Effect of Extraction Methods on Chemical Characteristics and Bioactivity of Chrysanthemum morifolium cv. Fubaiju Extracts
Abstract
:1. Introduction
2. Method and Materials
2.1. Material and Reagent
2.2. Preparation of CMF Extracts
2.2.1. Hot Water Extraction
2.2.2. Acid Water Immersion-Assisted Hot Water Extraction
2.2.3. Alkali Water Immersion-Assisted Hot Water Extraction
2.2.4. Ultrasonic-Assisted Hot Water Extraction
2.2.5. High-Pressure Homogeneity-Assisted Hot Water Extraction
2.2.6. Enzyme-Assisted Hot Water Extraction
2.3. Analysis of Extracts and Components of CMF
2.4. Antioxidant Activity Assay of CMF Extracts
2.5. Anti-Glycation Activity Assay of CMF Extracts
2.6. Statistical Analysis
3. Results and Discussion
3.1. Composition Analysis of Extracts from CMF
3.2. Antioxidant Activity of Extracts from CMF
3.3. Anti-Glycation Activity of Extracts from CMF
3.4. Correlation between the Glycation Products and Antioxidant Indices
3.5. Correlation between Compounds and Activity of CMF Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Wang, Z.; Chen, L.; Sun, G. Hypolipidemic Effects and Preliminary Mechanism of Chrysanthemum Flavonoids, Its Main Components Luteolin and Luteoloside in Hyperlipidemia Rats. Antioxidants 2021, 10, 1309. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, P.; Luo, Y.; Gao, B.; Sun, J.; Lu, W.; Liu, J.; Chen, P.; Zhang, Y.; Yu, L. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem. 2019, 286, 8–16. [Google Scholar] [CrossRef]
- Tsuji-Naito, K.; Saeki, H.; Hamano, M. Inhibitory effects of Chrysanthemum species extracts on formation of advanced glycation end products. Food Chem. 2009, 116, 854–859. [Google Scholar] [CrossRef]
- He, D.; Ru, X.; Wen, L.; Wen, Y.; Jiang, H.; Bruce, I.C.; Jin, J.; Ma, X.; Xia, Q. Total flavonoids of Flos Chrysanthemi protect arterial endothelial cells against oxidative stress. J. Ethnopharmacol. 2012, 139, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, X.; Xue, J.; Fan, E. Plant Phenolics Extraction from Flos Chrysanthemi: Response Surface Methodology Based Optimization and the Correlation Between Extracts and Free Radical Scavenging Activity. J. Food Sci. 2017, 82, 2726–2733. [Google Scholar] [CrossRef]
- Yang, C.; Chen, H.; Lu, S.; Zhang, M.; Tian, W.; Wang, M.; Zhang, L.; Song, Y.; Shen, A.; Zhou, Y.; et al. Structural modification of luteolin from Flos Chrysanthemi leads to increased tumor cell growth inhibitory activity. Bioorganic Med. Chem. Lett. 2016, 26, 3464–3467. [Google Scholar] [CrossRef]
- Zhan, J.; He, F.; Cai, H.; Wu, M.; Xiao, Y.; Xiang, F.; Yang, Y.; Ye, C.; Wang, S.; Li, S. Composition and antifungal mechanism of essential oil from Chrysanthemum morifolium cv. Fubaiju. J. Funct. Foods 2021, 87, 104746. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, C.; Xu, Y.; Ma, M.; Yao, T.; Sui, Z. Impact of Six Extraction Methods on Molecular Composition and Antioxidant Activity of Polysaccharides from Young Hulless Barley Leaves. Foods 2023, 12, 3381. [Google Scholar] [CrossRef]
- Lv, S.; Taha, A.; Hu, H.; Lu, Q.; Pan, S. Effects of Ultrasonic-Assisted Extraction on the Physicochemical Properties of Different Walnut Proteins. Molecules 2019, 24, 4260. [Google Scholar] [CrossRef]
- Fletes-Vargas, G.; Rodríguez-Rodríguez, R.; Pacheco, N.; Pérez-Larios, A.; Espinosa-Andrews, H. Evaluation of the Biological Properties of an Optimized Extract of Polygonum cuspidatum Using Ultrasonic-Assisted Extraction. Molecules 2023, 28, 4079. [Google Scholar] [CrossRef]
- Wu, D.-T.; Liu, W.; Xian, M.-L.; Du, G.; Liu, X.; He, J.-J.; Wang, P.; Qin, W.; Zhao, L. Polyphenolic-Protein-Polysaccharide Complexes from Hovenia dulcis: Insights into Extraction Methods on Their Physicochemical Properties and In Vitro Bioactivities. Foods 2020, 9, 456. [Google Scholar] [CrossRef] [PubMed]
- Mirzazadeh, N.; Bagheri, H.; Mirzazadeh, M.; Soleimanimehr, S.; Rasi, F.; Akhavan-Mahdavi, S. Comparison of different green extraction methods used for the extraction of anthocyanin from red onion skin. Food Sci. Nutr. 2024, 1–11. [Google Scholar] [CrossRef]
- Montiel, D.G.; Barrera, A.L.G.; Ávila, G.C.G.M.; Hernandez, M.D.G.; Vela, N.A.C.; Gonzalez, F.J.A.; Castillo, F.Y.R. Influence of the Extraction Method on the Polyphenolic Profile and the Antioxidant Activity of Psidium guajava L. Leaf Extracts. Molecules 2024, 29, 85. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Cwalina-Ambroziak, B.; Janiak, M.A.; Damszel, M.; Stępień, A.; Sulewska, K.; Karamać, M.; Penkacik, K. Effect of Fertilization on Phenolics of Rapeseeds and Their Antioxidant Potential. Foods 2024, 13, 561. [Google Scholar] [CrossRef] [PubMed]
- Ogura, I.; Sugiyama, M.; Tai, R.; Mano, H.; Matsuzawa, T. Optimization of microplate-based phenol-sulfuric acid method and application to the multi-sample measurements of cellulose nanofibers. Anal. Biochem. 2023, 681, 115329. [Google Scholar] [CrossRef]
- Wei, Y.-J.; Li, K.-A.; Tong, S.-Y. A linear regression method for the study of the Coomassie brilliant blue protein assay. Talanta 1997, 44, 923–930. [Google Scholar] [CrossRef]
- Prasongdee, P.; Posridee, K.; Oonsivilai, A.; Oonsivilai, R. A Culinary and Medicinal Gem: Exploring the Phytochemical and Functional Properties of Thai Basil. Foods 2024, 13, 632. [Google Scholar] [CrossRef]
- Qiao, J.; Li, D.; Guo, L.; Hong, X.; He, S.; Huo, J.; Sui, X.; Zhang, Y. Enhancing Postharvest Quality and Antioxidant Capacity of Blue Honeysuckle cv. ‘Lanjingling’ with Chitosan and Aloe vera Gel Edible Coatings during Storage. Foods 2024, 13, 630. [Google Scholar] [CrossRef]
- Zhao, M.; Wu, Y.; Zhang, F.; Zheng, S.; Wang, L.; Bai, J.; Yang, Y. Preparation of Ribes nigrum L. polysaccharides-stabilized selenium nanoparticles for enhancement of the anti-glycation and α-glucosidase inhibitory activities. Int. J. Biol. Macromol. 2023, 253, 127122. [Google Scholar] [CrossRef]
- Baker, J.R.; Zyzak, D.V.; Thorpe, S.R.; Baynes, J.W. Mechanism of fructosamine assay: Evidence against role of superoxide as intermediate in nitroblue tetrazolium reduction. Clin. Chem. 1994, 39, 2460–2465. [Google Scholar] [CrossRef]
- Mitchel, R.E.J.; Birnboim, H.C. The use of Girard-T reagent in a rapid and sensitive method for measuring glyoxal and certain other α-dicarbonyl compounds. Anal. Biochem. 1977, 81, 47–56. [Google Scholar] [CrossRef]
- Spínola, V.; Llorent-Martínez, E.J.; Castilho, P.C. Inhibition of α-amylase, α-glucosidase and pancreatic lipase by phenolic compounds of Rumex maderensis (Madeira sorrel). Influence of simulated gastrointestinal digestion on hyperglycaemia-related damage linked with aldose reductase activity and protein glycation. LWT 2020, 118, 108727. [Google Scholar]
- Ding, H.; Ni, M.; Zhang, G.; Liao, Y.; Hu, X.; Zhang, Y.; Gong, D. The inhibition of oleanolic acid on protein non-enzymatic glycation. LWT 2020, 125, 109253. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, G.; Huang, H. Ultrasonic/enzymatic extraction, characteristics and comparison of leechee peel polysaccharide. Ultrason. Sonochem. 2024, 108, 106948. [Google Scholar] [CrossRef] [PubMed]
- Hui, W.; Zhou, J.; Jin, R. Proteins recovery from waste activated sludge by thermal alkaline treatment. J. Environ. Chem. Eng. 2022, 10, 107311. [Google Scholar] [CrossRef]
- Kljakić, A.C.; Božunović, J.; Gašić, U.; Seebaluck-Sandoram, R.; Uba, A.I.; Mahomoodally, M.F.; Yildiztugay, E.; Zengin, G. Chemical characterization of Glaucosciadum cordifolium extracts obtained by different extraction techniques and their biopharmaceutical effects. Process Biochem. 2023, 134, 141–150. [Google Scholar] [CrossRef]
- Zehiroglu, C.; Sarikaya, S.B.O. The importance of antioxidants and place in today’s scientific and technological studies. J. Food Sci. Technol. 2019, 56, 4757–4774. [Google Scholar] [CrossRef]
- Csepregi, K.; Neugart, S.; Schreiner, M.; Hideg, É. Comparative Evaluation of Total Antioxidant Capacities of Plant Polyphenols. Molecules 2016, 21, 208. [Google Scholar] [CrossRef]
- Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44, 129–146. [Google Scholar] [CrossRef]
- Galiniak, S.; Krawczyk-Marć, I.; Sęk-Mastej, A.; Leksa, N.; Orkisz, S. Clinical aspects of protein glycation. Eur. J. Clin. Exp. Med. 2017, 15, 263–267. [Google Scholar] [CrossRef]
- Adamska, A.; Araszkiewicz, A.; Pilacinski, S.; Gandecka, A.; Grzelka, A.; Kowalska, K.; Malinska, A.; Nowicki, M.; Zozulinska-Ziolkiewicz, D. Dermal microvessel density and maturity is closely associated with atherogenic dyslipidemia and accumulation of advanced glycation end products in adult patients with type 1 diabetes. Microvasc. Res. Int. J. 2019, 121, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Youl, R.S.; Seol, K.Y. The Role of Advanced Glycation End Products in Diabetic Vascular Complications. Diabetes Metab. J. 2018, 42, 188. [Google Scholar]
- Spagnuolo, L.; Della Posta, S.; Fanali, C.; Dugo, L.; De Gara, L. Antioxidant and Antiglycation Effects of Polyphenol Compounds Extracted from Hazelnut Skin on Advanced Glycation End-Products (AGEs) Formation. Antioxidants 2021, 10, 424. [Google Scholar] [CrossRef]
- Sun, M.; Wei, Y.; Feng, X.; Fan, J.; Chen, X. Composition, anti-LDL oxidation, and non-enzymatic glycosylation inhibitory activities of the flavonoids from Mesembryanthemum crystallinum. Front. Nutr. 2022, 9, 963858. [Google Scholar] [CrossRef] [PubMed]
- Aksornchu, P.; Chamnansilpa, N.; Adisakwattana, S.; Thilavech, T.; Choosak, C.; Marnpae, M.; Mäkynen, K.; Dahlan, W.; Ngamukote, S. Inhibitory Effect of Antidesma bunius Fruit Extract on Carbohydrate Digestive Enzymes Activity and Protein Glycation In Vitro. Antioxidants 2021, 10, 32. [Google Scholar] [CrossRef]
- Song, Q.; Liu, J.; Dong, L.; Wang, X.; Zhang, X. Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomed. Pharmacother. 2021, 140, 111750. [Google Scholar] [CrossRef]
- Oulous, A.; Daoudi, N.E.; Harit, T.; Cherfi, M.; Bnouham, M.; Malek, F. New pyrazole-tetrazole hybrid compounds as potent α-amylase and non-enzymatic glycation inhibitors. Bioorganic Med. Chem. Lett. 2022, 69, 128785. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Stefaniuk, I.; Galiniak, S.; Bartosz, G. Glycation of bovine serum albumin by ascorbate in vitro: Possible contribution of the ascorbyl radical? Redox Biol. 2015, 6, 93–99. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, M.; Cheng, Y.; Khan, I.A.; Huang, J. A comprehensive review of Nε-carboxymethyllysine and Nε-carboxyethyllysine in thermal processed meat products. Trends Food Sci. Technol. 2020, 98, 30–40. [Google Scholar] [CrossRef]
- Zhu, Z.; Fang, R.; Zhao, D.; Huang, M. Effect of malondialdehyde on oil-in-water emulsifying behavior and Maillard reaction of chicken sarcoplasmic protein in emulsion. Colloids Surf. B Biointerfaces 2020, 191, 111016. [Google Scholar] [CrossRef]
- Spickett, C.M.; Pitt, A.R. Modification of proteins by reactive lipid oxidation products and biochemical effects of lipoxidation. Essays Biochem. 2019, 64, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Zhan, F.; Luo, J.; Sun, Y.; Hu, Y.; Fan, X.; Pan, D. Antioxidant Activity and Cell Protection of Glycosylated Products in Different Reducing Sugar Duck Liver Protein Systems. Foods 2023, 12, 540. [Google Scholar] [CrossRef] [PubMed]
- Elisa, P.; Ludovica, S.; De, G.L.; Luca, S.; Laura, D. Phenolic Compounds as Preventive and Therapeutic Agents in Diabetes-Related Oxidative Stress, Inflammation, Advanced Glycation End-Products Production and Insulin Sensitivity. Discov. Med. 2023, 35, 715–732. [Google Scholar]
- Khan, M.; Liu, H.; Wang, J.; Sun, B. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Res. Int. 2020, 130, 108933. [Google Scholar] [CrossRef]
- Bochnak-Niedźwiecka, J.; Szymanowska, U.; Kapusta, I.; Świeca, M. Antioxidant Content and Antioxidant Capacity of the Protein-Rich Powdered Beverages Enriched with Flax Seeds Gum. Antioxidants 2022, 11, 582. [Google Scholar] [CrossRef]
- Gong, P.; Pei, S.; Long, H.; Yang, W.; Yao, W.; Li, N.; Wang, J.; Zhao, Y.; Chen, F.; Xie, J.; et al. Potential inhibitory effect of Auricularia auricula polysaccharide on advanced glycation end-products (AGEs). Int. J. Biol. Macromol. 2024, 262, 129856. [Google Scholar] [CrossRef]
- Kuerban, A.; Al-Malki, A.L.; Kumosani, T.A.; Sheikh, R.A.; Al-Abbasi, F.A.M.; Alshubaily, F.A.; Abulnaja, K.O.; Moselhy, S.S. Identification, protein antiglycation, antioxidant, antiproliferative, and molecular docking of novel bioactive peptides produced from hydrolysis of Lens culinaris. J. Food Biochem. 2020, 44, 13494. [Google Scholar] [CrossRef]
Sample | Carbohydrates (%) | Total Phenolic Content (mg GAE/g) | Protein (%) | Moisture Content (%) | Yield (%) |
---|---|---|---|---|---|
Hw | 59.13 ± 0.28 e | 145.70 ± 2.03 a | 5.10 ± 0.03 c | 10.43 ± 0.53 a | 7.88 ± 0.21 b |
Ac | 59.3 ± 0.44 e | 65.09 ± 0.60 e | 5.45 ± 0.06 b | 10.83 ± 0.69 a | 7.23 ± 0.17 d |
Al | 63.19 ± 0.03 c | 84.43 ± 0.62 d | 7.31 ± 0.03 a | 10.51 ± 0.46 a | 7.56 ± 0.15 c |
Ultra | 64.42 ± 0.73 b | 124.31 ± 4.99 b | 3.64 ± 0.02 d | 10.91 ± 0.18 a | 8.18 ± 0.09 ab |
HPH | 60.82 ± 0.56 d | 112.34 ± 1.02 c | 3.25 ± 0.02 e | 10.64 ± 0.42 a | 7.72 ± 0.11 b |
Enz | 72.12 ± 0.98 a | 62.02 ± 0.46 e | 2.60 ± 0.02 f | 10.92 ± 0.52 a | 8.35 ± 0.31 a |
Compounds | Formula | Rt min | Found at m/z | Error ppm | MS/MS | Peak Area (×105) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Hw | Ac | Al | Ultra | HPH | Enz | ||||||
Neochlorogenic acid | C16H18O9 | 2.19 | 352.7841 | −0.3026 | 191.0552 | 0.16 ± 0.06 | 0.66 ± 0.05 | ND | 1250 ± 190 | ND | 0.31 ± 0.01 |
Chlorogenic acid | C16H18O9 | 2.45 | 353.0869 | 0.0002 | 191.0551 | 1.75 ± 0.60 | 0.61 ± 0.02 | 1.45 ± 0.29 | 419 ± 58 | 1.73 ± 0.23 | 0.69 ± 0.17 |
179.0341 | |||||||||||
173.0444 | |||||||||||
135.0438 | |||||||||||
Tuberonic acid glucoside | C18H28O9 | 3.05 | 387.1641 | −0.0009 | 207.1028 | 10.2 ± 0.20 | 3.72 ± 0.62 | 2.65 ± 0.39 | 8.44 ± 0.35 | 1.34 ± 0.63 | 0.20 ± 0.02 |
163.1119 | |||||||||||
Caffeic acid | C9H8O4 | 3.13 | 179.0341 | 0.0002 | 135.0438 | 3.18 ± 0.60 | 4.65 ± 0.32 | 278 ± 29 | 5.22 ± 0.43 | 4.41 ± 0.63 | 3.35 ± 0.23 |
1,3-di-O-caffeoyl-quinic acid | C25H24O12 | 3.31 | 515.1160 | −0.0024 | 353.0864 | 1.52 ± 0.56 | ND | 0.94 ± 0.05 | 1.80 ± 0.20 | 0.52 ± 0.04 | 0.23 ± 0.02 |
335.0754 | |||||||||||
191.0552 | |||||||||||
179.0339 | |||||||||||
135.0438 | |||||||||||
Luteolin-7-O-rut-inoside | C27H30O15 | 4.36 | 593.1501 | 0 | 285.0407 | 129 ± 30 | 50.8 ± 2.30 | 65.2 ± 3.90 | 15.1 ± 1.30 | 130 ± 18 | 53.6 ± 1.80 |
Quercetin-7-O-β-D-glucopyranosi-de | C21H20O12 | 4.54 | 463.0877 | 0.0006 | 300.0259 | 80.4 ± 3.90 | 27.2 ± 2 | 56.3 ± 3.80 | 67.5 ± 2.40 | 128 ± 15 | 115 ± 1 |
Luteolin-7-O-glu-coside | C21H20O11 | 4.61 | 447.0915 | −0.0007 | 285.0406 | 674 ± 42 | 878 ± 10 | 477 ± 26 | 346 ± 19 | 613 ± 22 | 591 ± 15 |
151.0024 | |||||||||||
133.0281 | |||||||||||
Luteolin-7-O-glu-curonide | C21H18O12 | 4.69 | 461.0730 | 0.0015 | 285.0406 | 4.81 ± 1.17 | 1.07 ± 0.07 | 54.8 ± 3.80 | 2.69 ± 0.24 | ND | 11.5 ± 1 |
151.0025 | |||||||||||
1,4-Dicaffeoylqu-inic acid | C25H24O12 | 4.83 | 515.1174 | −0.001 | 353.0865 | 40.9 ± 9.60 | 5.86 ± 1.29 | 7.10 ± 0.11 | 54.5 ± 1.70 | 41.2 ± 1.2 | 1.36 ± 0.23 |
335.0765 | |||||||||||
191.0552 | |||||||||||
179.0340 | |||||||||||
173.0444 | |||||||||||
135.0438 | |||||||||||
Cryptochloroge-nic acid | C16H18O9 | 5.11 | 353.0864 | −0.0003 | 191.0551 | 3.17 ± 0.32 | 1.99 ± 0.22 | ND | 18.2 ± 6.60 | 2.27 ± 0.28 | 2.65 ± 0.41 |
179.0341 | |||||||||||
173.0444 | |||||||||||
135.0438 | |||||||||||
Diosmetin-7-O-r-utinoside | C28H32O15 | 5.20 | 607.1669 | 0.0012 | 299.0562 | 2.42 ± 0.07 | 1.69 ± 0.37 | ND | 4.71 ± 0.26 | 0.73 ± 0.04 | 2.31 ± 0.15 |
284.0327 | |||||||||||
256.0374 | |||||||||||
Apigenin-7-O-β-D-glucoside | C21H20O10 | 5.31 | 431.0960 | −0.0013 | 268.0377 | 618 ± 155 | 101 ± 8 | 355 ± 31 | 32.5 ± 1.90 | 858 ± 21 | 746 ± 121 |
Isochlorogenic acid B | C25H24O12 | 5.34 | 515.1183 | −0.0001 | 353.0874 | 2.56 ± 0.88 | 2.11 ± 0.46 | 1.13 ± 0.22 | 7.54 ± 0.26 | 10.5 ± 1.60 | 1.50 ± 0.13 |
335.5183 | |||||||||||
191.0553 | |||||||||||
179.0339 | |||||||||||
173.0445 | |||||||||||
135.0438 | |||||||||||
Luteolin-7-O-6”-acetylglucoside | C23H22O12 | 6.13 | 489.1029 | 0.0001 | 285.0405 | 51.7 ± 1.60 | 29.2 ± 3.50 | ND | 108 ± 7 | 58.7 ± 2.20 | 28.9 ± 4.80 |
Diosmetin | C16H12O6 | 6.24 | 299.0561 | 0.0011 | 284.0327 | 29.3 ± 7.20 | 18 ± 2.90 | 33.4 ± 5.30 | 1.45 ± 0.12 | 2.10 ± 0.13 | 19.8 ± 0.90 |
256.0372 | |||||||||||
Apigenin-7-O-6-acetylglucoside | C23H22O11 | 6.93 | 473.1075 | −0.0003 | 269.0458 | 134 ± 5 | 25.5 ± 2.90 | ND | 85 ± 2.10 | 6.12 ± 0.15 | 71.1 ± 1.80 |
Acacetin | C16H12O5 | 7.86 | 283.0613 | 0.0012 | 268.0377 | 207 ± 33 | 132 ± 35 | 57.2 ± 3.40 | 63.5 ± 0.50 | 90.1 ± 2.90 | 139 ± 6 |
240.0423 | |||||||||||
Apigenin | C15H10O5 | 8.23 | 269.0455 | 0.0011 | 151.0023 | 8.48 ± 0.25 | 131 ± 2 | 34.9 ± 4.10 | 2.32 ± 0.19 | 5.19 ± 0.26 | 536 ± 25 |
117.0031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Li, T.; Li, Z.-R.; Liao, B.; Huang, Z.; Zhou, C.; Jia, R.-B. Effect of Extraction Methods on Chemical Characteristics and Bioactivity of Chrysanthemum morifolium cv. Fubaiju Extracts. Foods 2024, 13, 3057. https://doi.org/10.3390/foods13193057
Gao S, Li T, Li Z-R, Liao B, Huang Z, Zhou C, Jia R-B. Effect of Extraction Methods on Chemical Characteristics and Bioactivity of Chrysanthemum morifolium cv. Fubaiju Extracts. Foods. 2024; 13(19):3057. https://doi.org/10.3390/foods13193057
Chicago/Turabian StyleGao, Shang, Tiantian Li, Zhao-Rong Li, Bingwu Liao, Zirui Huang, Chunxia Zhou, and Rui-Bo Jia. 2024. "Effect of Extraction Methods on Chemical Characteristics and Bioactivity of Chrysanthemum morifolium cv. Fubaiju Extracts" Foods 13, no. 19: 3057. https://doi.org/10.3390/foods13193057
APA StyleGao, S., Li, T., Li, Z. -R., Liao, B., Huang, Z., Zhou, C., & Jia, R. -B. (2024). Effect of Extraction Methods on Chemical Characteristics and Bioactivity of Chrysanthemum morifolium cv. Fubaiju Extracts. Foods, 13(19), 3057. https://doi.org/10.3390/foods13193057