Pectin Microwave Assisted Extraction from Pumpkin Peels: Process Optimization and Chemical-Physical and Rheological Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Vegetable Wastes
2.3. Pectin Microwave-Assisted Extraction
2.4. Design of Experiment (DOE) Approach
2.5. Degree of Esterification (DE)
2.6. Pectin Molecular Weight Determination
2.7. Emulsion Stability
2.8. Water Holding Capacity (WHC) and Fat Binding Capacity (FBC)
2.9. Fourier Transformation Infrared Spectroscopy (FTIR)
2.10. Thermal Properties
2.11. Rheological and Mechanical Properties
2.12. Statistical Analysis
3. Results and Discussion
3.1. Pectin Extraction and Characterization
3.2. Pectin Chemical Characterization
3.3. Pectin Structural and Techno-Functional Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Commission Regulation (EU) No 231/2012 of 9 March 2012 Laying Down Specifications for Food Additives Listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council Text with EEA Relevance. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012R0231 (accessed on 5 May 2024).
- Noreen, A.; Nazli, Z.I.; Akram, J.; Rasul, I.; Mansha, A.; Yaqoob, N.; Iqbal, R.; Tabasum, S.; Zuber, M.; Zia, K.M. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int. J. Biol. Macromol. 2017, 101, 254–272. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Jafari, S.M.; Tong, Q.; Riaz, T.; Assadpour, E.; Aadil, R.M.; Niazi, S.; Khan, I.M.; Shehzad, Q.; Ali, A.; et al. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv. Colloid Interface Sci. 2020, 284, 102251. [Google Scholar] [CrossRef]
- Rodríguez Robledo, V.; Castro Vázquez, L.I. Pectin—Extraction, purification, characterization and applications. In Pectin Extraction, Purification, Characterization and Applications, 1st ed.Masuelli, M., Ed.; IntechOpen: London, UK, 2020; pp. 65–83. [Google Scholar]
- Dib, T.; Pan, H.; Chen, S. Recent advances in pectin-based nanoencapsulation for enhancing the bioavailability of bioactive compounds: Curcumin oral bioavailability. Food Rev. Int. 2022, 39, 1–19. [Google Scholar] [CrossRef]
- Padma Ishwarya, S.; Sandhya, R.; Nisha, P. Advances and prospects in the food application of pectin hydrogels. Crit. Rev. Food Sci. Nutr. 2022, 62, 4393–4417. [Google Scholar] [CrossRef] [PubMed]
- Pamunuwa, G.; Anjalee, N.; Kukulewa, D.; Edirisinghe, C.; Shakoor, F.; Karunaratne, D.N. Tailoring of release properties of folic acid encapsulated nanoparticles via changing alginate and pectin composition in the matrix. Carbohydr. Polym. Technol. Appl. 2020, 1, 100008. [Google Scholar] [CrossRef]
- Goelo, V.; Chaumun, M.; Gonçalves, A.; Estevinho, B.N.; Rocha, F. Polysaccharide-based delivery systems for curcumin and turmeric powder encapsulation using a spray-drying process. Powder Technol. 2020, 370, 137–146. [Google Scholar] [CrossRef]
- Riyamol; Chengaiyan, J.G.; Rana, S.S.; Ahmad, F.; Haque, S.; Capanoglu, E. Recent advances in the extraction of pectin from various sources and industrial applications. ACS Omega 2023, 8, 46309–46324. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, W.; Lan, X.; Gong, S.; Wu, J.; Wang, Z. Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydr. Polym. 2018, 196, 474–482. [Google Scholar] [CrossRef]
- Kazemi, M.; Khodaiyan, F.; Hosseini, S.S.; Najari, Z. An integrated valorization of industrial waste of eggplant: Simultaneous recovery of pectin, phenolics and sequential production of pullulan. Waste Manag. 2019, 100, 101–111. [Google Scholar] [CrossRef]
- Rivadeneira, J.P.; Wu, T.; Ybanez, Q. Microwave-assisted extraction of pectin from “Saba” banana peel waste: Optimization, characterization, and rheology study. Int. J. Food Sci. 2020, 2020, 8879425. [Google Scholar] [CrossRef]
- Grassino, N.A.; Ostojić, J.; Miletić, V. Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innov. Food Sci. Emerg. Technol. 2020, 64, 102424. [Google Scholar] [CrossRef]
- Wongkaew, M.; Chaimongkol, P.; Leksawasdi, N. Mango peel pectin: Recovery, functionality and sustainable uses. Polymers 2021, 13, 3898. [Google Scholar] [CrossRef] [PubMed]
- Medvedkov, Y.B.; Yerenova, B.Y.; Pronina, Y.G.; Penov, N.D.; Belozertseva, O.D.; Kondratiuk, N.V. Extraction and characteristics of pectins from melon peel: Experimental review. J. Chem. Technol. 2021, 29, 650–659. [Google Scholar] [CrossRef]
- Picot-Allain, M.C.N.; Ramasawmy, B.; Emmambux, M.N. Extraction, characterisation, and application of pectin from tropical and sub-tropical fruits: A review. Food Rev. Int. 2022, 38, 282–312. [Google Scholar] [CrossRef]
- Torkova, A.A.; Lisitskaya, K.V.; Filimonov, I.S.; Glazunova, O.A.; Kachalova, G.S.; Golubev, V.N.; Fedorova, T.V. Physicochemical and functional properties of Cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PLoS ONE 2018, 13, e0204261. [Google Scholar] [CrossRef] [PubMed]
- Frosi, I.; Vallelonga, D.; Colombo, R.; Milanese, C.; Papetti, A. Valorization of rice husk (Oryza sativa L.) as a source of in vitro antiglycative and antioxidant agents. Foods 2023, 12, 529. [Google Scholar] [CrossRef]
- Pasandide, B.; Khodaiyan, F.; Mousavi, Z.E.; Hosseini, S.S. Optimization of aqueous pectin extraction from Citrus medica peel. Carbohydr. Polym. 2017, 178, 27–33. [Google Scholar] [CrossRef]
- Raji, Z.; Khodaiyan, F.; Rezaei, K.; Kiani, H.; Hosseini, S.S. Extraction optimization and physicochemical properties of pectin from melon peel. Int. J. Biol. Macromol. 2017, 98, 709–716. [Google Scholar] [CrossRef]
- Mota, J.; Muro, C.; Illescas, J.; Hernández, O.A.; Tecante, A.; Rivera, E. Extraction and characterization of pectin from the fruit peel of Opuntia robusta. ChemistrySelect 2020, 5, 11446–11452. [Google Scholar] [CrossRef]
- Golbargi, F.; Gharibzahedi, S.M.T.; Zoghi, A.; Mohammadi, M.; Hashemifesharaki, R. Microwave-assisted extraction of arabinan- rich pectic polysaccharides from melon peels: Optimization, purification, bioactivity, and techno-functionality. Carbohydr. Polym. 2021, 256, 117522. [Google Scholar] [CrossRef]
- Güzel, M.; Akpınar, Ö. Valorisation of fruit by-products: Production characterization of pectins from fruit peels. Food Bioprod. Process. 2019, 115, 126–133. [Google Scholar] [CrossRef]
- Cherian, E.; Khadeeja, T.S.; Saheersha, K.N.; Ashitha, K.S.; Poothicote, N.G. Investigation into pectin extraction and technological implementations in the food industry. J. Sci. Food Agric. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Panwar, D.; Panesar, P.S.; Chopra, H.K. Ultrasound-assisted extraction of pectin from Citrus limetta peels: Optimization, characterization, and its comparison with commercial pectin. Food Biosc. 2023, 51, 102231. [Google Scholar] [CrossRef]
- Karbuz, P.; Tugrul, N. Microwave and ultrasound assisted extraction of pectin from various fruits peel. J. Food Sci. Technol. 2021, 58, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Fırat, E.; Koca, N.; Kaymak-Ertekin, F. Extraction of pectin from watermelon and pomegranate peels with different methods and its application in ice cream as an emulsifier. J. Food Sci. 2023, 88, 4353–4374. [Google Scholar] [CrossRef] [PubMed]
- Jafari, F.; Khodaiyan, F.; Kiani, H.; Hosseini, S.S. Pectin from carrot pomace: Optimization of extraction and physicochemical properties. Carbohydr. Polym. 2017, 157, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Chaharbaghi, E.; Khodaiyan, F.; Hosseini, S.S. Optimization of pectin extraction form pistachio green hull as a new source. Carbohydr. Polym. 2017, 173, 107–113. [Google Scholar] [CrossRef]
- Yoo, S.-H.; Lee, B.-H.; Lee, H.; Lee, S.; Bae, I.Y.; Lee, H.G.; Fishman, M.L.; Chau, H.K.; Savary, B.J.; Hotchkiss, A.T., Jr. Structural characteristics of pumpkin pectin extracted by microwave heating. J. Food Sci. 2012, 77, C1169–C1173. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. Microwave-assisted extraction of pectin from grape pomace. Sci. Rep. 2022, 12, 12722. [Google Scholar] [CrossRef]
- Riza, M.; Dewi, M.I.Z.R. Pectin isolation from Sentu peel (Sandorium Koetjape) with microwave assisted extraction. Adv. Eng. Res. 2021, 203, 533–537. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Microwave heating extraction of pectin from lime peel: Characterization and properties compared with the conventional heating method. Food Chem. 2019, 278, 364–372. [Google Scholar] [CrossRef]
- Salima, B.; Seloua, D.; Djamel, F.; Samir, M. Structure of pumpkin pectin and its effect on its technological properties. Appl. Rheol. 2022, 32, 34–55. [Google Scholar] [CrossRef]
- Mendez, D.A.; Fabra, M.J.; Gómez-Mascaraque, L.; López-Rubio, A.; Martinez-Abad, A. Modelling the extraction of pectin towards the valorization of watermelon rind waste. Foods 2021, 10, 738. [Google Scholar] [CrossRef]
- Saeidy, S.; Omidi, P.; Nasirpour, A.; Keramat, J. Physicochemical and functional properties of cross linked and high pressure homogenized sugar beet pectin: A comparative study. Food Hydrocoll. 2023, 134, 108041. [Google Scholar] [CrossRef]
- Cui, S.C.; Chang, Y.H. Emulsifying and structural properties of pectin enzymatically extracted from pumpkin. LWT-Food Sci. Technol. 2014, 58, 396–403. [Google Scholar] [CrossRef]
- Tang, J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS characterization of phenolic compounds from medicinal plants (hops and juniper berries) and their antioxidant activity. Foods 2020, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Mendez, D.A.; Fabra, M.J.; Martínez-Abad, A.; Martínez-Sanz, A.; Gorria, M.; López-Rubio, A. Understanding the different emulsification mechanisms of pectin: Comparison between watermelon rind and two commercial pectin sources. Food Hydrocoll. 2021, 120, 106957. [Google Scholar] [CrossRef]
Run (No.) | SSR | pH | T | t |
---|---|---|---|---|
1 | −1 | −1 | 0 | 0 |
2 | +1 | −1 | 0 | 0 |
3 | −1 | +1 | 0 | 0 |
4 | +1 | +1 | 0 | 0 |
5 | 0 | 0 | −1 | −1 |
6 | 0 | 0 | +1 | −1 |
7 | 0 | 0 | −1 | +1 |
8 | 0 | 0 | +1 | +1 |
9 | −1 | 0 | 0 | −1 |
10 | +1 | 0 | 0 | −1 |
11 | −1 | 0 | 0 | +1 |
12 | +1 | 0 | 0 | +1 |
13 | 0 | −1 | −1 | 0 |
14 | 0 | +1 | −1 | 0 |
15 | 0 | −1 | +1 | 0 |
16 | 0 | +1 | +1 | 0 |
17 | −1 | 0 | −1 | 0 |
18 | +1 | 0 | −1 | 0 |
19 | −1 | 0 | +1 | 0 |
20 | +1 | 0 | +1 | 0 |
21 | 0 | −1 | 0 | −1 |
22 | 0 | +1 | 0 | −1 |
23 | 0 | −1 | 0 | +1 |
24 | 0 | +1 | 0 | +1 |
25 | 0 | 0 | 0 | 0 |
26 | 0 | 0 | 0 | 0 |
27 | 0 | 0 | 0 | 0 |
Run (No.) | SSR (mL/g) | pH | T (°C) | t (min) | PEY (%) |
---|---|---|---|---|---|
1 | 20 | 1.5 | 70 | 10 | 4.30 |
2 | 50 | 1.5 | 70 | 10 | 9.66 |
3 | 20 | 3.5 | 70 | 10 | 3.68 |
4 | 50 | 3.5 | 70 | 10 | 3.42 |
5 | 35 | 2.5 | 45 | 5 | 3.59 |
6 | 35 | 2.5 | 95 | 5 | 3.82 |
7 | 35 | 2.5 | 45 | 15 | 4.28 |
8 | 35 | 2.5 | 95 | 15 | 4.78 |
9 | 20 | 2.5 | 70 | 5 | 3.59 |
10 | 50 | 2.5 | 70 | 5 | 3.6 |
11 | 20 | 2.5 | 70 | 15 | 3.58 |
12 | 50 | 2.5 | 70 | 15 | 4.00 |
13 | 35 | 1.5 | 45 | 10 | 5.59 |
14 | 35 | 3.5 | 45 | 10 | 4.42 |
15 | 35 | 1.5 | 95 | 10 | 13.79 |
16 | 35 | 3.5 | 95 | 10 | 5.10 |
17 | 20 | 2.5 | 45 | 10 | 4.58 |
18 | 50 | 2.5 | 45 | 10 | 3.52 |
19 | 20 | 2.5 | 95 | 10 | 3.18 |
20 | 50 | 2.5 | 95 | 10 | 4.96 |
21 | 35 | 1.5 | 70 | 5 | 14.12 |
22 | 35 | 3.5 | 70 | 5 | 4.14 |
23 | 35 | 1.5 | 70 | 15 | 10.02 |
24 | 35 | 3.5 | 70 | 15 | 4.34 |
25 | 35 | 2.5 | 70 | 10 | 3.06 |
26 | 35 | 2.5 | 70 | 10 | 2.48 |
27 | 35 | 2.5 | 70 | 10 | 2.58 |
Source | Sum of Squares | df | Mean Square | F Ratio | p Value |
---|---|---|---|---|---|
A:SSR | 0.05 | 1 | 0.05 | 0.02 | 0.8872 |
B:pH | 61.31 | 1 | 61.31 | 30.26 | 0.0053 |
C:T | 0.13 | 1 | 0.13 | 0.07 | 0.8103 |
C:t | 0.68 | 1 | 0.68 | 0.34 | 0.5933 |
AA | 0.35 | 1 | 0.35 | 0.17 | 0.6989 |
AB | 7.65 | 1 | 7.65 | 3.77 | 0.1240 |
AC | 2.02 | 1 | 2.02 | 1.00 | 0.3749 |
AD | 0.04 | 1 | 0.04 | 0.02 | 0.8924 |
BB | 67.50 | 1 | 67.50 | 33.32 | 0.0045 |
BC | 14.14 | 1 | 14.14 | 6.98 | 0.0575 |
BD | 4.62 | 1 | 4.62 | 2.28 | 0.2054 |
CC | 4.56 | 1 | 4.56 | 2.25 | 0.2078 |
CD | 0.02 | 1 | 0.02 | 0.01 | 0.9290 |
DD | 7.76 | 1 | 7.76 | 3.83 | 0.1220 |
AAB | 9.48 | 1 | 9.48 | 4.68 | 0.0965 |
AAC | 0.06 | 1 | 0.06 | 0.03 | 0.8722 |
AAD | 0.20 | 1 | 0.20 | 0.10 | 0.7699 |
ABB | 2.62 | 1 | 2.62 | 1.29 | 0.3188 |
ACC | 0.01 | 1 | 0.01 | 0.01 | 0.9460 |
BBC | 8.30 | 1 | 8.30 | 4.10 | 0.1129 |
BBD | 3.85 | 1 | 3.85 | 1.90 | 0.2401 |
BCC | 4.21 | 1 | 4.21 | 2.08 | 0.2231 |
Total error | 8.10 | 4 | 2.03 |
Emulsion No. | Composition | Emulsion Stability (ES %) | |
---|---|---|---|
Day 1 | Day 7 | ||
1 | PP 1%—oil 35% | 60.0 ± 0.1 | 58.3 ± 0.1 |
2 | PP 1%—oil 60% | 90.0 ± 3.3 | 91.7 ± 2.3 |
3 | PP 3%—oil 35% | 58.3 ± 2.4 | 56.7 ± 2.3 |
4 | PP 3%—oil 60% | 98.3 ± 2.4 | 98.3 ± 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frosi, I.; Colombo, R.; Pugliese, R.; Milanese, C.; Papetti, A. Pectin Microwave Assisted Extraction from Pumpkin Peels: Process Optimization and Chemical-Physical and Rheological Characterization. Foods 2024, 13, 3157. https://doi.org/10.3390/foods13193157
Frosi I, Colombo R, Pugliese R, Milanese C, Papetti A. Pectin Microwave Assisted Extraction from Pumpkin Peels: Process Optimization and Chemical-Physical and Rheological Characterization. Foods. 2024; 13(19):3157. https://doi.org/10.3390/foods13193157
Chicago/Turabian StyleFrosi, Ilaria, Raffaella Colombo, Raffaele Pugliese, Chiara Milanese, and Adele Papetti. 2024. "Pectin Microwave Assisted Extraction from Pumpkin Peels: Process Optimization and Chemical-Physical and Rheological Characterization" Foods 13, no. 19: 3157. https://doi.org/10.3390/foods13193157
APA StyleFrosi, I., Colombo, R., Pugliese, R., Milanese, C., & Papetti, A. (2024). Pectin Microwave Assisted Extraction from Pumpkin Peels: Process Optimization and Chemical-Physical and Rheological Characterization. Foods, 13(19), 3157. https://doi.org/10.3390/foods13193157