The Impact of Ganoderma lucidum (Curtis) P. Karst. Supplementation on the Technological, Chemical, and Quality Parameters of Wheat Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Farinographic Characteristics of Dough
2.3. Bread Production Process
2.4. Evaluation of Bread Quality
2.5. Bread Porosity
2.6. Evaluation of Bread Colour Parameters
- , —the values for the control sample (CON);
- , —the values for tested samples enriched with (LM) mushroom;
- WI—whiteness index;
- YI—yellowness index;
- BI—browning index.
2.7. Texture Profile Analysis (TPA) of Bread
2.8. Chemical Analysis of Raw Materials and Bread
2.9. Determination of the Content of Mineral Elements
2.10. Extraction of Polyphenols from Raw Materials and Bread
2.11. Total Polyphenol and Flavonoid Content in Raw Materials and Bread
2.12. Antioxidant Activity of Raw Materials and Bread against DPPH· and ABTS·+
2.13. Sensory Analysis
2.14. Statistical Analysis
3. Results and Discussion
3.1. Farinographic Properties of the Dough
3.2. Evaluation of Bread Quality Characteristics
3.3. Evaluation of Bread Colour Parameters
3.4. Texture Profile Analysis (TPA) of Bread
3.5. Sensory Evaluation of Bread Characteristics
3.6. Chemical Composition of Raw Materials and Bread
3.7. Mineral Composition
3.8. Polyphenol Content and Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karunarathna, S.C.; Ediriweera, A.; Prasannath, K.; Mingfei, Y.; Hapuarachchi, K.K. Exploring the health benefits of Ganoderma: Bioactive compounds and mechanisms of action; immunomodulatory, and anti-tumour activities. N. Z. J. Bot. 2024, 1–85. [Google Scholar] [CrossRef]
- Dabhi, F.A. A Review on Medicinal Properties and Historical Use of Reishi Mushroom. J. Pharma Insights Res. 2023, 2, 37–41. [Google Scholar] [CrossRef]
- Gharib, M.; Radwan, H.; Elhassaneen, Y. Nutrients and Nutraceuticals Content and In Vitro Biological Activities of Reishi Mushroom (Ganoderma lucidum) Fruiting Bodies. Alex. Sci. Exch. J. 2022, 43, 301–316. [Google Scholar] [CrossRef]
- Ahmad, R.; Riaz, M.; Khan, A.; Aljamea, A.; Algheryafi, M.; Sewaket, D.; Alqathama, A. Ganoderma lucidum (Reishi), an edible mushroom: A comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother. Res. 2021, 35, 6030–6062. [Google Scholar] [CrossRef]
- Zhong, Y.; Tan, P.; Lin, H.; Zhang, D.; Chen, X.; Pang, J.; Mu, R. A Review of Ganoderma lucidum Polysaccharide: Preparations, Structures, Physicochemical Properties and Application. Foods 2024, 13, 2665. [Google Scholar] [CrossRef]
- Cadar, E.; Negreanu-Pirjol, T.; Pascale, C.; Sirbu, R.; Prasacu, I.; Negreanu-Pirjol, B.-S.; Tomescu, C.L.; Ionescu, A.-M. Natural bio-compounds from Ganoderma lucidum and their beneficial biological actions for anticancer application: A review. Antioxidants 2023, 12, 1907. [Google Scholar] [CrossRef]
- Łysakowska, P.; Sobota, A.; Wirkijowska, A. Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production—A Review. Molecules 2023, 28, 5393. [Google Scholar] [CrossRef]
- Shevchuk, Y.; Kuypers, K.; Janssens, G.E. Fungi as a source of bioactive molecules for the development of longevity medicines. Ageing Res. Rev. 2023, 87, 101929. [Google Scholar] [CrossRef]
- Kiss, A.; Grünvald, P.; Ladányi, M.; Papp, V.; Papp, I.; Némedi, E.; Mirmazloum, I. Heat Treatment of Reishi Medicinal Mushroom (Ganoderma lingzhi) Basidiocarp Enhanced Its β-glucan Solubility, Antioxidant Capacity and Lactogenic Properties. Foods 2021, 10, 2015. [Google Scholar] [CrossRef]
- El Sheikha, A.F. Nutritional Profile and Health Benefits of Ganoderma lucidum “Lingzhi, Reishi, or Mannentake” as Functional Foods: Current Scenario and Future Perspectives. Foods 2022, 11, 1030. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Barbosa, B.V.R.; Martins, B.d.A.; Guirlanda, C.P.; Moura, M.A.F. Use of the Versatility of Fungal Metabolism to Meet Modern Demands for Healthy Aging, Functional Foods, and Sustainability. J. Fungi 2020, 6, 223. [Google Scholar] [CrossRef] [PubMed]
- Mollakhalili-Meybodi, N.; Sheidaei, Z.; Khorshidian, N.; Nematollahi, A.; Khanniri, E. Sensory attributes of wheat bread: A review of influential factors. J. Food Meas. Charact. 2022, 17, 2172–2181. [Google Scholar] [CrossRef]
- A Levy, A.; Feldman, M. Evolution and origin of bread wheat. Plant Cell 2022, 34, 2549–2567. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists (AACC). AACC Approved Methods of Analysis, 11th ed.; AACC: St. Paul, MN, USA, 2010. [Google Scholar]
- Wirkijowska, A.; Zarzycki, P.; Sobota, A.; Nawrocka, A.; Blicharz-Kania, A.; Andrejko, D. The possibility of using by-products from the flaxseed industry for functional bread production. LWT 2020, 118, 108860. [Google Scholar] [CrossRef]
- Wirkijowska, A.; Zarzycki, P.; Teterycz, D.; Nawrocka, A.; Blicharz-Kania, A.; Łysakowska, P. The Influence of Tomato and Pepper Processing Waste on Bread Quality. Appl. Sci. 2023, 13, 9312. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists (AACC). Approved Methods, 10th ed.; AACC: St Paul, MN, USA, 2000; Available online: http://methods.aaccnet.org/toc.aspx (accessed on 14 April 2022).
- Association of Official Analytical Chemists International (AOAC). Official Methods, 21st ed.; AOAC: Rockville, MD, USA, 2019; Available online: https://www.aoac.org/official-methods-of-analysis/ (accessed on 14 April 2022).
- Kozłowska, M.; Laudy, A.E.; Przybył, J.; Ziarno, M.; Majewska, E. Chemical composition and antibacterial activity of some medicinal plants from the Lamiaceae family. Acta Pol. Pharm. 2015, 72, 757–767. [Google Scholar] [PubMed]
- Krawęcka, A.; Sobota, A.; Ivanišová, E.; Harangozo, L.; Valková, V.; Zielińska, E.; Blicharz-Kania, A.; Zdybel, B.; Mildner-Szkudlarz, S. Effect of Black Cumin Cake Addition on the Chemical Composition, Glycemic Index, Antioxidant Activity, and Cooking Quality of Durum Wheat Pasta. Molecules 2022, 27, 6342. [Google Scholar] [CrossRef]
- Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef]
- ISO 8586:2012; Sensory analysis—General guidelines for the selection, training and monitoring of selected assessors and expert sensory assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- Wang, Z.; Wang, L.; Yu, X.; Wang, X.; Zheng, Y.; Hu, X.; Zhang, P.; Sun, Q.; Wang, Q.; Li, N. Effect of polysaccharide addition on food physical properties: A review. Food Chem. 2024, 431, 137099. [Google Scholar] [CrossRef]
- Gentile, L. Protein–polysaccharide interactions and aggregates in food formulations. Curr. Opin. Colloid Interface Sci. 2020, 48, 18–27. [Google Scholar] [CrossRef]
- Villares, A.; Mateo-Vivaracho, L.; Guillamón, E. Structural Features and Healthy Properties of Polysaccharides Occurring in Mushrooms. Agriculture 2012, 2, 452–471. [Google Scholar] [CrossRef]
- Li, N.; Etzel, M.R. Hydrolysis of whey protein-dextran glycates made using the Maillard reaction. Foods 2019, 8, 686. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jin, H.; Li, H.; Zhang, C. Impact of dietary fiber addition on the quality and structure of bread dough. Food Chem. 2021, 345, 128772. [Google Scholar] [CrossRef]
- Al-Wraikat, M.; Abubaker, M.A.; Li, L.; Liu, Y.; Li, J. Impact of Lycium barbarum polysaccharides on wheat dough quality and hydration dynamics. LWT—Food Sci. Technol. 2024, 209, 116753. [Google Scholar] [CrossRef]
- Guowei, Z.; Lili, W.; Yufeng, L.; Hailei, W. Impact of the fermentation broth of Ganoderma lucidum on the quality of Chinese steamed bread. AMB Express 2019, 9, 133. [Google Scholar] [CrossRef] [PubMed]
- Guowei, L.; Xiaolin, C.; Yanan, W. Effect of Ganoderma lucidum fermentation broth on the quality and microstructure of Chinese steamed bread. Food Res. Int. 2019, 116, 1025–1032. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Balik, M.; Szczepkowski, A.; Trepa, M.; Zengin, G.; Kała, K.; Muszyńska, B. A Review of Chemical Composition and Bioactivity Studies of the Most Promising Species of Ganoderma spp. Diversity 2023, 15, 882. [Google Scholar] [CrossRef]
- Khalilova, G.A.; Turaev, A.S.; Mulkhitdinov, B.I.; Khaitmetova, S.B.; Normakhamatov, N.S. Cytotoxic effects and antitumor activity of polysaccharides isolated from the fruiting body of Ganoderma lucidum basidial mushroom. Pharm. Chem. J. 2022, 56, 1045–1048. [Google Scholar] [CrossRef]
- Rajoriya, A.; Tripathy, S.S.; Gupta, N. In vitro antioxidant activity of selected Ganoderma species found in Odisha, India. Trop. Plant Res. 2015, 2, 72–77. [Google Scholar]
- Budipramana, K.; Ratih, R.; Pramana, Y.B. Potential dyes from edible mushrooms for human health. J. Teknol. Lab. 2023, 11, 101–112. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Sułek, A.; Kalisz, S.; Sujka, K. Effect of the Addition of Dried Dandelion Roots (Taraxacum officinale F. H. Wigg.) on Wheat Dough and Bread Properties. Molecules 2021, 26, 7564. [Google Scholar] [CrossRef] [PubMed]
- Inla, K.; Bunchan, S.; Krittacom, B.; Luampon, R. Drying behavior, color change and rehydration of lingzhi mushroom (Ganoderma lucidum) under convection-assisted microwave drying. Case Stud. Therm. Eng. 2023, 49, 103348. [Google Scholar] [CrossRef]
- Aleixandre, A.; Benavent-Gil, Y.; Velickova, E.; Rosell, C.M. Mastication of crisp bread: Role of bread texture and structure on texture perception. Food Res. Int. 2021, 147, 110477. [Google Scholar] [CrossRef]
- Lu, T.; Zeng, X.; Cao, W. Incorporation of mushroom powder into bread dough: Effects on dough rheology and bread properties. Cereal Chem. 2018, 95, 14–20. [Google Scholar] [CrossRef]
- Ulziijargal, E.; Yang, J.-H.; Lin, L.-Y.; Chen, C.-P.; Mau, J.-L. Quality of bread supplemented with mushroom mycelia. Food Chem. 2013, 138, 70–76. [Google Scholar] [CrossRef]
- Gaglio, R.; Guarcello, R.; Venturella, G.; Palazzolo, E.; Francesca, N.; Moschetti, G.; Settanni, L. Saporita, Microbiological, chemical, and sensory aspects of bread supplemented with different percentages of the culinary mushroom Pleurotus eryngii in powder form. Int. J. Food Sci. Technol. 2019, 54, 1197–1205. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Brennan, M.; Brennan, C.; Qin, Y.; Cheng, G.; Liu, Y. Physical, chemical, sensorial properties and in vitro digestibility of wheat bread enriched with yunnan commercial and wild edible mushrooms. LWT—Food Sci. Technol. 2022, 169, 113923. [Google Scholar] [CrossRef]
- Kobus, Z.; Krzywicka, M.; Blicharz-Kania, A.; Bosacka, A.; Pecyna, A.; Ivanišová, E.; Kozłowicz, K.; Kovačiková, E. Impact of Incorporating Dried Chaga Mushroom (Inonotus obliquus) into Gluten-Free Bread on Its Antioxidant and Sensory Characteristics. Molecules 2024, 29, 3801. [Google Scholar] [CrossRef]
- He, Y.; Ma, H.; Wu, S.; Li, C.; Li, Y.; Wang, Y. Effects of dietary fiber on human health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Waddell, I.S.; Orfila, C. Dietary fiber in the prevention of obesity and obesity-related chronic diseases: From epidemiological evidence to potential molecular mechanisms. Crit. Rev. Food Sci. Nutr. 2022, 63, 8752–8767. [Google Scholar] [CrossRef]
- Tian, M.; Pak, S.; Ma, C.; Ma, L.; Rengasamy, K.R.R.; Xiao, J.; Hu, X.; Li, D.; Chen, F. Chemical features and biological functions of water-insoluble dietary fiber in plant-based foods. Crit. Rev. Food Sci. Nutr. 2022, 64, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Chawananorasest, K.; Inyod, T.; Kengkwasigh, P.; Laovitthayanggoon, S.; Kammultri, J.; Ajavakom, V.; Funk, R.; Prangchan, K.; Termarom, T.; Thubthimthed, S. Amino acids analysis of the four mushroom species, antioxidant activity and immunostimulant evaluations of their polysaccharides extracts. Curr. J. Appl. Sci. Technol. 2022, 41, 1–8. [Google Scholar] [CrossRef]
- Ni, C.; Jia, Q.; Ding, G.; Wu, X.; Yang, M. Low-Glycemic Index Diets as an Intervention in Metabolic Diseases: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- Krawęcka, A.; Sobota, A.; Pankiewicz, U.; Zielińska, E.; Zarzycki, P. Stinging Nettle (Urtica dioica L.) as a Functional Component in Durum Wheat Pasta Production: Impact on Chemical Composition, In Vitro Glycemic Index, and Quality Properties. Molecules 2021, 26, 6909. [Google Scholar] [CrossRef]
- Lu, X.; Brennan, M.A.; Guan, W.; Zhang, J.; Yuan, L.; Brennan, C.S. Enhancing the nutritional properties of bread by incorporating mushroom bioactive compounds: The manipulation of the predictive glycaemic response and the phenolic properties. Foods 2021, 10, 731. [Google Scholar] [CrossRef]
- Vlaic, R.A.; Mureșan, C.C.; Muste, S.; Mureșan, V.; Pop, A.; Petruţ, G.; Mureșan, A. Boletus edulis mushroom flour-based wheat bread as innovative fortified bakery product. Bull. UASVM Food Sci. Technol. 2019, 76, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Springer Nature Switzerland AG. World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (WCO-IOF-ESCEO 2023): Educational Lectures Abstracts. Aging Clin. Exp. Res. 2023, 35, 37–613. [Google Scholar] [CrossRef]
- Man, Y.; Xu, T.; Adhikari, B.; Zhou, C.; Wang, Y.; Wang, B. Iron supplementation and iron-fortified foods: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4504–4525. [Google Scholar] [CrossRef]
- Martins, A.C.; Krum, B.N.; Queirós, L.; Tinkov, A.A.; Skalny, A.V.; Bowman, A.B.; Aschner, M. Manganese in the diet: Bioaccessibility, adequate intake, and neurotoxicological effects. J. Agric. Food Chem. 2020, 68, 12893–12903. [Google Scholar] [CrossRef]
Sample | DDT (min) | WA (%) | ST (min) | DS [FU] | FQN (mm) |
---|---|---|---|---|---|
CON | 02:30 b ± 0.12 | 57.9 a ± 0.3 | 06:03 a ± 0.2 | 55.0 e ± 2.4 | 71.0 a ± 5.2 |
BR3 | 01:32 a ± 0.08 | 59.6 ab ± 0.2 | 09:23 b ± 0.2 | 35.0 d ± 1.8 | 66.0 a ± 2.8 |
BR6 | 01:48 a ± 0.1 | 60.8 ab ± 0.2 | 14:37 c ± 0.4 | 23.0 c ± 2.1 | 146.0 b ± 3.2 |
BR9 | 01:52 a ± 0.08 | 61.9 ab ± 0.5 | 15:00 c ± 0.2 | 17.0 b ± 1.2 | 172.0 c ± 3.4 |
BR12 | 10:48 c ± 0.3 | 63.3 b ± 0.2 | 19:08 d ± 0.3 | 1.0 a ± 0.8 | 207.0 d ± 4.1 |
Sample | Dough Yield [%] | Bread Yield [%] | Total Baking Loss [%] | Volume of 100 g of Bread |
---|---|---|---|---|
CON | 162.17 a ± 0.5 | 140.78 a ± 1.31 | 13.19 c ± 0.81 | 350.79 e ± 2.69 |
BR3 | 162.67 ab ± 0.2 | 143.07 b ± 0.2 | 12.05 bc ± 0.3 | 337.27 d ± 2.1 |
BR6 | 162.83 ab ± 0.3 | 143.44 b ± 0.9 | 11.91 abc ± 0.7 | 329.35 c ± 2.2 |
BR9 | 163.50 b ± 0.3 | 146.48 c ± 0.4 | 10.28 ab ± 0.5 | 257.10 b ± 2.1 |
BR12 | 165.0 c ± 0.2 | 148.16 c ± 0.72 | 10.14 a ± 0.2 | 241.32 a ± 2.2 |
Simple | L* | a* | b* | Browning Index | Yellowness Index | Whiteness Index | ΔE* |
---|---|---|---|---|---|---|---|
CON | 61.49 c ± 0.58 | 0.51 a ± 0.37 | 12.27 a ± 0.46 | 22.11 a ± 0.98 | 28.50 a ± 1.08 | 59.58 c ± 0.55 | - |
BR3 | 39.63 b ± 3.5 | 7.87 b ± 1.8 | 17.67 b ± 0.9 | 43.30 b ± 1.3 | 63.70 b ± 1.3 | 36.61 b ± 1.0 | 22.61 a ± 1.1 |
BR6 | 30.61 ab ± 1.7 | 8.00 b ± 0.9 | 15.71 b ± 0.8 | 46.13 c ± 1.2 | 73.32 c ± 1.2 | 28.41 a ± 1.1 | 30.86 b ± 1.2 |
BR9 | 25.89 a ± 1.8 | 9.09 b ± 1.7 | 13.28 a ± 0.8 | 47.20 c ± 1.4 | 73.28 c ± 1.4 | 24.16 a ± 1.3 | 35.55 c ± 1.3 |
BR12 | 22.60 a ± 1.6 | 9.29 b ± 1.2 | 10.54 a ± 0.7 | 46.46 c ± 1.3 | 66.63 bc ± 1.5 | 21.34 a ± 1.4 | 38.84 d ± 1.1 |
Sample | Hardness [N] | Springiness | Chewiness [N] | Cohesiveness | Crust Hardness [N] | |||||
---|---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | |
CON | 2.15 aA ± 0.25 | 2.26 aA ± 0.53 | 0.95 cA ± 0.05 | 0.96 dA ± 0.04 | 1.39 aA ± 0.10 | 1.36 aA ± 0.19 | 0.69 cA ± 0.03 | 0.64 cA ± 0.06 | 19.24 bB ± 1.53 | 15.64 abA ± 1.23 |
BR3 | 4.39 bA ± 0.25 | 4.70 bA ± 0.49 | 0.92 bcA ± 0.04 | 0.86 cdA ± 0.04 | 2.45 bA ± 0.22 | 2.29 bA ± 0.24 | 0.61 bA ± 0.03 | 0.56 bA ± 0.02 | 18.94 bB ± 1.10 | 14.98 aA ± 0.98 |
BR6 | 7.70 cA ± 0.93 | 12.90 cB ± 0.77 | 0.90 abcA ± 0.03 | 0.88 bA ± 0.03 | 3.99 cA ± 0.48 | 5.20 cB ± 0.37 | 0.58 bB ± 0.04 | 0.46 aA ± 0.01 | 18.18 abA ± 1.13 | 17.88 bA ± 1.64 |
BR9 | 22.03 dB ± 1.28 | 20.18 dA ± 1.84 | 0.88 abA ± 0.02 | 0.86 cdA ± 0.03 | 8.59 dA ± 0.5 | 7.54 dA ± 0.61 | 0.45 aA ± 0.02 | 0.44 aA ± 0.03 | 18.48 abA ± 1.28 | 17.68 bA ± 1.62 |
BR12 | 31.23 eA ± 2.38 | 30.38 eA ± 2.27 | 0.85 aA ± 0.03 | 0.82 aA ± 0.02 | 12.11 eA ± 0.65 | 11.66 eA ± 0.81 | 0.46 aA ± 0.02 | 0.47 aA ± 0.02 | 16.54 aA ± 0.97 | 18.12 bB ± 1.27 |
Sample | Moisture | Ash | Protein | Crude Fat | TDF | IDF | SDF | Digestible Carbohydrate (CHO) | Calories [kcal/100 g] |
---|---|---|---|---|---|---|---|---|---|
% | % d.m. | ||||||||
Wheat flour type 750 | 9.4 A ± 0.1 | 0.69 A ± 0.01 | 8.79 A ± 0.04 | 0.45 A ± 0.03 | 5.3 A ± 0.13 | 2.4 A ± 0.1 | 2.9 A ± 0.2 | 71.04 B ± 0.03 | 351.30 B ± 0.11 |
Reishi powder | 2.46 B ± 0.14 | 3.90 B ± 0.2 | 15.49 B ± 0.1 | 0.99 B ± 0.05 | 72.80 B ± 0.4 | 68.22 B ± 0.51 | 4.58 B ± 0.03 | 11.38 A ± 0.04 | 233.93 A ± 0.1 |
CON | 41.46 a ± 0.71 | 2.20 a ± 0.01 | 10.83 a ± 0.04 | 1.23 a ± 0.03 | 7.21 a ± 0.19 | 4.26 a ± 0.17 | 2.95 a ± 0.02 | 78.52 e ± 0.42 | 224.16 d ± 0.17 |
BR3 | 44.18 ab ± 0.23 | 2.22 b ± 0.02 | 11.30 a ± 0.02 | 1.25 a ± 0.12 | 10.13 b ± 0.86 | 7.70 b ± 0.93 | 2.43 a ± 0.07 | 67.49 d ± 0.3 | 193.51 c ± 0.2 |
BR6 | 46.59 b ± 0.30 | 2.31 b ± 0.02 | 13.03 b ± 0.02 | 1.25 a ± 0.09 | 12.73 bc ± 1.35 | 10.07 b ± 1.32 | 2.66 b ± 0.03 | 63.21 c ± 0.24 | 182.48 b ± 0.5 |
BR9 | 45.17 c ± 0.2 | 2.35 c ± 0.05 | 13.37 b ± 0.05 | 1.25 a ± 0.1 | 14.49 c ± 0.02 | 11.81 b ± 0.03 | 2.68 b ± 0.01 | 61.07 b ± 0.2 | 185.32 ab ± 0.1 |
BR12 | 45.52 c ± 0.15 | 2.40 d ± 0.02 | 14.27 c ± 0.1 | 1.25 a ± 0.07 | 17.08 d ± 0.16 | 14.37 c ± 0.11 | 2.71 c ± 0.04 | 57.38 a ± 0.22 | 180.88 a ± 0.3 |
Sample | Macroelements | Microelements | Heavy Metals | ||||||
---|---|---|---|---|---|---|---|---|---|
P | Ca | K | Fe | Cu | Mn | Se | *Pb | *Cd | |
Content [mg/100 g] | |||||||||
Wheat flour type 750 | 131 B ± 0.1 | 22.8 A ± 0.1 | 171.0 B ± 0.5 | 2.50 A ± 0.08 | 0.16 A ± 0.02 | 0.825 A ± 0.07 | 0.0112 A ± 0.0003 | ND | ND |
RE powder | 93 A ± 0.2 | 84.0 B ± 0.2 | 133 A ± 11 | 18.0 B ± 0.12 | 0.75 B ± 0.5 | 7.95 B ± 0.18 | 0.0132 A ± 0.0005 | ND | ND |
CON | 89.4 b ± 0.1 | 11.60 a ± 0.1 | 121 b ± 6 | 1.36 b ± 0.05 | 0.175 a ± 0.07 | 0.483 b ± 0.07 | 0.0081 c ± 0.0001 | ND | ND |
BR3 | 61.0 a ± 0.1 | 14.14 b ± 0.1 | 81.29 a ± 0.5 | 1.10 a ± 0.06 | 0.200 ab ± 0.10 | 0.455 a ± 0.02 | 0.0053 b ± 0.0002 | ND | ND |
BR6 | 61.0 a ± 0.1 | 15.93 c ± 0.1 | 80.6 a ± 0.2 | 1.38 b ± 0.08 | 0.210 abc ± 0.10 | 0.582 c ± 0.05 | 0.0063 a ± 0.0002 | ND | ND |
BR9 | 61.0 a ± 0.1 | 17.44 d ± 0.1 | 79.5 a ± 0.7 | 1.55 c ± 0.04 | 0.228 bc ± 0.20 | 0.691 d ± 0.02 | 0.0065 a ± 0.0003 | ND | ND |
BR12 | 61.0 a ± 0.1 | 19.44 e ± 0.1 | 79.66 a ± 0.6 | 1.8 d ± 0.02 | 0.246 c ± 0.10 | 0.782 e ± 0.03 | 0.0070 a ± 0.0004 | ND | ND |
RDA/AI [mg/day] | 700 | 800 | 2000 | 14 | 1 | 2 | 0.055 | 0.428 | 0.06 |
% RDA/AI [%] | |||||||||
CON | 12.74 | 1.45 | 6.05 | 9.71 | 17.5 | 24.15 | 14.72 | - | - |
BR3 | 8.71 | 1.77 | 4.06 | 7.86 | 20 | 22.75 | 9.7 | - | - |
BR6 | 8.71 | 1.99 | 4.03 | 9.86 | 21 | 29.1 | 11.5 | - | - |
BR9 | 8.71 | 2.18 | 3.98 | 11.07 | 22.8 | 34.55 | 11.9 | - | - |
B12 | 8.71 | 2.43 | 3.98 | 12.86 | 24.6 | 39.1 | 12.72 | - | - |
Sample | Flavonoids (mg QE/g d.m.) | Polyphenols (mg GAE/g d.m.) | Radical Scavenging Activity against ABTS·+ (%) | Radical Scavenging Activity against DPPH· (%) |
---|---|---|---|---|
Wheat flour type 750 | ND | 0.13 A ± 0.03 | 30.32 A ± 0.9 | 45.02 A ± 0.8 |
Reishi powder | 1.06 ± 0.05 | 12.70 B ± 0.1 | 98.5 B ± 1.1 | 98.88 B ± 2.1 |
CON | ND | 0.46 a ± 0.02 | 30.12 a ± 0.8 | 42.84 a ± 0.3 |
BR3 | 0.02 a ± 0.02 | 1.00 bc ± 0.08 | 42.51 b ± 0.12 | 53.12 b ± 0.8 |
BR6 | 0.03 a ± 0.01 | 1.10 c ± 0.05 | 54.38 c ± 0.42 | 56.42 c ± 1.1 |
BR9 | 0.10 b ± 0.01 | 1.26 c ± 0.02 | 61.91 d ± 0.5 | 59.90 d ± 0.2 |
BR12 | 0.21 b ± 0.02 | 1.90 d ± 0.1 | 79.12 e ± 1.0 | 62.21 e ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łysakowska, P.; Sobota, A.; Wirkijowska, A.; Zarzycki, P.; Blicharz-Kania, A. The Impact of Ganoderma lucidum (Curtis) P. Karst. Supplementation on the Technological, Chemical, and Quality Parameters of Wheat Bread. Foods 2024, 13, 3101. https://doi.org/10.3390/foods13193101
Łysakowska P, Sobota A, Wirkijowska A, Zarzycki P, Blicharz-Kania A. The Impact of Ganoderma lucidum (Curtis) P. Karst. Supplementation on the Technological, Chemical, and Quality Parameters of Wheat Bread. Foods. 2024; 13(19):3101. https://doi.org/10.3390/foods13193101
Chicago/Turabian StyleŁysakowska, Paulina, Aldona Sobota, Anna Wirkijowska, Piotr Zarzycki, and Agata Blicharz-Kania. 2024. "The Impact of Ganoderma lucidum (Curtis) P. Karst. Supplementation on the Technological, Chemical, and Quality Parameters of Wheat Bread" Foods 13, no. 19: 3101. https://doi.org/10.3390/foods13193101
APA StyleŁysakowska, P., Sobota, A., Wirkijowska, A., Zarzycki, P., & Blicharz-Kania, A. (2024). The Impact of Ganoderma lucidum (Curtis) P. Karst. Supplementation on the Technological, Chemical, and Quality Parameters of Wheat Bread. Foods, 13(19), 3101. https://doi.org/10.3390/foods13193101