Wheat Germ Agglutinin (WGA): Its Nature, Biological Role, Significance in Human Nutrition, and Possibility to Be Used as Marker of Whole-Grain Status in Wheat-Based Foods
Abstract
:1. Introduction
2. Chemical Nature, Biological Role, and Presence of WGA in Wheat
2.1. Lectins in Nature
2.2. Molecular Structure and Binding Specificity of WGA
2.3. Biological Roles of WGA
2.4. Presence of WGA in Wheat
3. Significance of Lectins and WGA in Human Nutrition
3.1. Lectins and WGA Toxicity for Humans
3.2. Nutritional Significance of Lectins and WGA in Human Diets and Influence of Wheat Processing
3.3. Impact on Human Gut Health and Immunoregulation
3.4. Applications of Lectins and WGA in Research and Diagnostics
4. Extraction and Quantification of WGA in Whole-Grain Wheat-Derived Products: Data from the Literature and Experiences with Available Rapid ELISA Kits
4.1. Chemical Methods for the Isolation, Purification, Determination, and Quantification of WGA in Wheat and Its Products
4.2. Experiences with Rapid Test Kits Available on the Market
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, S.; Meng, F.; Du, K.; Chen, Y. Biological activity evaluation and identification of different molecular weight peptides from wheat germ albumin. LWT-Food Sci. Technol. 2023, 189, 115556. [Google Scholar] [CrossRef]
- Brandolini, A.; Hidalgo, A. Wheat germ: Not only a by-product. Int. J. Food Sci. Nutr. 2012, 63, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Barron, C.; Samson, M.F.; Lullien-Pellerin, V.; Rouau, X. Wheat grain tissue proportions in milling fractions using biochemical marker measurements: Application to different wheat cultivars. J. Cereal Sci. 2011, 53, 306–311. [Google Scholar] [CrossRef]
- FAO. Food-Based Dietary Guidelines. 2024. Available online: https://www.fao.org/nutrition/nutrition-education/food-dietary-guidelines/en/ (accessed on 29 January 2024).
- Hoevenaars, F.; Van der Kamp, J.W.; Van den Brink, W.; Wopereis, S. Next generation health claims based on resilience: The example of whole-grain wheat. Nutrients 2020, 12, 2945. [Google Scholar] [CrossRef] [PubMed]
- Carcea, M.; Turfani, V.; Narducci, V.; Melloni, S.; Galli, V.; Tullio, V. Stone milling versus roller milling in soft wheat: Influence on products composition. Foods 2020, 9, 3. [Google Scholar] [CrossRef]
- Carcea, M.; Narducci, V.; Turfani, V.; Finotti, E. Stone milling versus roller milling in soft wheat (part 2): Influence on nutritional and technological quality of products. Foods 2022, 11, 339. [Google Scholar] [CrossRef]
- WGI Whole Grain Initiative Publications. 2024. Available online: https://www.wholegraininitiative.org/publications (accessed on 29 January 2024).
- U.S. Food & Drug Administration. Draft Guidance for Industry and FDA Staff: Whole Grain Label Statements. 2006. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/draft-guidance-industry-and-fda-staff-whole-grain-label-statements (accessed on 25 July 2024).
- Government of Canada. Whole Grains? Get the Facts. 2019. Available online: https://www.canada.ca/en/health-canada/services/canada-food-guide/resources/healthy-eating-recommendations/eat-a-variety/whole-grain/get-facts.html (accessed on 25 July 2024).
- Marzocchi, S.; Messia, M.C.; Marconi, E.; Caboni, M.F.; Pasini, F. Lipid process markers of durum wheat debranning fractions. Foods 2023, 12, 3036. [Google Scholar] [CrossRef]
- Killilea, D.W.; McQueen, R.; Abegania, J.R. Wheat germ agglutinin is a biomarker of whole grain content in wheat flour and pasta. J. Food Sci. 2020, 85, 808–815. [Google Scholar] [CrossRef]
- Vincenzi, S.; Zoccatelli, G.; Perbellini, F.; Rizzi, C.; Chignola, R.; Curioni, A.; Peruffo, A.D.B. Quantitative determination of dietary lectin activies by enzime-linked immunosorbent assay using specific glycoproteins immobilized on microtitrt plates. J. Agric. Food Chem. 2002, 50, 6266–6270. [Google Scholar] [CrossRef]
- Hemery, Y.; Lullien-Pellerin, V.; Rouau, X.; Abecassis, J.; Samson, M.-F.; Aman, P.; Von Reding, W.; Spoerndlic, C.; Barron, C. Biochemical markers: Efficient tools for the assessment of wheat grain tissue proportions in milling fractions. J. Cereal Sci. 2009, 49, 55–64. [Google Scholar] [CrossRef]
- Khosroshahi, E.D.; Razavi, S.H. Wheat germ valorization by fermentation: A novel insight into the stabilization, nutritional/functional values and therapeutic potentials with emphasis on anti-cancer effects. Trends Food Sci. Technol. 2023, 131, 175–189. [Google Scholar] [CrossRef]
- Mishra, A.; Behura, A.; Mawatwal, S.; Kumar, A.; Naik, L.; Mohanty, S.S.; Manna, D.; Dokania, P.; Mishra, A.; Patra, S.K.; et al. Structure-function and application of plant lectins in disease biology and immunity. Food Chem. Toxicol. 2019, 134, 110827. [Google Scholar] [CrossRef] [PubMed]
- Peumans, W.J.; Van Damme, E.J.M. Lectins as plant defense proteins. Plant Physiol. 1995, 109, 347–352. [Google Scholar] [CrossRef] [PubMed]
- De Hoff, P.L.; Brill, L.M.; Hirsch, A.M. Plant lectins: The ties that bind in root symbiosis and plant defense. Mol. Genet. Genom. 2009, 282, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Van Holle, S.; Van Damme, E.J.M. Messages from the past: New insights in plant lectin evolution. Front. Plant Sci. 2019, 10, 36. [Google Scholar] [CrossRef]
- Goldstein, I.J.; Hayes, C.E. The lectins: Carbohydrate-binding proteins of plants and animals. In Advances in Carbohydrate Chemistry and Biochemistry; Elsevier: Amsterdam, The Netherlands, 1978; pp. 127–340. [Google Scholar] [CrossRef]
- Gallagher, J.T. Carbohydrate-binding properties of lectins: A possible approach to lectin nomenclature and classification. Biosci. Rep. 1984, 4, 621–632. [Google Scholar] [CrossRef]
- Nilsson, C.L. Lectins: Analytical tools from nature. In Lectins: Analytical Technologies; Nilsson, C.L., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2007; pp. 1–13. [Google Scholar] [CrossRef]
- Van Buul, V.J.; Brouns, F.J.P.H. Health effects of wheat lectins: A review. J. Cereal Sci. 2014, 59, 112–117. [Google Scholar] [CrossRef]
- Tsaneva, M.; Van Damme, E.J.M. 130 years of plant lectin research. Glycoconj. J. 2020, 37, 533–551. [Google Scholar] [CrossRef]
- Peumans, W.J.; Van Damme, E.J. Prevalence, biological activity and genetic manipulation of lectins in foods. Trends Food Sci. Technol. 1996, 7, 132–138. [Google Scholar] [CrossRef]
- Petersen, S.V.; Thiel, S.; Jensen, L.; Steffensen, R.; Jensenius, J.C. An assay for the mannan-binding lectin pathway of complement activation. J. Immunol. Meth. 2001, 257, 107–116. [Google Scholar] [CrossRef]
- Kilpatrick, D.C. Animal lectins: A historical introduction and overview. Biochim. Biophys. Acta 2002, 1572, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Holmskov, U.; Thiel, S.; Jensenius, J.C. Collectins and ficolins: Humoral lectins of the innate immune defense. Ann. Rev. Immunol. 2003, 21, 547–578. [Google Scholar] [CrossRef] [PubMed]
- Balčiūnaitė-Murzienė, G.; Dzikaras, M. Wheat germ agglutinin—From toxicity to biomedical applications. Appl. Sci. 2021, 11, 884. [Google Scholar] [CrossRef]
- Signorello, M.G.; Ravera, S.; Leoncini, G. Lectin-induced oxidative stress in human platelets. Redox Biol. 2020, 32, 101456. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L. Cereal grains: Humanity’s double-edged sword. World Rev. Nutr. Diet. 1999, 84, 19–73. [Google Scholar] [CrossRef]
- Asensio, J.L.; Canada, F.J.; Siebert, H.C.; Laynez, J.; Poveda, A.; Nieto, P.M.; Soedjanaamadja, U.M.; Gabius, H.J.; Jimenez-Barbero, J. Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains. Chem. Biol. 2000, 7, 529–543. [Google Scholar] [CrossRef]
- Laroy, K.; Weeks, G. Inhibition of Dictyostelium discoideum differentiation in monolayers in vitro by endogenous and exogenous lectins. J. Cell Sci. 1983, 59, 203–212. [Google Scholar] [CrossRef]
- Van Damme, E.J.M.; Peumans, W.J.; Barre, A.; Rougé, P. Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Critic. Rev. Plant Sci. 1998, 17, 575–692. [Google Scholar] [CrossRef]
- Murdock, L.L.; Huesing, J.E.; Nielsen, S.S.; Pratt, R.C.; Shade, R.E. Biological effects of plant lectins on the cowpea weevil. Phytochemistry 1990, 29, 85–89. [Google Scholar] [CrossRef]
- Czapla, T.H.; Lang, B.A. Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 1990, 83, 2480–2485. [Google Scholar] [CrossRef]
- Powell, K.S.; Gatehouse, A.M.R.; Hilder, V.A.; Gatehouse, J.A. Antifeedant effects of plant lectins and an enzyme on the adult stage of the rice brown planthopper, Nilaparvata lugens. Entomol. Exp. Appl. 1995, 75, 51–59. [Google Scholar] [CrossRef]
- Mirelman, D.; Galun, E.; Sharon, N.; Lotan, R. Inhibition of fungal growth by wheat germ agglutinin. Nature 1975, 256, 414–416. [Google Scholar] [CrossRef] [PubMed]
- Schlumbaum, A.; Mauch, F.; Vogeli, U.; Boller, T. Plant chitinases are potent inhibitors of fungal growth. Nature 1986, 324, 365–367. [Google Scholar] [CrossRef]
- Barkai-Golan, R.; Mirelman, D.; Sharon, N. Studies on growth inhibition by lectins of penicillia and aspergilli. Arch. Microbiol. 1978, 116, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Ciopraga, J.; Gozia, O.; Tudor, R.; Brezuica, L.; Doyle, R.J. Fusarium sp. growth inhibition by wheat germ agglutinin. Biochim. Biophys. Acta 1999, 1428, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Mishkind, M.; Raikhel, N.V.; Palevitz, B.A.; Keegstra, K. Immunocytochemical localization of wheat germ agglutinin in wheat. J. Cell. Biol. 1982, 92, 753–764. [Google Scholar] [CrossRef]
- De Punder, K.; Pruimboom, L. The dietary intake of wheat and other cereal grains and their role in inflammation. Nutrients 2013, 5, 771–787. [Google Scholar] [CrossRef]
- Matucci, A.; Veneri, G.; Dalla Pellegrina, C.; Zoccatelli, G.; Vincenzi, S.; Chignola, R.; Peruffo, A.; Rizzi, C. Temperature-dependent decay of wheat germ agglutinin activity and its implications for food processing and analysis. Food Control 2004, 15, 391–395. [Google Scholar] [CrossRef]
- Rojas Tovar, L.E.; Gänzle, M.G. Degradation of wheat germ agglutinin during sourdough fermentation. Foods 2021, 10, 340. [Google Scholar] [CrossRef]
- Marengo, M.; Carpen, A.; Mamone, G.; Ferranti, P.; Iametti, S. Quantification of protein “Biomarkers” in wheat-based food systems: Dealing with process-related issues. Molecules 2022, 27, 2637. [Google Scholar] [CrossRef]
- Pusztai, A.; Ewen, S.W.B.; Grant, G.; Brown, D.S.; Stewart, J.C.; Peumans, W.J.; Van Damme, E.J.M.; Bardocz, S. Antinutritive effects of wheat germ agglutinin and other Nacetylglucosamine- specific lectins. Br. J. Nutr. 1993, 70, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Dalla Pellegrina, C.; Rizzi, C.; Mosconi, S.; Zoccatelli, G.; Peruffo, A.; Chignola, R. Plant lectins as carriers for oral drugs: Is wheat germ agglutinin a suitable candidate? Toxicol. Appl. Pharmacol. 2005, 207, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Dalla Pellegrina, C.; Perbellini, O.; Scupoli, M.T.; Tomelleri, C.; Zanetti, C.; Zoccatelli, G.; Fusi, M.; Peruffo, A.; Rizzi, C.; Chignola, R. Effects of wheat germ agglutinin on human gastrointestinal epithelium: Insights from an experimental model of immune/epithelial cell interaction. Toxicol. Appl. Pharmacol. 2009, 237, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Kamikubo, Y.; Dellas, C.; Loskutoff, D.J.; Quigley, J.P.; Ruggeri, Z.M. Contribution of leptin receptor N-linked glycans to leptin binding. Biochem. J. 2008, 410, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Mohr, D.; Frey, S.; Fischer, T.; Güttler, T.; Görlich, D. Characterization of the passive permeability barrier of nuclear pore complexes. EMBO J. 2009, 28, 2541–2553. [Google Scholar] [CrossRef]
- Chignola, R.; Rizzi, C.; Vincenzi, S.; Cestari, T.; Brutti, N.; Riviera, A.P.; Sartoris, S.; Peruffo, A.D.B.; Andrighetto, G. Effects of dietary wheat germ deprivation on the immune system in Wistar rats: A pilot study. Int. Immunopharm. 2002, 2, 1495–1501. [Google Scholar] [CrossRef]
- Sodhi, A.; Kesherwani, V. Production of TNF-alpha, IL-1beta, IL-12 and IFN-gamma in murine peritoneal macrophages on treatment with wheat germ agglutinin in vitro: Involvement of tyrosine kinase pathways. Glycoconj. J. 2007, 24, 573–582. [Google Scholar] [CrossRef]
- Karlsson, A. Wheat germ agglutinin induces NADPH-oxidase activity in human neutrophils by interaction with mobilizable receptors. Infect. Immun. 1999, 67, 3461–3468. [Google Scholar] [CrossRef]
- He, S.; Simpson, B.K.; Sun, H.; Ngadi, M.O.; Ma, Y.; Huang, T. Phaseolus vulgaris lectins: A systematic review of characteristics and health implications. Crit. Rev. Food Sci. Nutr. 2018, 58, 70–83. [Google Scholar] [CrossRef]
- Carvalho, E.V.M.M.; Oliveira, W.F.; Coelho, L.C.B.B.; Correia, M.T.S. Lectins as mitosis stimulating factors: Briefly reviewed. Life Sci. 2018, 207, 152–157. [Google Scholar] [CrossRef]
- Petroski, W.; Minich, D.M. Is there such a thing as “anti-nutrients”? A narrative review of perceived problematic plant compounds. Nutrients 2020, 12, 2929. [Google Scholar] [CrossRef] [PubMed]
- Remy, L. Principles of structures of animal and plant lectins. Biochim. Biophys. Acta 2002, 1572, 198–208. [Google Scholar] [CrossRef]
- Ohmori, T.; Yatomi, Y.; Wu, Y.; Osada, M.; Satoh, K.; Ozaki, Y. Wheat germ agglutinin-induced platelet activation via platelet endothelial cell adhesion molecule-1: Involvement of rapid phospholipase C gamma 2 activation by Src family kinases. Biochem. 2001, 40, 12992–13001. [Google Scholar] [CrossRef] [PubMed]
- Livingston, J.N.; Purvis, B.J. Effects of wheat germ agglutinin on insulin binding and insulin sensitivity of fat cells. Am. J. Physiol. 1980, 238, E267–E275. [Google Scholar] [CrossRef]
- Shechter, Y. Bound lectins that mimic insulin produce persistent insulin-like activities. Endocrinology 1983, 113, 1921–1926. [Google Scholar] [CrossRef]
- Dalla Pellegrina, C.; Matucci, A.; Zoccatelli, G.; Rizzi, C.; Vincenzi, S.; Veneri, G.; Giancarlo Andrighetto, G.; Peruffo Dal Belin, A.G.; Chignola, R. Studies on the joint cytotoxicity of wheat germ agglutinin and monensin. Toxicol. Vitr. 2004, 18, 821–827. [Google Scholar] [CrossRef]
- Jönsson, T.; Olsson, S.; Ahrén, B.; Bøg-Hansen, T.C.; Dole, A.; Lindeberg, S. Agrarian diet and diseases of affluence-Do evolutionary novel dietary lectins cause leptin resistance? BMC Endocr. Disord. 2005, 5, 10. [Google Scholar] [CrossRef]
- Grant, G.; More, L.J.; McKenzie, N.H.; Stewart, J.C.; Pusztai, A. A survey of the nutritional and hemagglutination properties of legume seeds generally available in the UK. Br. J. Nutr. 1983, 50, 207–214. [Google Scholar] [CrossRef]
- De Mejía, E.G.; Prisecaru, V.I. Lectins as bioactive plant proteins: A potential in cancer treatment. Crit. Rev. Food Sci. Nutr. 2005, 45, 425–445. [Google Scholar] [CrossRef]
- Alatorre-Cruz, J.M.; Pita-López, W.; López-Reyes, R.G.; Ferriz-Martínez, R.A.; Cervantes-Jiménez, R.; De Jesús Guerrero Carrillo, M.; Aranda Vargas, P.J.; López-Herrera, G.; Rodríguez-Méndez, A.J.; Zamora-Arroyo, A.; et al. Effects of intragastrically-administered Tepary bean lectins on digestive and immune organs: Preclinical evaluation. Toxicol. Rep. 2018, 5, 56–64. [Google Scholar] [CrossRef]
- Gong, T.; Wang, X.; Yang, Y.; Yan, Y.; Yu, C.; Zhou, R.; Jiang, W. Plant lectins activate the NLRP3 inflammasome to promote inflammatory disorders. J. Immunol. 2017, 198, 2082–2092. [Google Scholar] [CrossRef] [PubMed]
- Popova, A.; Mihaylova, D. Antinutrients in plant-based foods: A review. Open Biotechnol. J. 2019, 13, 68–76. [Google Scholar] [CrossRef]
- Garutti, M.; Nevola, G.; Mazzeo, R.; Cucciniello, L.; Totaro, F.; Bertuzzi, C.; Caccialanza, R.; Pedrazzoli, P.; Puglisi, F. The impact of cereal grain composition on the health and disease outcomes. Front. Nutr. 2022, 9, 888974. [Google Scholar] [CrossRef] [PubMed]
- Adamcová, A.; Laursen, K.H.; Ballin, N.Z. Lectin activity in commonly consumed plant-based foods: Calling for method harmonization and risk assessment. Foods 2021, 10, 2796. [Google Scholar] [CrossRef] [PubMed]
- Pryme, I.F.; Aarra, T.M. Exhaustive overview of dietary plant lectins: Prospective importance in the Mediterranean diet. Am. J. Biomed. Sci. Res. 2021, 13, 339–358. [Google Scholar] [CrossRef]
- Gunathunga, C.; Senanayake, S.; Jayasinghe, M.A.; Brennan, C.S.; Truong, T.; Marapana, U.; Chandrapala, J. Germination effects on nutritional quality: A comprehensive review of selected cereals and pulses changes. J. Food Comp. Anal. 2024, 128, 106024. [Google Scholar] [CrossRef]
- Gabor, F.; Schwarzbauer, A.; Wirth, M. Lectin-mediated drug delivery: Binding and uptake of BSA-WGA conjugates using the Caco-2 model. Int. J. Pharm. 2002, 237, 227–239. [Google Scholar] [CrossRef]
- Wirth, M.; Kneuer, C.; Lehr, C.M.; Gabor, F. Lectin-mediated drug delivery: Discrimination between cytoadhesion and cytoinvasion and evidence for lysosomal accumulation of wheat germ agglutinin in the Caco-2 model. J. Drug Target. 2002, 10, 439–448. [Google Scholar] [CrossRef]
- Gabor, F.; Bogner, E.; Weissenboeck, A.; Wirth, M. The lectin–cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv. Drug Deliv. Rev. 2004, 56, 459–480. [Google Scholar] [CrossRef]
- Lambert, J.; Vojdani, A. Clinical and cellular immunology correlation of tissue antibodies and food immune reactivity in randomly selected patient specimens. J. Clin. Cell. Immun. 2017, 8, 521. [Google Scholar] [CrossRef]
- Vojdani, A.; Afar, D.; Vojdani, E. Reaction of lectin-specific antibody with human tissue: Possible contributions to autoimmunity. J. Immunol. Res. 2020, 2020, 1438957. [Google Scholar] [CrossRef] [PubMed]
- Mumolo, M.G.; Rettura, F.; Melissari, S.; Costa, F.; Ricchiuti, A.; Ceccarelli, L.; De Bortoli, N.; Marchi, S.; Bellini, M. Is gluten the only culprit for non-celiac gluten/wheat sensitivity? Nutrients 2020, 12, 3785. [Google Scholar] [CrossRef] [PubMed]
- Moin, K.; Funk, C.; Josephs, M.; Coombes, K.; Yeakle, M.; Gala, D.; Ahmed-Khan, M. Gut-brain axis: Review on the association between Parkinson’s disease and plant lectins. Arch. Clin. Cases 2022, 9, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, A.; Matsuda, K.; Kuwahara, Y.; Asano, S.; Inui, T.; Marunaka, Y. Microbiota-gut-brain axis: Enteroendocrine cells and the enteric nervous system form an interface between the microbiota and the central nervous system. Biomed Res. 2020, 41, 199–216. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Li, X.; Yu, J.T.; Wang, Y.J. Therapeutics for neurodegenerative diseases by targeting the gut microbiome: From bench to bedside. Transl. Neurodegener. 2024, 13, 12. [Google Scholar] [CrossRef]
- Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther. 2004, 9, 37. [Google Scholar] [CrossRef]
- Vojdani, A.; Lerner, A.; Vojdani, E. Cross-reactivity and sequence homology between alpha-synuclein and food products: A step further for Parkinson’s disease synucleinopathy. Cells 2021, 10, 1111. [Google Scholar] [CrossRef]
- Micheli, L.; Creanza, T.M.; Ceccarelli, M.; D’Andrea, G.; Giacovazzo, G.; Ancona, N.; Coccurello, R.; Scardigli, R.; Tirone, F. Transcriptome analysis in a mouse model of premature aging of dentate gyrus: Rescue of alpha-synuclein deficit by virus-driven expression or by running restores the defective neurogenesis. Front. Cell Dev. Biol. 2021, 9, 696684-1–696684-22. [Google Scholar] [CrossRef]
- Ji, X.G.; Huang, J.H.; Hui, M.; Zhang, Y.Q.; Zhao, Y. Proteomic analysis and immunoregulation mechanism of wheat germ globulin. Protein Pept. Lett. 2017, 24, 1148–1165. [Google Scholar] [CrossRef]
- Yu, G.; Ji, X.; Huang, J.; Liao, A.; Pan, L.; Hou, Y.; Hui, M.; Guo, W. Immunity improvement and gut microbiota remodeling of mice by wheat germ globulin. World J. Microbiol. Biotechnol. 2021, 37, 64. [Google Scholar] [CrossRef]
- Fan, L.; Yang, M.; Ma, S.; Huang, J. Isolation, purification and characterization of the globulin from wheat germ. Int. J. Food Sci. Technol. 2022, 57, 1708–1717. [Google Scholar] [CrossRef]
- Vandenborre, G.; Smagghe, G.; Van Damme, E.J. Plant lectins as defense proteins against phytophagous insects. Phytochemistry 2011, 72, 1538–1550. [Google Scholar] [CrossRef] [PubMed]
- Macedo, M.L.R.; Oliveira, C.F.R.; Oliveira, C.T. Insecticidal activity of plant lectins and potential application in crop protection. Molecules 2015, 20, 2014–2033. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.C.; Lin, C.Y.; Li, J.S.; Lou, Y.I. Wheat germ agglutinin—Conjugate liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer’s disease treatment. Int. J. Nanomed. 2017, 12, 1757–1774. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Bian, H.; Bao, J. Plant lectins: Potential antineoplastic drugs from bench to clinic. Cancer Lett. 2010, 287, 1–12. [Google Scholar] [CrossRef]
- Ryva, B.; Zhang, K.; Asthana, A.; Wong, D.; Vicioso, Y.; Parameswaran, R. Wheat germ agglutinin as a potential therapeutic agent for leukemia. Front. Oncol. 2019, 9, 100. [Google Scholar] [CrossRef]
- Wood, K.M.; Stone, G.M.; Peppas, N.A. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery. Biomacromol. 2008, 9, 1293–1298. [Google Scholar] [CrossRef]
- Neutsch, L.; Wirth, E.-M.; Spijker, S.; Pichl, C.; Kählig, H.; Gabor, F.; Wirth, M. Synergistic targeting/prodrug strategies for intravesical drug delivery—Lectin-modified PLGA microparticles enhance cytotoxicity of stearoyl gemcitabine by contact-dependent transfer. J. Control. Release 2013, 169, 62–72. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, D.; Qiao, M.; Lu, Z.; Hu, H. Preparation and evaluation of lectin-conjugated PLGA nanoparticles for oral delivery of thymopentin. J. Control. Release 2006, 116, 337–345. [Google Scholar] [CrossRef]
- Plattner, V.E.; Wagner, M.; Ratzinger, G.; Gabor, F.; Wirth, M. Targeted drug delivery: Binding and uptake of plant lectins using human 5637 bladder cancer cells. Eur. J. Pharm. Biopharm. 2008, 70, 572–576. [Google Scholar] [CrossRef]
- Stanley, S.M.R.; Chua, D. Improved recovery of erythropoietin and darbepoetin from equine plasma by the application of a wheat germ agglutinin mediated pre-extraction prior to immunoaffinity chromatography. Adv. Biosci. Biotechnol. 2014, 5, 651–660. [Google Scholar] [CrossRef]
- Nagata, Y.; Burger, M.M. Wheat germ agglutinin. Isolation and crystallization. J. Biol. Chem. 1972, 247, 2248–2250. [Google Scholar] [CrossRef]
- Nagata, Y.; Burger, M.M. Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J. Biol. Chem. 1974, 249, 3116–3122. [Google Scholar] [CrossRef] [PubMed]
- Shaper, J.H.; Barker, R.; Hill, R.L. Purification of wheat germ agglutinin by affinity chromatography. Analyt. Biochem. 1973, 53, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Kolberg, J.; Sollid, L. Lectin activity of gluten identified as wheat germ agglutinin. Biochem. Biophys. Res. Commun. 1985, 130, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.J.; Wing, D.R.; Kuster, B.; Wilson, I.B. Composition of N-linked carbohydrates from ovalbumin and copurified glycoproteins. J. Am. Soc. Mass Spectrom. 2000, 11, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Lis, H.; Sharon, N. Lectins in higher plant. In The Biochemistry of Plants; Marucs, A., Ed.; Academic Press: New York, NY, USA, 1981; Volume 6, pp. 371–447. [Google Scholar] [CrossRef]
- Güll, I.; Wirth, M.; Gabor, F. Development of a sensitive and reliable ELISA for quantification of wheat germ agglutinin. J. Immunol. Methods 2007, 318, 20–29. [Google Scholar] [CrossRef]
- Baieli, M.F.; Urtasun, N.; Miranda, M.V.; Cascone, O.; Wolman, F.J. Efficient wheat germ agglutinin purification with a chitosan-based affinity chromatographic matrix. J. Sep. Sci. 2012, 35, 231–238. [Google Scholar] [CrossRef]
- Senstad, C.; Mattiasson, B. Purification of wheat germ agglutinin using affinity flocculation with chitosan and a subsequent centrifugation or flotation step. Biotechnol. Bioeng. 1989, 34, 387–393. [Google Scholar] [CrossRef]
- Zeng, X.; Ruckenstein, E. Macroporous chitin affinity membranes for wheat germ agglutinin purification from wheat germ. J. Membr. Sci. 1999, 156, 97–107. [Google Scholar] [CrossRef]
- Di Stasio, L.; Messia, M.C.; De Caro, S.; Marulo, S.; Reale, A.; Mamone, G.; Marconi, E. Functional proteomics analysis of Triticum durum germ. J. Food Compos. Anal. 2024, 125, 105781. [Google Scholar] [CrossRef]
- Gong, X.; Morton, J.; Brennan, M.A.; Brennan, C.S. Investigation of nutritional and functional effects of rice bran protein hydrolysates by using preferred reporting items for systematic reviews and meta-analysis (PRISMA). Trends Food Sci. Technol. 2021, 110, 798–811. [Google Scholar] [CrossRef]
Material | WGA Content | Method | Reference |
---|---|---|---|
Wheat seed Wheat germ | <0.01 g/kg 0.1–0.5 g/kg | not specified | Peumans and Van Damme, 1996 [25] |
Whole wheat flour | 6.6 ± 0.7 µg/g | ELISA | Rojas Tovar and Gänzle [45] |
Wholemeal flour | 50.0 ± 5.5 and 29.5 ± 2.5 µg/g | ELISA | Matucci et al., 2004 [44] |
Wheat germ Wholemeal flour | from 6 to 8 µg/g 5.70 ± 0.38 µg/g | LC-MS/MS ELISA | Marengo et al., 2022 [46] |
Type of Treatment | Product | Effect on WGA Activity | Reference | |
---|---|---|---|---|
Thermal | boiling | wholemeal pasta | strongly reduces | Matucci et al., 2004 [44] |
Non thermal | fermentation | wholemeal flour | reduces | Rojas Tovar and Gänzle. 2021 [45] |
germination, sprouting | wholemeal flour | reduces | Adamcová et al., 2021 [70] Pryme and Aarra., 2021 [71] Gunathunga et al., 2024 [72] |
Application | WGA Activity | Reference |
---|---|---|
Blood typing | Red blood cells agglutination/aggregation | Van Buul et al., 2014 [23] Liu et al., 2020 [91] |
Identification of malignant tumours | Direct contact, adhesion, binding to cell membrane or receptors | Mishra et al., 2019 [16] |
Cancer treatment | Cytotoxic effects resulting in apoptosis or necrosis on diverse cancer cell lines | Ryva at al., 2019 [92] |
Advanced drug delivery | In conjunction with nanoparticles, liposomes or other forms of functionalization | Mishra et al., 2019 [16]; Wood et al., 2008 [93]; Balčiūnaitė-Murzienė et al., 2021 [29]; Kuo et al., 2017 [90]; Neutsch et al., 2013 [94]; Yin et al., 2006 [95]; Plattner et al., 2008 [96] |
Anti-fungal treatments | Recombinant WGA-Fc inhibits the fungal growth | Balčiūnaitė-Murzienė et al., 2021 [29] |
Detection of Gram-positive and Gram-negative bacteria | WGA-functionalised silver nanoparticles | Balčiūnaitė-Murzienė et al., 2021 [29] |
Improvement of extraction and purification of erythropoietin and darbepoetin (human recombinant glycoproteins) from equine plasma | Pre-treatment with wheat germ agglutinin immobilized on Sepharose gel | Stanley and Chua, 2014 [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carcea, M.; Melloni, S.; Narducci, V.; Turfani, V. Wheat Germ Agglutinin (WGA): Its Nature, Biological Role, Significance in Human Nutrition, and Possibility to Be Used as Marker of Whole-Grain Status in Wheat-Based Foods. Foods 2024, 13, 2990. https://doi.org/10.3390/foods13182990
Carcea M, Melloni S, Narducci V, Turfani V. Wheat Germ Agglutinin (WGA): Its Nature, Biological Role, Significance in Human Nutrition, and Possibility to Be Used as Marker of Whole-Grain Status in Wheat-Based Foods. Foods. 2024; 13(18):2990. https://doi.org/10.3390/foods13182990
Chicago/Turabian StyleCarcea, Marina, Sahara Melloni, Valentina Narducci, and Valeria Turfani. 2024. "Wheat Germ Agglutinin (WGA): Its Nature, Biological Role, Significance in Human Nutrition, and Possibility to Be Used as Marker of Whole-Grain Status in Wheat-Based Foods" Foods 13, no. 18: 2990. https://doi.org/10.3390/foods13182990
APA StyleCarcea, M., Melloni, S., Narducci, V., & Turfani, V. (2024). Wheat Germ Agglutinin (WGA): Its Nature, Biological Role, Significance in Human Nutrition, and Possibility to Be Used as Marker of Whole-Grain Status in Wheat-Based Foods. Foods, 13(18), 2990. https://doi.org/10.3390/foods13182990