed on 16 October 2022).
- Toviho, O.A.; Barsony, P. Nutrient composition and growth of yellow mealworm (Tenebrio molitor) at different ages and stages of the life cycle. Agriculture 2022, 12, 1924. [Google Scholar] [CrossRef]
- Nafary, A.; Mousavi Nezhad, S.; Jalili, S. Extraction and characterization of chitin and chitosan from Tenebrio molitor beetles and investigation of its antibacterial effect against Pseudomonas aeruginosa. Adv. Biomed. Res. 2023, 12, 2–7. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT 2022, 159, 113220. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; et al. Protein fortification with mealworm (Tenebrio molitor L.) powder: Effect on textural, microbiological, nutritional and sensory features of bread. PLoS ONE 2019, 14, e0211747. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Skotnicka, M.; Mickowska, B.; Makarewicz, M.; Sabat, R.; Wywrocka-Gurgul, A.; Mazurek, A. Effect of the addition of edible insect flour from yellow mealworm (Tenebrio molitor) on the sensory acceptance, and the physicochemical and textural properties of sponge cake. Pol. J. Food Nutr. Sci. 2022, 72, 393–405. [Google Scholar] [CrossRef]
- Duda, A.; Adamczak, J.; Chelminska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and nutritional/textural properties of durum wheat pasta enriched with cricket powder. Foods 2019, 8, 46. [Google Scholar] [CrossRef]
- Petrescu-Mag, R.M.; Kopaei, H.R.; Petrescu, D.C. Consumers’ acceptance of the first novel insect food approved in the European Union: Predictors of yellow mealworm chips consumption. Food Sci. Nutr. 2022, 10, 846–862. [Google Scholar] [CrossRef] [PubMed]
- Borges, M.M.; da Costa, D.V.; Trombete, F.M.; Câmara, A.K.F.I. Edible insects as a sustainable alternative to food products: An insight into quality aspects of reformulated bakery and meat products. Curr. Opin. Food Sci. 2022, 46, 100864. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Kim, S.K.; Weaver, C.M.; Choi, M.K. Proximate composition and mineral content of five edible insects consumed in Korea. CYTA J. Food 2017, 15, 143–146. [Google Scholar] [CrossRef]
- de Carvalho, N.M.; Teixeira, F.; Silva, S.; Madureira, A.R.; Pintado, M.E. Potential prebiotic activity of Tenebrio molitor insect flour using an optimized in vitro gut microbiota model. Food Funct. 2019, 10, 3909–3922. [Google Scholar] [CrossRef]
- Yoon, S.; Wong, N.A.K.; Chae, M.; Auh, J.-H. Comparative characterization of protein hydrolysates from three edible insects: Mealworm larvae, adult crickets, and silkworm pupae. Foods 2019, 8, 563. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 2017, 9, 970. [Google Scholar] [CrossRef]
- Zielińska, E.; Karaś, M.; Baraniak, B.; Jakubczyk, A. Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects. Eur. Food Res. Technol. 2020, 246, 1361–1369. [Google Scholar] [CrossRef]
- Cozmuta, A.M.; Nicula, C.; Peter, A.; Cozmuta, L.M.; Nartea, A.; Kuhalskaya, A.; Pacetti, D.; Silvi, S.; Fiorini, D.; Pruteanu, L. Cricket and yellow mealworm powders promote higher bioaccessible fractions of mineral elements in functional bread. J. Funct. Foods 2022, 99, 105310. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 934.01, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis, 2001.11, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis, 991.36, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis, 945.16, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Klepacka, J.; Tońska, E.; Rafalowski, R.; Czarnowska-Kujawska, M.; Opara, B. Tea as a source of biologically active compounds in the human diet. Molecules 2021, 26, 1487. [Google Scholar] [CrossRef]
- Czarnowska-Kujawska, M.; Starowicz, M.; Barišić, V.; Kujawski, W. Health-Promoting Nutrients and Potential Bioaccessibility of Breads Enriched with Fresh Kale and Spinach. Foods 2022, 11, 3414. [Google Scholar] [CrossRef] [PubMed]
- Starowicz, M.; Arpaci, S.; Topolska, J.; Wronkowska, M. Phytochemicals and antioxidant activity in oat-buckwheat. Molecules 2021, 226, 2267. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. Lipid Analysis; Isolation, Separation, Identification, and Structural Analysis of Lipids, 1st ed.; Pergamon Press: Oxford, NY, USA, 1973. [Google Scholar]
- Żegarska, Z.; Jaworski, J.; Borejszo, Z. Evaluation of the Peisker modified method for extracting methyl esters from fatty acids. Acta Acad. Agric. Techn. Olst. 1991, 24, 25–33. [Google Scholar]
- EN ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- Ortolá, M.D.; Martínez-Catalá, M.; Yuste Del Carmen, A.; Castelló, M.L. Physicochemical and sensory properties of biscuits formulated with Tenebrio molitor and Alphitobius diaperinus flours. J. Texture Stud. 2022, 53, 540–549. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.-M.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia. Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Hanif, I.; Apriantini, A.; Endrawati, Y.C. Review: Nutritional contents and bioactive compounds of mealworm (Tenebrio molitor) as edible insect. J. Ilmu Produksi Teknol. Has. Peternak. 2023, 11, 153–162. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Finke, M.D. Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed 2021, 7, 639–659. [Google Scholar] [CrossRef]
- Jarosz, M. Nutrition Standards for the Polish Population; Food and Nutrition Institute: Warsaw, Poland, 2017. Available online: http://zywnosc.com.pl/wp-content/uploads/2017/12/normy-zywienia-dla-populacji-polski-2017-1.pdf/ (accessed on 2 February 2024).
- Herdeiro, F.M.; Carvalho, M.O.; Nunes, M.C.; Raymundo, A. Development of healthy snacks incorporating meal from Tenebrio molitor and Alphitobius diaperinus using 3D printing technology. Foods 2024, 13, 179. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Wesołowska, M.; Dżugan, M. The use of the PHOTOCHEM device in evaluation of antioxidant activity of polish honey. Food Anal. Methods. 2017, 10, 1568–1574. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M. Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria). Int. J. Food Sci. Technol. 2018, 53, 2542–2551. [Google Scholar] [CrossRef]
- Zielińska, E.; Pankiewicz, U. Nutritional, physiochemical, and antioxidative characteristics of shortcake biscuits enriched with Tenebrio molitor flour. Molecules 2020, 25, 5629. [Google Scholar] [CrossRef]
- Flori, L.; Donnini, S.; Calderone, V.; Zinnai, A.; Taglieri, I.; Venturi, F.; Testai, L. The nutraceutical value of olive oil and its bioactive constituents on the cardiovascular system. Focusing on main strategies to slow down its quality decay during production and storage. Nutrients 2019, 11, 1962. [Google Scholar] [CrossRef] [PubMed]
- Cozmuta, A.M.; Uivarasan, A.; Peter, A.; Nicula, C.; Kovacs, D.E.; Cozmuta, L.M. Yellow mealworm (Tenebrio molitor) powder promotes a high bioaccessible protein fraction and low glycaemic index in biscuits. Nutrients 2023, 15, 997. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Wijendran, V.; Hayes, K.C. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr. 2004, 24, 597–615. [Google Scholar] [CrossRef]
- Radzikowska, U.; Rinaldi, A.O.; Sözener, Z.Ç.; Karaguzel, D.; Wojcik, M.; Cypryk, K.; Akdis, M.; Akdis, C.A.; Sokolowska, M. The influence of dietary fatty acids on immune responses. Nutrients 2019, 11, 2990. [Google Scholar] [CrossRef]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; de Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated fats and health: A reassessment and proposal for food-based recommendations: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef]
- Djouadi, A.; Sales, J.R.; Carvalho, M.O.; Raymundo, A. Development of healthy protein-rich crackers using Tenebrio molitor flour. Foods 2022, 11, 702. [Google Scholar] [CrossRef]
- Xie, X.; Yuan, Z.; Fu, K.; An, J.; Deng, L. Effect of partial substitution of flour with mealworm (Tenebrio molitor L.) powder on dough and biscuit properties. Foods 2022, 11, 2156. [Google Scholar] [CrossRef] [PubMed]
- Pauter, P.; Różańska, M.; Wiza, P.; Dworczak, S.; Grobelna, N.; Sarbak, P.; Kowalczewski, P. Effects of the replacement of wheat flour with cricket powder on the characteristics of muffins. Acta Sci. Pol. Technol. Aliment. 2018, 17, 227–233. [Google Scholar] [PubMed]
- Wendin, K.; Berg, J.; Jönsson, K.I.; Andersson, P.; Birch, K.; Davidsson, F.; Gerberich, J.; Rask, S.; Langton, M. Introducing mealworm as an ingredient in crisps and pâtés—Sensory characterization and consumer liking. Future Foods 2021, 4, 100082. [Google Scholar] [CrossRef]
- Çabuk, B. Influence of grasshopper (Locusta Migratoria) and mealworm (Tenebrio Molitor) powders on the quality characteristics of protein rich muffins: Nutritional, physicochemical, textural and sensory aspects. J. Food Meas. Charact. 2021, 15, 3862–3872. [Google Scholar] [CrossRef]
Ingredient (g) | Formulation and Coding | ||
---|---|---|---|
(Ratio of TM *) | |||
TM0 (0%) | TM10 (10%) | TM30 (30%) | |
Dried mealworm | 0 | 38 | 114 |
Oat flakes | 200 | 180 | 140 |
Whole wheat flour | 180 | 162 | 126 |
Baking powder | 8 | 8 | 8 |
Cardamom | 2 | 2 | 2 |
Cinnamon | 2 | 2 | 2 |
Salt | 0.5 | 0.5 | 0.5 |
Eggs | 112 | 112 | 112 |
Multifloral honey | 100 | 100 | 100 |
Apples | 300 | 300 | 300 |
Bananas | 150 | 150 | 150 |
Samples | % Water | % Protein | % Fat | |
---|---|---|---|---|
Raw material | Meal | 4.02 | 49.90 | 32.40 * |
Cookies | TM0 | 42.41 ± 0.16 b | 7.39 ± 0.08 a | 1.31 ± 0.05 a |
TM10 | 40.38 ± 0.16 a | 9.47 ± 0.21 b | 2.18 ± 0.19 b | |
TM30 | 40.68 ± 0.13 a | 13.66 ± 0.20 c | 4.16 ± 0.26 c |
Microelements (mg/100 g) | Macroelements (mg/100 g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Samples | Cu | Mn | Fe | Zn | Mg | Ca | Na | K | P | |
Raw material | Meal | 1.84 ± 0.035 | 0.40 ± 0.012 | 3.25 ± 0.047 | 13.45 ± 0.198 | 194.58 ± 3.871 | 70.57 ± 0.442 | 736.40 ± 2.401 | 964.69 ± 5.142 | 1158.35 ± 52.049 |
Cookies | TM0 | 0.19 ± 0.004 a | 0.91 ± 0.035 c | 1.26 ± 0.036 a | 1.16 ± 0.026 a | 35.99 ± 0.571 a | 40.58 ± 0.058 a | 275.99 ± 2.179 c | 241.62 ± 0.414 a | 286.93 ± 3.299 a |
TM10 | 0.26 ± 0.005 b | 0.86 ± 0.050 b | 1.38 ± 0.018 b | 1.73 ± 0.005 b | 42.59 ± 0.881 b | 41.45 ± 0.062 b | 225.69 ± 2.416 a | 282.88 ± 1.141 b | 344.37 ± 2.451 b | |
TM30 | 0.38 ± 0.012 c | 0.71 ± 0.014 a | 1.42 ± 0.026 b | 2.57 ± 0.026 c | 50.91 ± 0.438 c | 41.68 ± 0.072 c | 245.19 ± 3.201 b | 326.99 ± 3.654 c | 384.39 ± 3.525 c |
Samples | TPC | ACW | ACL | PCL | |
---|---|---|---|---|---|
[mg GAE/ 100 g d.m.] | [µmol TE/ 100 g d.m.] | ||||
Raw material | Meal | 187.40 ± 5.96 | 443.43 ± 9.40 | 746.61 ± 14.04 | 1190.05 ± 16.25 |
Cookies | TM0 | 71.30 ± 2.26 a | 103.55 ± 1.77 a | 418.24 ± 17.26 a | 521.79 ± 18.29 a |
TM10 | 76.68 ± 2.53 a | 142.05 ± 2.25 b | 431.88 ± 6.51 a | 573.93 ± 8.18 a,b | |
TM30 | 95.08 ± 2.71 b | 181.10 ± 4.16 c | 409.65 ± 17.15 a | 590.75 ± 21.29 b |
Raw Material | Cookies | |||
---|---|---|---|---|
Samples | Meal | TM0 | TM10 | TM30 |
Fatty Acids | % of the Total Detected Fatty Acids | |||
C12:0 | 0.25 ± 0.04 | 0.29 ± 0.02 c | 0.13 ± 0.01 a | 0.19 ± 0.01 b |
C14:0 | 2.58 ± 0.04 | 0.46 ± 0.03 a | 1.06 ± 0.02 b | 1.67 ± 0.02 c |
C16:0 | 17.41 ± 0.47 | 22.28 ± 0.14 c | 20.21 ± 0.18 b | 18.99 ± 0.03 a |
C16:1 | 1.48 ± 0.05 | 1.72 ± 0.03 b | 1.50 ± 0.02 a | 1.69 ± 0.03 b |
C17:0 | 0.24 ± 0.02 | 0.12 ± 0.01 a | 0.17 ± 0.02 b | 0.21 ± 0.02 c |
C17:1 | 0.21 ± 0.04 | 0.11 ± 0.01 a | 0.14 ± 0.02 b | 0.19 ± 0.01 c |
C18:0 | 3.39 ± 0.02 | 4.49 ± 0.03 c | 4.08 ± 0.02 b | 4.00 ± 0.02 a |
C18:1 cis9 (n-9) | 41.22 ± 0.18 | 32.67 ± 0.07 a | 34.91 ± 0.03 b | 37.41 ± 0.09 c |
C18:1 cis11 | 1.01 ± 0.07 | 1.66 ± 0.01 c | 1.36 ± 0.02 b | 1.25 ± 0.03 a |
C18:2 (n-6) | 28.22 ± 0.19 | 32.16 ± 0.04 b | 32.42 ± 0.04 c | 30.22 ± 0.01 a |
C18:3 (n-3) | 2.43 ± 0.04 | 1.49 ± 0.01 a | 1.95 ± 0.01 b | 2.22 ± 0.02 c |
C20:0 | 0.20 ± 0.00 | 0.09 ± 0.01 a | 0.17 ± 0.02 b | 0.17 ± 0.01 b |
C20:1 | 0.33 ± 0.05 | 0.48 ± 0.04 c | 0.43 ± 0.03 b | 0.37 ± 0.02 a |
C20:4 (n-6) | N.D. | 0.76 ± 0.04 c | 0.50 ± 0.01 b | 0.39 ± 0.02 a |
C22:0 | 0.47 ± 0.04 | 0.41 ± 0.03 c | 0.32 ± 0.02 b | 0.24 ± 0.03 a |
C22:5 (n-6) | 0.53 ± 0.05 | 0.81 ± 0.04 c | 0.66 ± 0.03 a | 0.76 ± 0.04 b |
ΣSFA | 24.53 ± 0.51 | 28.13 ± 0.10 c | 26.10 ± 0.10 b | 25.47 ± 0.09 a |
ΣMUFA | 44.26 ± 0.27 | 36.64 ± 0.02 a | 38.35 ± 0.05 b | 40.92 ± 0.07 c |
ΣPUFA | 31.17 ± 0.23 | 35.22 ± 0.09 b | 35.53 ± 0.05 c | 33.59 ± 0.03 a |
n-6/n-3 ratio | 12.16 ± 0.11 | 23.11 ± 0.16 c | 17.78 ± 0.18 b | 14.76 ± 0.15 a |
DFA | 75.43 ± 0.43 | 71.86 ± 0.09 a | 73.88 ± 0.10 b | 74.51 ± 0.08 c |
OFA | 21.15 ± 0.52 | 23.64 ± 0.12 c | 22.05 ± 0.12 b | 21.47 ± 0.07 a |
AI index | 0.37 ± 0.01 | 0.34 ± 0.003 b | 0.33 ± 0.002 a | 0.35 ± 0.002 c |
TI index | 0.42 ± 0.01 | 0.43 ± 0.003 b | 0.42 ± 0.003 a | 0.43 ± 0.002 a,b |
H/H ratio | 3.58 ± 0.11 | 2.95 ± 0.03 a | 3.29 ± 0.03 b | 3.40 ± 0.01 c |
Samples | L* | a* | b* | C* | h° | BI | ∆E* | Hardness [N] |
---|---|---|---|---|---|---|---|---|
TM0 | 47.59 ± 2.41 c | 4.84 ± 0.22 a | 21.83 ± 0.87 b | 22.36 ± 0.85 b | 77.47 ± 0.74 b | 7.31 ± 0.48 a | - | 34.63 ± 2.57 c |
TM10 | 42.82 ± 2.69 b | 5.39 ± 0.36 b | 21.58 ± 1.36 b | 22.25 ± 1.32 b | 75.92 ± 1.26 b | 8.99 ± 0.85 b | 5.12 | 30.86 ± 2.59 b |
TM30 | 34.07 ± 2.86 a | 5.53 ± 0.35 b | 16.31 ± 1.56 a | 17.23 ± 1.48 a | 71.16 ± 2.44 a | 11.45 ± 0.86 c | 14.66 | 23.60 ± 1.95 a |
Attributes | Samples | |||
---|---|---|---|---|
TM0 | TM10 | TM30 | ||
Overall appearance | 8.90 ± 0.74 b | 8.20 ± 0.92 b | 6.20 ± 1.23 a | |
Intensity of | brown color | 4.60 ± 0.97 a | 6.90 ± 0.74 b | 9.10 ± 0.88 c |
mealworm aroma | 0.20 ± 0.42 a | 0.30 ± 0.67 a | 1.10 ± 1.29 a | |
foreign aroma | 0.40 ± 0.70 a | 0.50 ± 0.85 a | 1.20 ± 1.23 a | |
spices aroma | 5.00 ± 0.82 a | 4.90 ± 0.57 a | 4.80 ± 1.99 a | |
Aroma desirability | 7.60 ± 0.97 b | 7.60 ± 1.26 b | 6.30 ± 0.82 a | |
Hardness | 6.60 ± 1.71 a | 6.30 ± 1.06 a | 8.30 ± 0.95 b | |
Intensity of | mealworm taste | 0.30 ± 0.67 a | 0.70 ± 0.82 a | 2.50 ± 1.27 b |
foreign taste | 0.30 ± 0.67 a | 0.90 ± 0.88 a | 2.30 ± 1.16 b | |
spices taste | 6.00 ± 0.94 a | 5.20 ± 0.79 a | 5.50 ± 1.27 a | |
Flavor desirability | 7.80 ± 1.32 a | 7.70 ± 1.34 a | 6.60 ± 1.26 a | |
Overall quality | 7.30 ± 1.16 a | 7.10 ± 1.20 a | 6.30 ± 1.34 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Draszanowska, A.; Kurp, L.; Starowicz, M.; Paszczyk, B.; Czarnowska-Kujawska, M.; Olszewska, M.A. Effect of the Addition of Yellow Mealworm (Tenebrio molitor) on the Physicochemical, Antioxidative, and Sensory Properties of Oatmeal Cookies. Foods 2024, 13, 3166. https://doi.org/10.3390/foods13193166
Draszanowska A, Kurp L, Starowicz M, Paszczyk B, Czarnowska-Kujawska M, Olszewska MA. Effect of the Addition of Yellow Mealworm (Tenebrio molitor) on the Physicochemical, Antioxidative, and Sensory Properties of Oatmeal Cookies. Foods. 2024; 13(19):3166. https://doi.org/10.3390/foods13193166
Chicago/Turabian StyleDraszanowska, Anna, Lidia Kurp, Małgorzata Starowicz, Beata Paszczyk, Marta Czarnowska-Kujawska, and Magdalena Anna Olszewska. 2024. "Effect of the Addition of Yellow Mealworm (Tenebrio molitor) on the Physicochemical, Antioxidative, and Sensory Properties of Oatmeal Cookies" Foods 13, no. 19: 3166. https://doi.org/10.3390/foods13193166
APA StyleDraszanowska, A., Kurp, L., Starowicz, M., Paszczyk, B., Czarnowska-Kujawska, M., & Olszewska, M. A. (2024). Effect of the Addition of Yellow Mealworm (Tenebrio molitor) on the Physicochemical, Antioxidative, and Sensory Properties of Oatmeal Cookies. Foods, 13(19), 3166. https://doi.org/10.3390/foods13193166