Study on the Structural Features of Eight Dendrobium Polysaccharides and Their Protective Effects on Gastric Mucosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Polysaccharides from Different Cultivars of Dendrobium
2.3. Structural Characterization of Dendrobium Polysaccharides
2.3.1. Chemical Composition of the Polysaccharides
2.3.2. Determination of Molecular Weight (Mw) and Polymer Dispersity Index (PDI)
2.3.3. Monosaccharide Composition Analysis
2.3.4. Acetylation Assay
2.4. Cell Experiments
2.4.1. Cell Model
2.4.2. Grouping of Cells
2.4.3. Cell Scratch Test
2.4.4. Measurements of Oxidative Stress and Antioxidant Biomarkers via a Biochemical Approach
2.4.5. ROS Detection
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Polysaccharides from Different Dendrobium Species
3.1.1. Chemical Compositions
3.1.2. Mw and PDI Data
3.1.3. Monosaccharide Composition
3.2. Biological Experiments
3.2.1. Construction of Models In Vitro for Preventing Oxidative Damage of GES-1 Cells
3.2.2. Effects of Dendrobium Polysaccharides on Scratch Repair in GES-1 Cells
3.2.3. SOD, CAT, and GSH-px Activity Measurements and MDA Content Assay
3.2.4. Effects of Dendrobium Polysaccharides on ROS Level in GES-1 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Lin, L.; Ni, B.; Lin, H.; Zhang, M.; Li, X.; Yin, X.; Qu, C.; Ni, J. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review. J. Ethnopharmacol. 2015, 159, 158–183. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Sun, F. Shennong Materia Medica Classic; People’s Medical Publishing House: Beijing, China, 1991; Volume 45. [Google Scholar]
- Teixeira da Silva, J.A.; Ng, T.B. The medicinal and pharmaceutical importance of Dendrobium species. Appl. Microbiol. Biotechnol. 2017, 101, 2227–2239. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Lin, Y.; Farag, M.A.; Li, Z.; Shao, P. Dendrobium as a new natural source of bioactive for the prevention and treatment of digestive tract diseases: A comprehensive review with future perspectives. Phytomedicine 2023, 114, 154784. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia. China Medical Science Press: Beijing, China, 2020; pp. 94–97. [Google Scholar]
- Wang, X.; Yin, J.; Hu, J.; Nie, S.; Xie, M. Gastroprotective polysaccharide from natural sources: Review on structure, mechanism, and structure–Activity relationship. Food Front. 2022, 3, 560–591. [Google Scholar] [CrossRef]
- Chun, T.; Heng, C.; Yung, H.; Ming, Y. Current Advances in the Biological Activity of Polysaccharides in Dendrobium with Intriguing Therapeutic Potential. Curr. Med. Chem. 2018, 25, 1663–1681. [Google Scholar] [CrossRef]
- Yang, J.; Kuang, M.; Yang, L.; Huang, W.; Hu, J. Modern interpretation of the traditional application of Shihu—A comprehensive review on phytochemistry and pharmacology progress of Dendrobium officinale. J. Ethnopharmacol. 2023, 302, 115912. [Google Scholar] [CrossRef]
- Xu, J.; Guan, J.; Chen, X.J.; Zhao, J.; Li, S.P. Comparison of polysaccharides from different Dendrobium using saccharide mapping. J. Pharm. Biomed. Anal. 2011, 55, 977–983. [Google Scholar] [CrossRef]
- Meng, L.; Lv, G.; Hu, D.; Cheong, K.; Xie, J.; Zhao, J.; Li, S. Effects of Polysaccharides from Different Species of Dendrobium (Shihu) on Macrophage Function. Molecules 2013, 18, 5779–5791. [Google Scholar] [CrossRef]
- WHO. Global Cancer Burden Growing, Amidst Mounting Need for Services; World Health Organization: Geneva, Switzerland, 2024; pp. 326–327. [Google Scholar]
- Manthey, J.; Shield, K.D.; Rylett, M.; Hasan, O.S.M.; Probst, C.; Rehm, J. Global alcohol exposure between 1990 and 2017 and forecasts until 2030: A modelling study. Lancet 2019, 393, 2493–2502. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Bai, J.; Tian, S.; Ma, M.; Li, W.; Yin, Y.; Deng, R.; Cui, J.; Li, J.; Wang, G.; et al. Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway. Exp. Biol. Med. 2017, 242, 1025–1033. [Google Scholar] [CrossRef]
- Li, P.; Li, L.; Wang, Y. Traditional uses, chemical compositions and pharmacological activities of Dendrobium: A review. J. Ethnopharmacol. 2023, 310, 116382. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Lu, T.; Zhan, L.; Zhou, C.; Zhang, N.; Lei, S.; Wang, Y.; Yang, J.; Yan, M.; Lv, G.; et al. Physicochemical characterization of polysaccharide from the leaf of Dendrobium officinale and effect on LPS induced damage in GES-1 cell. Int. J. Biol. Macromol. 2020, 149, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Shang, Z.; Zhang, F.; Zha, X.; Li, Q.; Luo, J. Dendrobium huoshanense stem polysaccharide ameliorates alcohol-induced gastric ulcer in rats through Nrf2-mediated strengthening of gastric mucosal barrier. Int. J. Biol. Macromol. 2023, 236, 124001. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fan, J.; Yu, K. Progress on structural analysis and bioactivity of polysaccharides of Dendrobium huoshanense and analysis of differences in polysaccharide composition between different species. Chin. Tradit. Herb. Drugs 2023, 54, 5044–5056. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Kelvin Hamilton, J. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Y.; Yang, J.; Gu, D.; Kang, S.; Liu, Y.; Jin, H.; Wei, F.; Ma, S. Anti-aging activities of neutral and acidic polysaccharides from Polygonum multiflorum Thunb in Caenorhabditis elegans. Int. J. Biol. Macromol. 2024, 257, 128724. [Google Scholar] [CrossRef]
- Gu, D.; Wang, Y.; Jin, H.; Kang, S.; Liu, Y.; Zan, K.; Fan, J.; Wei, F.; Ma, S. Changes of Physicochemical Properties and Immunomodulatory Activity of Polysaccharides During Processing of Polygonum multiflorum Thunb. Front. Pharmacol. 2022, 13, 934710. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, Y.; Peng, F. UV spectrophotometric determination of acetylation substitution degree in Konjac glucomannan. China J. Pharm. Anal. 2010, 30, 919–921. [Google Scholar]
- He, Y.; Li, L.; Chang, H.; Cai, B.; Gao, H.; Chen, G.; Hou, W.; Jappar, Z.; Yan, Y. Research progress on extraction, purification, structure and biological activity of Dendrobium officinale polysaccharides. Front. Nutr. 2022, 9, 965073. [Google Scholar] [CrossRef]
- Shi, M.; Wei, X.; Xu, J.; Chen, B.; Zhao, D.; Cui, S.; Zhou, T. Carboxymethylated degraded polysaccharides from Enteromorpha prolifera: Preparation and in vitro antioxidant activity. Food Chem. 2017, 215, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Chen, F.; Cheng, H.; Huang, G. Modification and application of polysaccharide from traditional Chinese medicine such as Dendrobium officinale. Int. J. Biol. Macromol. 2020, 157, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Nie, S.; Huang, X.; Hu, J.; Cui, S.W.; Xie, M.; Phillips, G.O. Study on Dendrobium officinale O-Acetyl-glucomannan (Dendronan). 7. Improving Effects on Colonic Health of Mice. J. Agric. Food Chem. 2015, 64, 2485–2491. [Google Scholar] [CrossRef]
- Wang, J.; Luo, J.; Zha, X. Structural features of a pectic polysaccharide from the stems of Dendrobium nobile Lindl. Carbohydr. Polym. 2010, 81, 1–7. [Google Scholar] [CrossRef]
- Mao, G.; Li, S.; Orfila, C.; Shen, X.; Zhou, S.; Linhardt, R.J.; Ye, X.; Chen, S. Depolymerized RG-I-enriched pectin from citrus segment membranes modulates gut microbiota, increases SCFA production, and promotes the growth of Bifidobacterium spp., Lactobacillus spp. and Faecalibaculum spp. Food Func. 2019, 10, 7828–7843. [Google Scholar] [CrossRef]
- Yue, H.; Zeng, H.; Ding, K. A review of isolation methods, structure features and bioactivities of polysaccharides from Dendrobium species. Chin. J. Nat. Med. 2020, 18, 1–27. [Google Scholar] [CrossRef]
- Lin, S.; Guo, H.; Lu, M.; Lu, M.; Gong, J.D.B.; Wang, L.; Zhang, Q.; Qin, W.; Wu, D. Correlations of Molecular Weights of β-Glucans from Qingke (Tibetan Hulless Barley) to Their Multiple Bioactivities. Molecules 2018, 23, 1710. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Meng, Q.; Xiao, T.; Zhang, L. Partial characterization and antioxidant activities of polysaccharides sequentially extracted from Dendrobium officinale. J. Food Meas. Charact. 2018, 12, 1054–1064. [Google Scholar] [CrossRef]
- Zhao, X.D.; Liu, Y.; Tao, X.Y. Cellular Immune Activity of Dendrobium officinale Polysaccharide with Different Molecular Weight. Chin. Pharm. J. 2024, 58, 997–1004. [Google Scholar] [CrossRef]
- Lin, L.Y. Chemical Composition Analysis and Standard Establishment of Dendrobium Huoshanense. Master’s Thesis, Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2020. [Google Scholar]
- Laine, L.; Takeuchi, K.; Tarnawski, A. Gastric Mucosal Defense and Cytoprotection: Bench to Bedside. Gastroenterology 2008, 135, 41–60. [Google Scholar] [CrossRef]
- Chen, M.M. Gastric Mucosal Defense-Repair Mechanisms with Aging: A Preliminary Study. Master’s Thesis, Fudan University, Shanghai, China, 2013. [Google Scholar]
- Campbell, E.L.; Colgan, S.P. Control and dysregulation of redox signalling in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2018, 16, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; He, S.; Xu, H.; Zhan, X.; Yang, X.; Xiao, H.; Shi, H.; Ren, J. Oxidative stress disturbs energy metabolism of mitochondria in ethanol-induced gastric mucosa injury. World J. Gastroenterol. 2008, 14, 5857–5867. [Google Scholar] [CrossRef] [PubMed]
- Pereira Júnior, L.C.; Nascimento, F.G.; Oliveira, S.R.B.D.; Lima, G.C.; Chagas, F.D.S.; Sombra, V.G.; Feitosa, J.P.A.; Soriano, E.M.; Souza, M.H.L.P.; Zocolo, G.J.; et al. Protective effect against gastric mucosa injury of a sulfated agaran from Acanthophora spicifera. Carbohydr. Polym. 2021, 261, 117829. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Liu, L.; Ren, J.; Huang, M.; Yuan, E. Structural characterization of two Hericium erinaceus polysaccharides and their protective effects on the alcohol-induced gastric mucosal injury. Food Chem. 2022, 375, 131896. [Google Scholar] [CrossRef]
- Aviello, G.; Knaus, U.G. ROS in gastrointestinal inflammation: Rescue Or Sabotage? Br. J. Pharmacol. 2016, 174, 1704–1718. [Google Scholar] [CrossRef]
- Pan, L.; Li, X.; Wang, M.; Zha, X.; Yang, X.; Liu, Z.; Luo, Y.; Luo, J. Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. Int. J. Biol. Macromol. 2014, 64, 420–427. [Google Scholar] [CrossRef]
- Liu, B.; Li, Q.; Shang, Z.; Zha, X.; Pan, L.; Luo, J. Anti-gastric cancer activity of cultivated Dendrobium huoshanense stem polysaccharide in tumor-bearing mice: Effects of molecular weight and O-acetyl group. Int. J. Biol. Macromol. 2021, 192, 590–599. [Google Scholar] [CrossRef]
- Meng, X.; Liang, H.; Luo, L. Antitumor polysaccharides from mushrooms: A review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr. Res. 2016, 424, 30–41. [Google Scholar] [CrossRef]
- Ji, X.; Peng, Q.; Wang, M. Anti-colon-cancer effects of polysaccharides: A mini-review of the mechanisms. Int. J. Biol. Macromol. 2018, 114, 1127–1133. [Google Scholar] [CrossRef]
- Ren, L.; Perera, C.; Hemar, Y. Antitumor activity of mushroom polysaccharides: A review. Food Func. 2012, 3, 1118–1130. [Google Scholar] [CrossRef]
Parameter | 1. DHP (n = 5) | 2. DOP (n = 3) | 3. DNP (n = 3) | 4. DCP (n = 3) | 5. DFP (n = 3) | 6. DAP (n = 3) | 7. DDP (n =3) | 8. DPP (n =3) |
---|---|---|---|---|---|---|---|---|
Polysaccharide yields (%) | 15.93 ± 1.07 a | 8.46 ± 0.62 b | 2.53 ± 0.36 c | 1.47 ± 0.20 c | 1.76 ± 0.10 c | 3.54 ± 0.26 c | 10.12 ± 0.68 a | 5.20 ± 0.689 b |
Total polysaccharides (%) | 65.88 ± 4.30 b | 58.00 ± 3.01b | 63.20 ± 13.07 b | 51.89 ± 6.91 c | 72.40 ± 13.29 a | 80.57 ± 11.63 a | 66.46 ± 3.87 b | 57.71 ± 4.50 b |
Protein content (%) | 1.62 ± 1.10 c | 1.25 ± 0.62 c | 4.40 ± 1.72 b | 6.43 ± 3.88 a | 5.83 ± 3.61 a | 3.30 ± 1.71 b | 1.86 ± 0.31 c | 3.12 ± 1.72 b |
Acetylation degree | 0.33 ± 0.03 b | 0.48 ± 0.03 a | 0.28 ± 0.10 b | 0.26 ± 0.11 b | 0.23 ± 0.07 b | 0.17 ± 0.03 c | 0.37 ± 0.04 a | 0.23 ± 0.07 b |
Mw (×105 Da) | 1.31 ± 0.17 c | 1.82 ± 0.34 c | 1.80 ± 0.04 c | 2.14 ± 0.24 b | 1.70 ± 0.06 c | 1.91 ± 0.27 c | 2.24 ± 0.31 b | 5.84 ± 2.49 a |
PDI | 1.50 ± 0.14 c | 1.44 ± 0.05 c | 1.84 ± 0.17 b | 1.75 ± 0.15 b | 1.63 ± 0.04 c | 1.75 ± 0.36 b | 1.47 ± 0.09 c | 3.43 ± 0.78 a |
Man (%) | 74.95 ± 1.94 b | 83.10 ± 2.43 a | 35.76 ± 7.45 d | 42.51 ± 14.82 c | 52.62 ± 2.28 c | 75.17 ± 1.35 a | 93.86 ± 1.20 a | 66.88 ± 10.52 b |
Glc (%) | 23.32 ± 1.64 b | 15.81 ± 2.44 c | 61.59 ± 7.70 a | 54.02 ± 17.36 a | 41.74 ± 3.51a | 22.59 ± 0.98 b | 4.86 ± 1.24 c | 30.08 ± 9.95 b |
Gal (%) | 0.94 ± 0.34 c | 0.66 ± 0.05 c | 1.49 ± 0.25 b | 2.20 ± 1.87 b | 3.68 ± 3.36 a | 1.28 ± 1.00 b | 0.73 ± 0.03 c | 1.63 ± 0.67 b |
Ara (%) | 0.79 ± 0.46 c | 0.43 ± 0.08 c | 1.15 ± 0.40 b | 1.26 ± 0.68 b | 1.97 ± 1.82 a | 0.96 ± 0.52 c | 0.55 ± 0.04 c | 1.41 ± 0.59 b |
Man/Glc | 2.05 ± 0.20 b | 3.41 ± 0.68 b | 0.38 ± 0.13 d | 0.59 ± 0.44 c | 0.80 ± 0.06 c | 2.12 ± 0.10 b | 12.86 ± 3.56 a | 1.55 ± 0.62 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, Y.; Liu, Y.; Xie, J.; Zhang, Y.; Jin, H.; Wei, F.; Ma, S. Study on the Structural Features of Eight Dendrobium Polysaccharides and Their Protective Effects on Gastric Mucosa. Foods 2024, 13, 3011. https://doi.org/10.3390/foods13183011
Wang H, Wang Y, Liu Y, Xie J, Zhang Y, Jin H, Wei F, Ma S. Study on the Structural Features of Eight Dendrobium Polysaccharides and Their Protective Effects on Gastric Mucosa. Foods. 2024; 13(18):3011. https://doi.org/10.3390/foods13183011
Chicago/Turabian StyleWang, Haonan, Ying Wang, Yuanxi Liu, Jinxin Xie, Yazhong Zhang, Hongyu Jin, Feng Wei, and Shuangcheng Ma. 2024. "Study on the Structural Features of Eight Dendrobium Polysaccharides and Their Protective Effects on Gastric Mucosa" Foods 13, no. 18: 3011. https://doi.org/10.3390/foods13183011
APA StyleWang, H., Wang, Y., Liu, Y., Xie, J., Zhang, Y., Jin, H., Wei, F., & Ma, S. (2024). Study on the Structural Features of Eight Dendrobium Polysaccharides and Their Protective Effects on Gastric Mucosa. Foods, 13(18), 3011. https://doi.org/10.3390/foods13183011