Assessing the Impact of Arabinoxylans on Dough Mixing Properties and Noodle-Making Performance through Xylanase Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analyzing Water Solvent Retention Capacity of Flours Treated with Xylanases
2.3. Analyzing Sodium Dodecyl Sulfate Sedimentation Volume of Flours Treated with Xylanases
2.4. Analyzing the Dough-Mixing Properties of Flours Treated with Xylanases
2.5. Preparation of Fresh Noodles Treated with Xylanases
2.6. Analyzing the Color and Texture Characteristics of Fresh Noodles Treated with Xylanases
2.7. Analyzing the Cooking Properties and Texture Characteristics of Cooked Noodles Treated with Xylanases
2.8. Statistical Analysis
3. Results and Discussion
3.1. Water SRC of Flour Treated with Xylanases
3.2. SDS Sedimentation Volume of Flours Treated with Xylanases
3.3. Dough Mixing Property of Flours Treated with Xylanases
3.4. Color and Texture of Fresh Noodles
3.5. Quality Characteristics of Cooked Noodles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Mary, S. The opportunity of flour fortification: Building on the evidence to move forward. Food Nutr. Bull. 2010, 31, S3–S6. [Google Scholar] [CrossRef] [PubMed]
- Park, C.S.; Baik, B.K. Flour characteristics related to optimum water absorption of noodle dough for making white salted noodles. Cereal Chem. 2002, 79, 867–873. [Google Scholar] [CrossRef]
- Korea Flour Mills Industrial Association. Flour Consumption Per Capita by Year. 2023. Available online: http://www.kofmia.org/data/stat_idx04.jsp (accessed on 3 July 2024).
- Korea Statistical Information Service. Grain Consumption Survey Results. 2023. Available online: https://kostat.go.kr/board.es?mid=a10301010000&bid=230&list_no=429221&act=view&mainXml=Y (accessed on 15 June 2024).
- Food Information Statistics System. Report on the Status of the Noodle Processed Food Submarket. 2017. Available online: https://www.atfis.or.kr/home/board/FB0029.do?act=read&bpoId=2805 (accessed on 3 June 2024).
- Zhang, M.; Ma, M.; Yang, T.; Li, M.; Sun, Q. Dynamic distribution and transition of gluten proteins during noodle processing. Food Hydrocoll. 2022, 123, 107114. [Google Scholar] [CrossRef]
- Zhou, C.; Sun, Y.; Yao, Y.; Li, H.; He, J. Study of Noodle Quality Based on Protein Properties of Three Wheat Varieties. J. Food Qual. 2022, 2022, 6383080. [Google Scholar] [CrossRef]
- Hu, X.Z.; Wei, Y.M.; Wang, C.; Kovacs, M.I.P. Quantitative assessment of protein fractions of Chinese wheat flours and their contribution to white salted noodle quality. Food Res. Int. 2007, 40, 1–6. [Google Scholar] [CrossRef]
- Gulia, N.; Khatkar, B.S. Quantitative and qualitative assessment of wheat gluten proteins and their contribution to instant noodle quality. Int. J. Food Prop. 2015, 18, 1648–1663. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.; Li, M.; Sun, Q. Inhibitory effects of sorbitol on the collapse and deterioration of gluten network in fresh noodles during storage. Food Chem. 2021, 344, 128638. [Google Scholar] [CrossRef]
- Park, C.S.; Hong, B.H.; Baik, B.K. Protein quality of wheat desirable for making fresh white salted noodles and its influences on processing and texture of noodles. Cereal Chem. 2003, 80, 297–303. [Google Scholar] [CrossRef]
- Dervilly-Pinel, G.; Tran, V.; Saulnier, L. Investigation of the distribution of arabinose residues on the xylan backbone of water-soluble arabinoxylans from wheat flour. Carbohydr. Polym. 2004, 55, 171–177. [Google Scholar] [CrossRef]
- Courtin, C.M.; Delcour, J.A. Relative activity of endoxylanases towards water-extractable and water-unextractable arabinoxylan. J. Cereal Sci. 2001, 33, 301–312. [Google Scholar] [CrossRef]
- Courtin, C.M.; Gelders, G.G.; Delcour, J.A. Use of two endoxylanases with different substrate selectivity for understanding arabinoxylan functionality in wheat flour breadmaking. Cereal Chem. 2001, 78, 564–571. [Google Scholar] [CrossRef]
- Nordberg Karlsson, E.; Schmitz, E.; Linares-Pastén, J.A.; Adlercreutz, P. Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Appl. Microbiol. Biotechnol. 2018, 102, 9081–9088. [Google Scholar] [CrossRef] [PubMed]
- Slade, L.; Levine, H.; Craig, S.; Arciszewski, H. Reducing Checking in Crackers with Pentosanase. U.S. Patent 5,362,502, 8 November 1994. [Google Scholar]
- Courtin, C.M.; Roelants, A.; Delcour, J.A. Fractionation-reconstitution experiments provide insight into the role of endoxylanases in bread-making. J. Agric. Food Chem. 1999, 47, 1870–1877. [Google Scholar] [CrossRef] [PubMed]
- Ingelbrecht, J.A.; Mores, K.; Abécassis, J.; Rouau, X.; Delcour, J.A. Influence of arabinoxylans and endoxylanases on pasta processing and quality. Production of high-quality pasta with increased levels of soluble fiber. Cereal Chem. 2001, 78, 721–729. [Google Scholar] [CrossRef]
- Susanna, S.; Prabhasankar, P. Effect of different enzymes on immunogenicity of pasta. Food Agric. Immunol. 2015, 26, 231–247. [Google Scholar] [CrossRef]
- Niu, M.; Hou, G.G.; Kindelspire, J.; Krishnan, P.; Zhao, S. Microstructural, textural, and sensory properties of whole-wheat noodle modified by enzymes and emulsifiers. Food Chem. 2017, 223, 16–24. [Google Scholar] [CrossRef]
- Fan, L.; Ma, S.; Wang, X.; Zheng, X. Improvement of Chinese noodle quality by supplementation with arabinoxylans from wheat bran. Int. J. Food Sci. Technol. 2016, 51, 602–608. [Google Scholar] [CrossRef]
- AACC. Approved Method of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Wang, X.; Kweon, M. Quality of US soft red wheat flours and their suitability for making fresh noodles. Korean J. Food Cook. Sci. 2021, 37, 134–143. [Google Scholar]
- Kweon, M.; Slade, L.; Levine, H. Solvent retention capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding—A review. Cereal Chem. 2011, 88, 537–552. [Google Scholar] [CrossRef]
- Kalitsis, J.; Minasny, B.; Quail, K.; McBratney, A. Application of response surface methodology for optimization of wheat flour milling process. Cereal Chem. 2021, 98, 1215–1226. [Google Scholar] [CrossRef]
- Hrušková, M.; Hanzliková, K.; Varáček, P. Wheat and flour quality relations in a commercial mill. Czech J. Food Sci. 2000, 19, 189–195. [Google Scholar] [CrossRef]
- Courtin, C.M.; Delcour, J.A. Arabinoxylans and endoxylanases in wheat flour bread-making. J. Cereal Sci. 2002, 35, 225–243. [Google Scholar] [CrossRef]
- Levine, H.; Slade, L. Influence of hydrocolloids in low moisture foods-a food polymer science approach. In Gums and Stabilisers for the Food Industry 12; Phillips, G.O., Williams, P.A., Eds.; Royal Society of Chemistry: Cambridge, UK, 2004; pp. 425–436. [Google Scholar]
- Moon, Y.; Kweon, M. Potential application of enzymes to improve quality of dry noodles by reducing water absorption of inferior-quality flour. Food Sci. Biotechnol. 2021, 30, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Amiri, A.; Shahedi, M.; Kadivar, M. Evaluation of physicochemical properties of gluten modified by Glucose oxidase and Xylanase. J. Cereal Sci. 2016, 71, 37–42. [Google Scholar] [CrossRef]
- Frederix, S.A.; Courtin, C.M.; Delcour, J.A. Impact of xylanases with different substrate selectivity on gluten-starch separation of wheat flour. J. Agric. Food Chem. 2003, 51, 7338–7345. [Google Scholar] [CrossRef]
- Ma, F.; Dang, Y.; Xu, S. Interaction between gluten proteins and their mixtures with water-extractable arabinoxylan of wheat by rheological, molecular anisotropy and CP/MAS 13C NMR measurements. Eur. Food Res. Technol. 2016, 242, 1177–1185. [Google Scholar] [CrossRef]
- Guo, X.-N.; Yang, S.; Zhu, K.-X. Impact of arabinoxylan with different molecular weight on the thermo-mechanical, rheological, water mobility and microstructural characteristics of wheat dough. Int. J. Food Sci. Technol. 2018, 53, 2150–2158. [Google Scholar] [CrossRef]
- Larsen, N.G.; Greenwood, D.R. Water addition and the physical properties of mechanical dough development doughs and breads. J. Cereal Sci. 1999, 13, 195–205. [Google Scholar] [CrossRef]
- Mohammadi, M.; Zoghi, A.; Azizi, M.H. Effect of xylanase and pentosanase enzymes on dough rheological properties and quality of baguette bread. J. Food Qual. 2022, 2022, 2910821. [Google Scholar] [CrossRef]
- Hatcher, D.W.; Kruger, J.E.; Anderson, M.J. Influence of water absorption on the processing and quality of oriental noodles. Cereal Chem. 1999, 76, 566–572. [Google Scholar] [CrossRef]
- Brütsch, L.; Rugiero, S.; Serrano, S.S.; Stdeli, C.; Kuster, S. Targeted inhibition of enzymatic browning in wheat pastry dough. J. Agric. Food Chem. 2018, 66, 12353–12360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, S.; Bie, X.; Zhao, H.; Lu, F.; Lu, Z. Effects of recombinant lipoxygenase on the rheological properties of dough and the quality of noodles. J. Sci. Food Agric. 2016, 96, 3249–3255. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhang, Y.; Yan, J.; Zhang, Y.; He, Z.; Huang, S.; Quail, K.J. Effects of flour extraction rate, added water, and salt on color and texture of Chinese white noodles. Cereal Chem. 2009, 86, 477–485. [Google Scholar] [CrossRef]
- Kweon, M.; Slade, L.; Levine, H.; Gannon, D. Cookie-versus cracker-baking—What’s the difference? Flour functionality requirements explored by SRC and alveography. Crit. Rev. Food Sci. Nutr. 2014, 54, 115–138. [Google Scholar] [PubMed]
- Jeon, S.; Baik, B.K.; Kweon, M. Solvent retention capacity application to assess soft wheat flour quality for making white-salted noodles. Cereal Chem. 2019, 96, 497–507. [Google Scholar] [CrossRef]
- Li, M.; Dhital, S.; Wei, Y. Multilevel structure of wheat starch and its relationship to noodle eating qualities. Comp. Rev. Food Sci. Food Saf. 2017, 16, 1042–1055. [Google Scholar] [CrossRef]
- An, D.; Li, H.; Zhang, D.; Huang, Y.; Li, D.; Obadi, M.; Xu, B. Relation between adhesiveness and surface leachate rheological properties of cooked noodles: From the view of starch fine molecular structure. Food Res. Int. 2022, 155, 111111. [Google Scholar] [CrossRef]
- Kasunmala, I.G.G.; Navaratne, S.B.; Wickramasinghe, I. Effect of process modifications and binding materials on textural properties of rice noodles. Int. J. Gastron. Food Sci. 2020, 21, 100217. [Google Scholar] [CrossRef]
- Hou, G.G.; Saini, R.; Ng, P.K. Relationship between physicochemical properties of wheat flour, wheat protein composition, and textural properties of cooked Chinese white salted noodles. Cereal Chem. 2013, 90, 419–429. [Google Scholar] [CrossRef]
- Rouau, X.; El-Hayek, M.-L.; Moreau, D. Effect of an enzyme preparation containing pentosanases on the bread making quality of flours in relation to changes in pentosan properties. J. Cereal Sci. 1994, 19, 259–272. [Google Scholar] [CrossRef]
- Li, J.; Kang, J.; Wang, L.; Li, Z.; Wang, R.; Chen, Z.X.; Hou, G.G. Effect of water migration between arabinoxylans and gluten on baking quality of whole wheat bread detected by magnetic resonance imaging (MRI). J. Agric. Food Chem. 2012, 60, 6507–6514. [Google Scholar] [CrossRef]
- Verjans, P.; Dornez, E.; Delcour, J.A.; Courtin, C.M. Selectivity for water unextractable arabinoxylan and inhibition sensitivity govern the strong bread improving potential on an acidophilic GH11 Aureobasidium pullans xylanase. Food Chem. 2010, 123, 331–337. [Google Scholar] [CrossRef]
Flour | Moisture Content (%) | Ash Content (%) | Protein Content (%) | SRC (%) | GPI (2) | |||
---|---|---|---|---|---|---|---|---|
Water | Lactic Acid | Sodium Carbonate | Sucrose | |||||
S | 14.1 ± 0.1 c(1) | 0.54 ± 0.02 a | 13.4 ± 0.0 c | 71.6 ± 0.5 c | 156.6 ± 0.2 c | 95.8 ± 0.3 c | 126.0 ± 0.4 c | 0.71 ± 0.00 c |
M | 13.7 ± 0.1 b | 0.55 ± 0.01 a | 10.7 ± 0.0 b | 64.1 ± 0.2 b | 124.2 ± 0.2 b | 83.7 ± 0.4 b | 112.0 ± 0.2 b | 0.63 ± 0.00 b |
W | 13.1 ± 0.1 a | 0.52 ± 0.03 a | 8.9 ± 0.1 a | 52.8 ± 0.2 a | 98.7 ± 0.7 a | 68.9 ± 0.5 a | 99.3 ± 0.5 a | 0.59 ± 0.00 a |
Flour | Xylanase | Increase in SDS Sedimentation Volume (%) | ||
---|---|---|---|---|
20 min | 40 min | 60 min | ||
S | WE | 2.5 ± 1.9 a(1) | 2.2 ± 2.2 a | 2.3 ± 2.7 a |
WU | 3.1 ± 2.3 ab | 4.6 ± 3.2 a | 7.5 ± 3.9 ab | |
M | WE | 5.2 ± 2.4 ab | 5.9 ± 4.4 a | 6.8 ± 3.6 a |
WU | 8.8 ± 3.0 bc | 15.9 ± 4.6 b | 19.2 ± 6.2 cd | |
W | WE | 14.4 ± 5.3 c | 15.6 ± 6.2 b | 15.0 ± 6.3 bc |
WU | 23.3 ± 8.1 d | 24.9 ± 9.4 c | 25.1 ± 9.5 d |
Sample | L* | a* | b* | ||||||
---|---|---|---|---|---|---|---|---|---|
NS | NM | NW | NS | NM | NW | NS | NM | NW | |
C | 83.4 ± 1.3 dA(1) | 84.1 ± 0.1 eAB | 84.9 ± 0.5 efB | 4.4 ± 0.4 aB | 3.8 ± 0.1 abA | 4.2 ± 0.2 cdeAB | 17.7 ± 1.4 aA | 19.2 ± 0.6 abB | 22.5 ± 0.9 abcC |
WE1 | 81.8 ± 0.6 bcA | 84.6 ± 0.8 eB | 84.7 ± 0.3 defB | 4.8 ± 0.2 abcC | 3.7 ± 0.2 aA | 4.4 ± 0.1 defB | 19.2 ± 0.6 abA | 19.6 ± 0.9 abA | 22.8 ± 0.7 abcdeB |
WE2 | 81.0 ± 0.5 abcA | 80.9 ± 0.8 abcA | 84.0 ± 0.6 abcdB | 4.8 ± 0.2 abcC | 4.0 ± 0.1 abcdA | 4.5 ± 0.1 fB | 19.3 ± 0.4 abA | 19.3 ± 0.8 abA | 23.9 ± 0.5 deB |
WE3 | 82.2 ± 0.3 cdA | 81.7 ± 0.7 bcA | 84.2 ± 0.6 bcdeB | 4.7 ± 0.1 abcB | 4.3 ± 0.2 dA | 4.5 ± 0.1 efAB | 18.7 ± 0.4 abA | 19.6 ± 1.1 abA | 24.0 ± 0.4 eB |
WE4 | 82.4 ± 0.6 cdA | 81.4 ± 1.0 bcA | 84.7 ± 0.2 defB | 4.7 ± 0.2 abcC | 3.8 ± 0.3 abA | 4.2 ± 0.1 cdeB | 19.5 ± 1.0 abA | 18.4 ± 1.9 abA | 23.6 ± 0.4 cdeB |
WE5 | 81.6 ± 0.5 bcB | 79.8 ± 0.8 aA | 85.1 ± 0.2 fC | 4.9 ± 0.3 abcB | 4.0 ± 0.1 bcdA | 4.1 ± 0.1 cdA | 19.8 ± 1.2 bA | 20.1 ± 0.4 bA | 22.7 ± 0.5 abcdB |
WU1 | 81.7 ± 1.3 bcA | 83.8 ± 0.5 deB | 84.4 ± 0.4 cdefB | 4.6 ± 0.4 abcB | 3.9 ± 0.2 abcA | 3.8 ± 0.1 abcA | 18.6 ± 1.4 abA | 18.8 ± 1.1 abA | 22.2 ± 1.0 abB |
WU2 | 81.1 ± 0.6 abcA | 84.1 ± 0.3 eB | 84.0 ± 0.6 abcdB | 4.9 ± 0.2 abcB | 3.8 ± 0.1 abA | 3.7 ± 0.3 abA | 19.7 ± 0.8 abA | 19.1 ± 0.9 abA | 21.8 ± 0.9 aB |
WU3 | 80.4 ± 0.7 abA | 82.3 ± 0.4 cdB | 83.8 ± 0.3 abcC | 4.5 ± 0.6 abB | 4.2 ± 0.2 cdAB | 3.7 ± 0.3 aA | 19.0 ± 1.2 abA | 19.6 ± 0.5 abA | 22.4 ± 0.8 abcB |
WU4 | 79.8 ± 1.0 aA | 80.8 ± 0.6 abA | 83.4 ± 0.3 abB | 5.0 ± 0.3 bcB | 4.1 ± 0.2 bcdA | 4.1 ± 0.1 bcdA | 19.3 ± 1.3 abA | 19.3 ± 0.7 abA | 23.2 ± 0.5 bcdeB |
WU5 | 79.7 ± 0.8 aA | 80.7 ± 1.3 abA | 83.2 ± 0.4 aB | 5.1 ± 0.2 cB | 3.8 ± 0.1 abA | 4.0 ± 0.1 abcA | 19.4 ± 1.1 abB | 17.9 ± 0.7 aA | 22.8 ± 0.5 abcdeC |
Sample | Resistance (N) | Extensibility (mm) | R/E | ||||||
---|---|---|---|---|---|---|---|---|---|
NS | NM | NW | NS | NM | NW | NS | NM | NW | |
C | 2.01 ± 0.08 deC(1) | 1.21 ± 0.05 cB | 0.75 ± 0.02 gA | 9.6 ± 0.5 abC | 6.6 ± 0.3 abB | 4.0 ± 0.2 cA | 0.21 ± 0.01 eB | 0.18 ± 0.01 deA | 0.19 ± 0.01 dA |
WE1 | 2.02 ± 0.03 deC | 1.18 ± 0.05 cB | 0.67 ± 0.01 fA | 10.2 ± 0.3 bcC | 6.2 ± 0.5 aB | 2.9 ± 0.1 abA | 0.20 ± 0.01 deA | 0.19 ± 0.02 eA | 0.23 ± 0.01 fB |
WE2 | 1.94 ± 0.10 cdC | 1.37 ± 0.04 dB | 0.54 ± 0.02 bcA | 10.2 ± 0.3 bcC | 7.6 ± 0.4 cdB | 2.8 ± 0.1 abA | 0.19 ± 0.01 cdAB | 0.18 ± 0.01 cdeA | 0.19 ± 0.01 dB |
WE3 | 2.00 ± 0.07 deC | 1.17 ± 0.03 cB | 0.53 ± 0.01 bA | 10.0 ± 0.5 abcC | 7.1 ± 0.3 bcdB | 3.1 ± 0.2 bA | 0.20 ± 0.02 deB | 0.16 ± 0.01 abcA | 0.17 ± 0.01 cA |
WE4 | 2.08 ± 0.07 eC | 1.16 ± 0.05 cB | 0.56 ± 0.02 cdA | 10.1 ± 0.5 bcC | 7.7 ± 0.5 dB | 3.1 ± 0.1 bA | 0.21 ± 0.01 deC | 0.15 ± 0.01 aA | 0.18 ± 0.01 cdB |
WE5 | 1.95 ± 0.08 dC | 1.10 ± 0.04 bB | 0.57 ± 0.02 cdA | 10.0 ± 0.2 abcC | 7.1 ± 0.3 bcB | 2.7 ± 0.2 aA | 0.20 ± 0.01 deB | 0.16 ± 0.00 abA | 0.21 ± 0.02 eC |
WU1 | 1.85 ± 0.07 bcC | 1.16 ± 0.04 cB | 0.67 ± 0.01 fA | 9.4 ± 0.5 aC | 6.2 ± 0.4 aB | 5.2 ± 0.3 eA | 0.20 ± 0.02 deB | 0.19 ± 0.02 eB | 0.13 ± 0.01 bA |
WU2 | 1.79 ± 0.05 bC | 1.15 ± 0.02 bcB | 0.64 ± 0.02 eA | 10.2 ± 0.4 bcC | 7.5 ± 0.5 cdB | 5.0 ± 0.2 eA | 0.18 ± 0.01 bcC | 0.15 ± 0.01 abB | 0.13 ± 0.01 bA |
WU3 | 1.79 ± 0.05 bC | 1.04 ± 0.03 aB | 0.58 ± 0.01 dA | 10.1 ± 0.3 bcC | 6.7 ± 0.5 abB | 5.0 ± 0.3 eA | 0.18 ± 0.01 bcC | 0.16 ± 0.01 abB | 0.11 ± 0.01 aA |
WU4 | 1.64 ± 0.03 aC | 1.18 ± 0.03 cB | 0.56 ± 0.04 cdA | 10.6 ± 0.7 cC | 7.1 ± 0.2 bcB | 4.3 ± 0.2 dA | 0.16 ± 0.01 aB | 0.17 ± 0.01 abcC | 0.13 ± 0.01 bA |
WU5 | 1.67 ± 0.05 aC | 1.04 ± 0.02 aB | 0.43 ± 0.01 aA | 10.2 ± 0.5 bcC | 6.2 ± 0.3 aB | 4.1 ± 0.1 cdA | 0.16 ± 0.01 abB | 0.17 ± 0.01 bcdB | 0.11 ± 0.00 aA |
Sample | Weight Gain (%) | Turbidity (ΔA h−1 g Flour−1) | ||||
---|---|---|---|---|---|---|
NS | NM | NW | NS | NM | NW | |
C | 118.1 ± 0.7 aA(1) | 134.1 ± 0.7 aB | 152.8 ± 2.1 aC | 0.62 ± 0.00 cC | 0.45 ± 0.00 aA | 0.48 ± 0.00 cB |
WE1 | 117.1 ± 1.2 aA | 140.8 ± 2.3 abB | 157.0 ± 0.1 abcC | 0.69 ± 0.00 fC | 0.48 ± 0.00 cB | 0.40 ± 0.00 aA |
WE2 | 119.0 ± 0.1 aA | 137.6 ± 3.8 abB | 164.9 ± 2.0 abcC | 0.66 ± 0.00 dC | 0.55 ± 0.00 gA | 0.60 ± 0.00 fB |
WE3 | 117.9 ± 1.7 aA | 140.3 ± 1.7 abB | 166.3 ± 3.1 bcC | 0.70 ± 0.01 fB | 0.56 ± 0.01 gA | 0.75 ± 0.01 iC |
WE4 | 117.2 ± 0.2 aA | 141.5 ± 1.1 abB | 167.8 ± 1.9 bcdC | 0.67 ± 0.01 deB | 0.48 ± 0.00 cA | 0.77 ± 0.00 jC |
WE5 | 124.2 ± 1.6 aA | 138.0 ± 0.9 abB | 168.4 ± 0.6 cdC | 0.47 ± 0.00 aA | 0.52 ± 0.00 eB | 0.76 ± 0.00 jC |
WU1 | 120.2 ± 0.3 aA | 143.4 ± 2.6 abB | 160.7 ± 0.0 acdC | 0.72 ± 0.00 gC | 0.54 ± 0.00 fB | 0.51 ± 0.01 dA |
WU2 | 119.1 ± 0.1 aA | 143.8 ± 2.3 abB | 156.0 ± 0.4 abC | 0.60 ± 0.00 bC | 0.45 ± 0.00 aA | 0.45 ± 0.00 bB |
WU3 | 117.0 ± 1.4 aA | 143.8 ± 5.0 abB | 169.2 ± 0.9 cdC | 0.67 ± 0.00 deB | 0.46 ± 0.00 bA | 0.72 ± 0.00 hC |
WU4 | 122.1 ± 3.9 aA | 139.2 ± 0.0 abA | 162.7 ± 8.9 abcB | 0.70 ± 0.01 fC | 0.50 ± 0.00 dA | 0.56 ± 0.00 eB |
WU5 | 120.4 ± 6.1 aA | 154.0 ± 12.4 bAB | 180.0 ± 1.8 dB | 0.67 ± 0.00 eC | 0.51 ± 0.00 deA | 0.64 ± 0.00 gB |
Sample | Firmness (N) | Adhesiveness | Chewiness (mJ) | ||||||
---|---|---|---|---|---|---|---|---|---|
NS | NM | NW | NS | NM | NW | NS | NM | NW | |
C | 18.7 ± 0.3 fC(1) | 15.3 ± 0.3 eB | 12.2 ± 0.1 eA | 0.29 ± 0.03 cB | 0.21 ± 0.03 abA | 0.20 ± 0.04 cA | 10.2 ± 0.4 gC | 8.3 ± 0.4 fB | 6.9 ± 0.2 fA |
WE1 | 18.4 ± 0.3 fC | 14.9 ± 0.4 eB | 11.6 ± 0.3 deA | 0.28 ± 0.03 cB | 0.25 ± 0.04 bB | 0.18 ± 0.03 abcA | 9.9 ± 0.3 fgC | 7.7 ± 0.3 eB | 6.5 ± 0.3 efA |
WE2 | 17.5 ± 0.3 eC | 13.5 ± 0.3 dB | 11.3 ± 0.1 cdA | 0.26 ± 0.02 abcC | 0.19 ± 0.03 aB | 0.16 ± 0.02 abcA | 9.4 ± 0.2 deC | 7.4 ± 0.6 deB | 6.1 ± 0.2 deA |
WE3 | 16.7 ± 0.4 cC | 13.4 ± 0.5 dB | 10.8 ± 0.2 bcA | 0.26 ± 0.03 bcB | 0.17 ± 0.04 aA | 0.17 ± 0.01 abcA | 8.9 ± 0.4 bcC | 7.2 ± 0.4 cdeB | 5.8 ± 0.3 bcdA |
WE4 | 16.6 ± 0.3 cC | 11.9 ± 0.3 bcB | 10.7 ± 0.5 abcA | 0.26 ± 0.03 bcB | 0.18 ± 0.04 aA | 0.17 ± 0.02 abcA | 8.9 ± 0.2 bcC | 6.4 ± 0.3 bB | 5.5 ± 0.3 abcA |
WE5 | 15.9 ± 0.2 bC | 11.4 ± 0.2 bB | 10.6 ± 0.4 abA | 0.25 ± 0.02 abcB | 0.17 ± 0.03 aA | 0.15 ± 0.03 abA | 8.5 ± 0.3 abC | 6.4 ± 0.3 bB | 5.6 ± 0.4 abcA |
WU1 | 18.3 ± 0.2 fC | 13.0 ± 0.5 dB | 11.5 ± 0.2 dA | 0.29 ± 0.02 cB | 0.21 ± 0.03 abA | 0.19 ± 0.04 abcA | 9.6 ± 0.3 efC | 7.0 ± 0.4 cdB | 6.1 ± 0.2 deA |
WU2 | 17.3 ± 0.2 deB | 11.7 ± 0.2 bA | 11.5 ± 0.2 dA | 0.28 ± 0.04 cB | 0.19 ± 0.04 aA | 0.19 ± 0.05 bcA | 9.2 ± 0.3 cdeC | 6.4 ± 0.2 bB | 6.0 ± 0.3 cdA |
WU3 | 16.9 ± 0.3 cdC | 11.6 ± 0.4 bB | 10.6 ± 0.2 abA | 0.27 ± 0.03 bcB | 0.18 ± 0.04 aA | 0.18 ± 0.03 abcA | 9.1 ± 0.4 cdC | 6.5 ± 0.3 bB | 5.4 ± 0.3 abA |
WU4 | 15.6 ± 0.2 bC | 12.3 ± 0.2 cB | 10.4 ± 0.6 abA | 0.22 ± 0.03 abB | 0.19 ± 0.04 aA | 0.16 ± 0.03 abcA | 8.2 ± 0.1 aC | 6.8 ± 0.3 bcB | 5.2 ± 0.5 aA |
WU5 | 14.6 ± 0.5 aC | 9.5 ± 0.6 aA | 10.2 ± 0.7 aB | 0.21 ± 0.03 aB | 0.16 ± 0.02 aA | 0.14 ± 0.03 aA | 8.1 ± 0.4 aB | 5.3 ± 0.4 aA | 5.6 ± 0.4 abcA |
Sample | Resilience | Cohesiveness | Springiness | ||||||
---|---|---|---|---|---|---|---|---|---|
NS | NM | NW | NS | NM | NW | NS | NM | NW | |
C | 0.31 ± 0.01 abcA(1) | 0.35 ± 0.02 abB | 0.38 ± 0.01 deC | 0.61 ± 0.02 bcA | 0.62 ± 0.02 abAB | 0.63 ± 0.01 bB | 0.90 ± 0.02 aA | 0.88 ± 0.02 aA | 0.90 ± 0.02 cA |
WE1 | 0.32 ± 0.02 bcdA | 0.33 ± 0.02 aA | 0.38 ± 0.02 cdeB | 0.60 ± 0.01 abA | 0.59 ± 0.01 aA | 0.62 ± 0.02 bB | 0.89 ± 0.01 aB | 0.87 ± 0.01 aA | 0.89 ± 0.02 bcB |
WE2 | 0.32 ± 0.02 bcdA | 0.34 ± 0.02 abB | 0.37 ± 0.01 bcdeC | 0.60 ± 0.01 abA | 0.61 ± 0.05 abA | 0.61 ± 0.02 abA | 0.90 ± 0.01 aA | 0.90 ± 0.02 aA | 0.88 ± 0.02 abcA |
WE3 | 0.31 ± 0.01 abcdA | 0.34 ± 0.01 abB | 0.39 ± 0.02 eC | 0.61 ± 0.01 abcA | 0.60 ± 0.01 aA | 0.61 ± 0.02 abA | 0.88 ± 0.02 aA | 0.89 ± 0.02 aA | 0.89 ± 0.02 abcA |
WE4 | 0.32 ± 0.01 bcdA | 0.33 ± 0.01 aA | 0.35 ± 0.01 abB | 0.61 ± 0.01 bcA | 0.61 ± 0.02 abA | 0.61 ± 0.02 abA | 0.89 ± 0.01 aA | 0.88 ± 0.01 aA | 0.86 ± 0.04 abA |
WE5 | 0.33 ± 0.02 cdA | 0.37 ± 0.01 cdB | 0.36 ± 0.02 abcdB | 0.60 ± 0.01 abA | 0.63 ± 0.01 bB | 0.61 ± 0.01 abA | 0.89 ± 0.01 aB | 0.89 ± 0.02 aB | 0.86 ± 0.03 abcA |
WU1 | 0.30 ± 0.01 aA | 0.33 ± 0.01 aB | 0.35 ± 0.01 abC | 0.59 ± 0.01 aA | 0.60 ± 0.02 aA | 0.60 ± 0.02 aA | 0.89 ± 0.02 aA | 0.90 ± 0.04 aA | 0.90 ± 0.01 cA |
WU2 | 0.30 ± 0.01 abA | 0.37 ± 0.01 cdC | 0.35 ± 0.02 aB | 0.60 ± 0.01 abA | 0.62 ± 0.01 abB | 0.59 ± 0.02 aA | 0.89 ± 0.02 aA | 0.89 ± 0.02 aA | 0.88 ± 0.03 abcA |
WU3 | 0.31 ± 0.01 abcA | 0.35 ± 0.01 bcB | 0.35 ± 0.01 aB | 0.60 ± 0.01 abA | 0.62 ± 0.01 abB | 0.59 ± 0.01 aA | 0.90 ± 0.02 aB | 0.90 ± 0.02 aB | 0.87 ± 0.02 abcA |
WU4 | 0.31 ± 0.00 abcA | 0.34 ± 0.01 abB | 0.36 ± 0.01 abC | 0.60 ± 0.01 abAB | 0.62 ± 0.02 abB | 0.59 ± 0.02 aA | 0.88 ± 0.02 aB | 0.90 ± 0.02 aB | 0.85 ± 0.03 aA |
WU5 | 0.33 ± 0.02 dA | 0.37 ± 0.01 dB | 0.36 ± 0.03 abcB | 0.62 ± 0.01 cAB | 0.63 ± 0.02 bB | 0.61 ± 0.02 abA | 0.89 ± 0.02 aA | 0.88 ± 0.03 aA | 0.89 ± 0.02 bcA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, E.; Kweon, M. Assessing the Impact of Arabinoxylans on Dough Mixing Properties and Noodle-Making Performance through Xylanase Treatment. Foods 2024, 13, 3158. https://doi.org/10.3390/foods13193158
Ha E, Kweon M. Assessing the Impact of Arabinoxylans on Dough Mixing Properties and Noodle-Making Performance through Xylanase Treatment. Foods. 2024; 13(19):3158. https://doi.org/10.3390/foods13193158
Chicago/Turabian StyleHa, Eunbin, and Meera Kweon. 2024. "Assessing the Impact of Arabinoxylans on Dough Mixing Properties and Noodle-Making Performance through Xylanase Treatment" Foods 13, no. 19: 3158. https://doi.org/10.3390/foods13193158
APA StyleHa, E., & Kweon, M. (2024). Assessing the Impact of Arabinoxylans on Dough Mixing Properties and Noodle-Making Performance through Xylanase Treatment. Foods, 13(19), 3158. https://doi.org/10.3390/foods13193158