Potassium Hydroxide Extraction of Polyphenols from Olive Leaves: Effect on Color and Acrylamide Formation in Black Ripe Olives
Abstract
:1. Introduction
2. Materials and Methods
2.1. KOH Treatment of Olive Leaves and Branches
2.2. Processing of KOH Olive Leaf Extract (KOLE)
2.3. Processing of Dried Olive Leaf Extract (DOLE)
2.4. Addition of KOLE during the Darkening Stage of Black Olives
2.5. Addition of KOLE in Canning Brine of Black Olives
2.6. Effect of DOLE and Storage Brine on Acrylamide Formation in Black Olives
2.7. Analysis of Phenolic Compounds
2.8. Determination of Olive Color
2.9. Analysis of Acrylamide
2.10. Analysis of Potassium
2.11. Statistical Analysis
3. Results and Discussion
3.1. KOH Treatment of Olive Leaves and Branches
3.2. Addition of KOLE during the Darkening Stage of Black Olives
3.3. Addition of KOLE in Canning Brine of Black Olives
3.4. Effect of DOLE and Storage Brine on Acrylamide Formation in Black Olives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Difonzo, G.; Squeo, G.; Pasqualone, A.; Summo, C.; Paradiso, V.M.; Caponio, F. The challenge of exploiting polyphenols from olive leaves: Addition to foods to improve their shelf-life and nutritional value. J. Sci. Food Agric. 2021, 101, 3099–3166. [Google Scholar] [CrossRef] [PubMed]
- Clodoveo, M.L.; Cupri, P.; Annunziato, A.; Corbo, F. Innovative extraction technologies for development of functional ingredients based on polyphenols from olive leaves. Foods 2022, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Medina, E.; Mateo, M.A.; Brenes, M. Quantification of bioactive compounds in Picual and Arbequina olive leaves and fruit. J. Sci. Food Agric. 2017, 97, 1725–1732. [Google Scholar] [CrossRef]
- Ramírez, E.M.; Brenes, M.; Romero, C.; Medina, E. Chemical and enzymatic characterization of leaves from Spanish table olive cultivars. Foods 2022, 11, 3879. [Google Scholar] [CrossRef]
- Breakspear, I.; Guillaume, C. A quantitative phytochemical comparison of olive leaf extracts on the Australian market. Molecules 2020, 25, 4099. [Google Scholar] [CrossRef]
- Pyrka, I.; Mantzouridou, F.T.; Nenadis, N. Optimization of olive leaves´ thin layer, intermittent near-infrared-drying. Innov. Food Sci. Emerg. Technol. 2023, 84, 103264. [Google Scholar] [CrossRef]
- Castillo-Luna, A.; Miho, H.; Ledesma-Escobar, C.A.; Priego-Capote, F. Comparison of drying techniques for extraction of bioactive compounds from olive-tree materials. Foods 2023, 12, 2684. [Google Scholar] [CrossRef]
- Ramírez, E.M.; Brenes, M.; Romero, C.; Medina, E. Olive leaf processing for infusion purposes. Foods 2023, 12, 591. [Google Scholar] [CrossRef]
- Difonzo, G.; Russo, A.; Trani, A.; Paradiso, V.M.; Ranieri, M.; Pasqualone, A.; Summo, C.; Tamma, G.; Silletti, R.; Caponio, F. Green extracts from Coratina olive cultivar leaves: Antioxidant characterization and biological activity. J. Funct. Foods 2017, 31, 63–70. [Google Scholar] [CrossRef]
- Da Rosa, G.S.; Vanga, S.K.; Gariepy, Y.; Raghavan, V. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innov. Food Sci. Emerg. Technol. 2019, 58, 102234. [Google Scholar] [CrossRef]
- Cokgezme, O.F.; Icier, F. Frequency and wave type effects on extractability of oleuropein from olive leaves by moderate electric field assisted extraction. Innov. Food Sci. Emerg. Technol. 2022, 77, 102985. [Google Scholar] [CrossRef]
- Romani, A.; Scardigli, A.; Panelli, P. An environmentally friendly process for the production of extracts rich in phenolic antioxidants from Olea europaea L. and Cynara scolymus L. matrices. Eur. Food Res. Technol. 2017, 243, 1229–1238. [Google Scholar] [CrossRef]
- Khemakhem, I.; Gargouri, O.D.; Dhouib, A.; Ayadi, M.A.; Bouaziz, M. Oleuropein rich extract from olive leaves by combining microfiltration, ultrafiltration and nanofiltration. Sep. Purif. Technol. 2017, 172, 310–317. [Google Scholar] [CrossRef]
- Martín-Vertedor, D.; Fernández, A.; Hernández, A.; Arias-Calderón, R.; Delgado-Adámez, J.; Pérez-Nevado, F. Acrylamide reduction after phenols addition to Californian-style black olives. Food Control 2020, 108, 106888. [Google Scholar] [CrossRef]
- Mechi, D.; Fernández, A.; Baccouri, B.; Abaza, L.; Martín-Vertedor, D. Addition of “Chetoui” olive leaf extract to reduce acrylamide in Californian-style black olive. Food Biosci. 2022, 50, 102080. [Google Scholar] [CrossRef]
- Casado, F.J.; Montaño, A. Influence of processing conditions on acrylamide content in black ripe olives. J. Agric. Food Chem. 2008, 56, 2021–2027. [Google Scholar] [CrossRef]
- Casado, F.J.; Sánchez, A.H.; Montaño, A. Reduction of acrylamide content in ripe olives by selected additives. Food Chem. 2010, 119, 161–166. [Google Scholar] [CrossRef]
- Kotsiou, K.; Tasioula-Margari, M.; Capuano, E.; Fogliano, V. Effect of standard phenolic compounds and olive oil phenolic extracts on acrylamide formation in an emulsion system. Food Chem. 2011, 124, 242–247. [Google Scholar] [CrossRef]
- Pantalone, S.; Tonucci, L.; Cichelli, A.; Cerretani, L.; Gómez-Caravaca, A.M.; d´Alessandro, N. Acrylamide mitigation in processed potato derivatives by addition of natural phenols from olive chain by-products. J. Food Compos. Anal. 2021, 95, 103682. [Google Scholar] [CrossRef]
- Brenes, M.; García-García, P.; Garrido, A. Phenolic compounds related to the color formed during processing of ripe olives. J. Agric. Food Chem. 1992, 40, 1192–1196. [Google Scholar] [CrossRef]
- Brenes, M.; Romero, C.; García, P. Optimization of ripe olive processing with a single lye treatment. J. Food Sci. 2017, 82, 2078–2084. [Google Scholar] [CrossRef] [PubMed]
- García-Serrano, P.; Romero, C.; Brenes, M.; García-García, P. Enrichment in phenolic compounds of black ripe olives through nano-filtration and vacuum evaporation techniques. Innov. Food Sci. Emerg. Technol. 2019, 51, 73–79. [Google Scholar] [CrossRef]
- Thring, R.W.; Chornet, E.; Bouchard, J.; Vidal, P.F. Characterization of lignin residues derived from the alkaline hydrolysis of glycol lignin. Can. J. Chem. 1990, 68, 82–89. [Google Scholar] [CrossRef]
- Brenes-Álvarez, M.; Ramírez, E.M.; Brenes, M.; García-García, P.; Medina, E.; Romero, C. New and rapid analytical method using HPLC-MS detection for acrylamide determination in black ripe olives. Foods 2023, 12, 4037. [Google Scholar] [CrossRef] [PubMed]
- Kubo, I.; Matsumoto, A.; Takase, I. A multichemical defense mechanism of bitter olive Olea europaea (Oleaceae). Is oleuropein a phytoalexin precursor? J. Chem. Ecol. 1985, 11, 251–263. [Google Scholar] [CrossRef]
- Delgado-Povedano, M.; Priego-Capote, F.; Luque de Castro, M.D. Selective ultrasound-enhanced enzymatic hydrolysis of oleuropein to its aglycon in olive (Olea europaea L.) leaf extracts. Food Chem. 2017, 220, 282–288. [Google Scholar] [CrossRef]
- Paiva-Martins, F.; Pinto, M. Isolation and characterization of a new hydroxytyrosol derivative from olive (Olea europaea) leaves. J. Agric. Food Chem. 2008, 56, 5582–5588. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Cecchi, L.; Bellumori, M.; Balli, D.; Giovannelli, L.; Huang, L.; Mulinacci, N. Phenolic compounds and triterpenes in different olive tissues and olive oil by-products, and cytotoxicity on human colorectal cancer cells: The case of Frantoio, Moraiolo and Leccino cultivars (Olea europaea L.). Foods 2021, 10, 2823. [Google Scholar] [CrossRef]
- García-Serrano, P.; Romero, C.; García-García, P.; Brenes, M. Influence of the type of alkali on the processing of black ripe olives. LWT-Food Sci. Technol. 2020, 126, 109318. [Google Scholar] [CrossRef]
- Romero, C.; Brenes, M.; Yousfi, K.; García, P.; García, A.; Garrido, A. Effect of cultivar and processing methods on the contents of polyphenols in table olives. J. Agric. Food Chem. 2004, 52, 479–484. [Google Scholar] [CrossRef]
- Medina, E.; Romero, C.; García, P.; Brenes, M. Characterization of bioactive compounds in commercial olive leaf extracts, and olive leaves and their infusions. Food Funct. 2019, 10, 4716–4724. [Google Scholar] [CrossRef] [PubMed]
- Amrein, T.M.; Andres, L.; Escher, F.; Amadò, R. Occurrence of acrylamide in selected foods and mitigation options. Food Addit. Contam. 2007, 24, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Hölzle, E.; Becker, L.; Oellig, C.; Granvogl, M. Heat-introduced formation of acrylamide in table olives: Analysis of acrylamide, free asparagine, and 3-aminopropionamide. J. Agric. Food Chem. 2023, 71, 13508–13517. [Google Scholar] [CrossRef] [PubMed]
- Casado, F.J.; Montaño, A.; Spitzner, D.; Carle, R. Investigations into acrylamide precursors in sterilized table olives: Evidence of a peptic fraction being responsible for acrylamide formation. Food Chem. 2013, 14, 1158–1165. [Google Scholar] [CrossRef]
Phenolic Compound | Storage Brine | KOLE |
---|---|---|
Hydroxytyrosol | 1672 ± 20 | 6551 ± 123 |
Hydroxytyrosol 4-glucoside | Not detected | 2098 ± 19 |
Oleuropein | 77 ± 3 | 1235 ± 28 |
HyEDA 1 | Not detected | 566 ± 11 |
Tyrosol | 166 ± 13 | 117 ± 7 |
Color Parameters | Total Polyphenols (mg/kg) | K (mg/kg) | ||||
---|---|---|---|---|---|---|
L* | a* | b* | ΔE 1 | |||
Batch 1 | ||||||
Control | 21.3a 2 | 3.6a | 3.1a | na | na | |
Mixture brine | 19.3b | 3.2a | 2.0a | 2.4 | na | na |
KOLE | 19.0b | 3.2a | 2.1a | 2.6 | na | na |
Batch 2 | ||||||
Control | 20.5a | 3.4a | 3.4a | 72b | 84a | |
Mixture brine | 19.2b | 3.5a | 2.8b | 1.0 | 102a | 118a |
KOLE | 19.9a | 3.7a | 3.5a | 0.6 | 74b | 230b |
Control | 1000 mg/L of Hydroxytyrosol | 2000 mg/L of Hydroxytyrosol | |
---|---|---|---|
Color | |||
L* | 20.5a 1 | 20.2a | 20.4a |
a* | 3.4a | 3.9a | 3.7a |
b* | 3.4a | 3.3a | 3.2a |
ΔE 2 | 0.5 | 0.4 | |
Phenolic compounds (mg/kg) | |||
Hydroxytyrosol | 29b | 160a | 159a |
Hydroxytyrosol glycol | nd | 40b | 117a |
Hydroxytyrosol 4-glucoside | 5c | 70b | 137a |
Tyrosol | 15b | 24a | 23a |
Luteolin 7-glucoside | 15b | 17b | 22a |
Others | 7b | 6b | 26a |
Total polyphenols | 71c | 317b | 484a |
Batch | Control | KOLE | Difference (%) |
---|---|---|---|
1 | 226a 1 | 154b | −32 |
2 | 355a | 276b | −22 |
3 | 247a | 236a | −4 |
4 | 187a | 167a | −11 |
5 | 428a | 402a | −6 |
6 | 273a | 291a | +6 |
Control | Storage Brine | Nano-Filtered Brine | DOLE | |
---|---|---|---|---|
Acrylamide (µg/kg) | 273b 1 | 582a | 529a | 226c |
Changes of acrylamide (%) | +113 | +94 | −17 | |
Color parameters | ||||
L* | 18.1a | 18.7a | 18.6a | 17.9a |
a* | 0.6a | 0.3a | 0.5a | 0.4a |
b* | −0.3a | −0.5a | −0.2a | −0.3a |
Polyphenols (mg/kg) | ||||
Hydroxytyrosol | 48b | 571a | 572a | 68b |
Hydroxytyrosol 4-glucoside | 34b | nd | nd | 47a |
Tyrosol | 20b | 64a | 57a | 19b |
Hydroxytyrosol acetate | 12b | 28a | 26a | 15b |
Oleuropein | nd | nd | nd | 814a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brenes-Álvarez, M.; García-García, P.; Ramírez, E.M.; Medina, E.; Brenes, M.; Romero, C. Potassium Hydroxide Extraction of Polyphenols from Olive Leaves: Effect on Color and Acrylamide Formation in Black Ripe Olives. Foods 2024, 13, 3180. https://doi.org/10.3390/foods13193180
Brenes-Álvarez M, García-García P, Ramírez EM, Medina E, Brenes M, Romero C. Potassium Hydroxide Extraction of Polyphenols from Olive Leaves: Effect on Color and Acrylamide Formation in Black Ripe Olives. Foods. 2024; 13(19):3180. https://doi.org/10.3390/foods13193180
Chicago/Turabian StyleBrenes-Álvarez, Mercedes, Pedro García-García, Eva María Ramírez, Eduardo Medina, Manuel Brenes, and Concepción Romero. 2024. "Potassium Hydroxide Extraction of Polyphenols from Olive Leaves: Effect on Color and Acrylamide Formation in Black Ripe Olives" Foods 13, no. 19: 3180. https://doi.org/10.3390/foods13193180
APA StyleBrenes-Álvarez, M., García-García, P., Ramírez, E. M., Medina, E., Brenes, M., & Romero, C. (2024). Potassium Hydroxide Extraction of Polyphenols from Olive Leaves: Effect on Color and Acrylamide Formation in Black Ripe Olives. Foods, 13(19), 3180. https://doi.org/10.3390/foods13193180