Soil-Mulching Treatment Enhances the Content of Stilbene in Grape Berries: A Transcriptomic and Metabolomic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Experiment
2.2. Plant Sampling
2.3. RNA Extraction, High-Throughput Sequencing, and Data Processing and Analysis
2.4. Metabolomic Analysis
2.5. WGCNA and Correlation Analysis
3. Results
3.1. Fruit Appearance and Quality
3.2. Metabolomic Level Analysis of Grape Berries under Mulching Treatment
3.3. Transcriptomic Level Analysis of Grape Berries between the Control and Mulching Groups
3.4. Integrated Transcriptomic and Metabolomic Analysis
3.4.1. KEGG Enrichment Analysis
3.4.2. Weighted Gene Co-Expression Network Analysis of DEGs and Correlation with Stilbene Compounds
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torregrosa, L.; Vialet, S.; Adivèze, A.; Iocco-Corena, P.; Thomas, M.R. Grapevine (Vitis vinifera L.). Methods Mol. Biol. 2015, 1224, 177–194. [Google Scholar] [CrossRef] [PubMed]
- Mimida, N.; Ureshino, A.; Tanaka, N.; Shigeta, N.; Sato, N.; Moriya-Tanaka, Y.; Iwanami, H.; Honda, C.; Suzuki, A.; Komori, S.; et al. Expression patterns of several floral genes during flower initiation in the apical buds of apple (Malus × Domestica Borkh.) revealed by in situ hybridization. Plant Cell Rep. 2011, 30, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.; Yuan, N.; Lin, J.; Li, H.; Yang, Q.; Wang, Z.; Shen, Z.; Ying, Y.; Li, X.; Cao, F. Seed germination and growth improvement for early maturing pear breeding. Plants 2023, 12, 4120. [Google Scholar] [CrossRef] [PubMed]
- Majkowska-Gadomska, J.; Mikulewicz, E.; Francke, A. Effects of plant covers and mulching on the biometric parameters, yield and nutritional value of tomatillos (Physalis ixocarpa Brot. Ex Hornem.). Agronomy 2021, 11, 1742. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Wang, Z.; Chen, Z.; Wu, W. The responses of a grapevine rhizosphere system to mulching using amplicon sequencing and transcriptomic analysis. Agronomy 2023, 13, 1656. [Google Scholar] [CrossRef]
- Jalal, M.; Hani, G. Budbreak, Fruit quality and maturity of ‘Superior’ seedless grapes as affected by Dormex® under Jordan Valley conditions. Fruits 2008, 63, 171–178. [Google Scholar] [CrossRef]
- Yin, X.; Long, L.E.; Huang, X.-L.; Jaja, N.; Bai, J.; Seavert, C.F.; le Roux, J. Transitional effects of double-lateral drip irrigation and straw mulch on irrigation water consumption, mineral nutrition, yield, and storability of sweet cherry. HortTechnol. Hortte. 2012, 22, 484–492. [Google Scholar] [CrossRef]
- Imrak, B.; Küden, A.; Küden, A.; Sarier, A.; Çimen, B. Chemical applications affected dormancy breaking in “Modi” apple cultivar under subtropical conditions. Acta Sci. Pol. Hortorum Cultus 2016, 15, 265–277. [Google Scholar]
- Sifola, M.I.; Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Nocerino, S.; Riccardi, R.; Spigno, P.; Mori, M. Yield and quality traits of tomato ‘San Marzano’ type as affected by photo-selective low-density polyethylene mulching. Agronomy 2024, 14, 315. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Y.; Liu, J.; Wang, Z.; Li, F.; Ge, X. Recent advances and future perspectives in early-maturing cotton research. New Phytol. 2023, 237, 1100–1114. [Google Scholar] [CrossRef]
- Gabaston, J.; Valls Fonayet, J.; Franc, C.; Waffo-Teguo, P.; de Revel, G.; Hilbert, G.; Gomès, E.; Richard, T.; Mérillon, J.-M. Characterization of stilbene composition in grape berries from wild Vitis species in year-to-year harvest. J. Agric. Food Chem. 2020, 68, 13408–13417. [Google Scholar] [CrossRef] [PubMed]
- Langcake, P.; Pryce, R.-J. A new class of phytoalexins from grapevines. Experientia 1977, 33, 151–152. [Google Scholar] [CrossRef] [PubMed]
- Weiskirchen, S.; Weiskirchen, R. Resveratrol: How much wine do you have to drink to stay healthy? Adv. Nutr. 2016, 7, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Teka, T.; Zhang, L.; Ge, X.; Li, Y.; Han, L.; Yan, X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical application-a comprehensive review. Phytochemistry 2022, 197, 113128. [Google Scholar] [CrossRef]
- Benbouguerra, N.; Hornedo-Ortega, R.; Garcia, F.; El Khawand, T.; Saucier, C.; Richard, T. Stilbenes in grape berries and wine and their potential role as anti-obesity agents: A review. Trends Food Sci. Technol. 2021, 112, 362–381. [Google Scholar] [CrossRef]
- Bavaresco, L.; Mattivi, F.; De Rosso, M.; Flamini, R. Effects of elicitors, viticultural factors, and enological practices on resveratrol and stilbenes in grapevine and wine. Mini-Rev. Med. Chem. 2012, 12, 1366–1381. [Google Scholar] [CrossRef]
- Błaszczyk, A.; Sady, S.; Sielicka, M. The stilbene profile in edible berries. Phytochem. Rev. 2019, 18, 37–67. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Liu, X.; Zhou, J.; Deng, H.; Zhang, G.; Xiao, Y.; Tang, W. WGCNA analysis identifies the hub genes related to heat stress in seedling of rice (Oryza sativa L.). Genes 2022, 13, 1020. [Google Scholar] [CrossRef]
- Tahmasebi, A.; Ashrafi-Dehkordi, E.; Shahriari, A.G.; Mazloomi, S.M.; Ebrahimie, E. Integrative meta-analysis of transcriptomic responses to abiotic stress in cotton. Prog. Biophys. Mol. Biol. 2019, 146, 112–122. [Google Scholar] [CrossRef]
- Burkhardt, A.; Day, B. Transcriptome and small RNAome dynamics during a resistant and susceptible interaction between cucumber and downy mildew. Plant Genome 2016, 9, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Tian, F.-H.; Yao, L.; Lv, J.-H.; Jia, C.-W.; Li, C.-T. Comparative transcriptome and WGCNA reveal key genes involved in lignocellulose degradation in Sarcomyxa Edulis. Sci. Rep. 2022, 12, 18379. [Google Scholar] [CrossRef] [PubMed]
- Sheng, C.; Song, S.; Zhou, W.; Dossou, S.S.K.; Zhou, R.; Zhang, Y.; Li, D.; You, J.; Wang, L. Integrating transcriptome and phytohormones analysis provided insights into plant height development in sesame. Plant Physiol. Biochem. PPB 2023, 198, 107695. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, J.; Song, Q.; Cheng, Q.; Tan, Q.; Zhou, Q.; Nong, Z.; Lv, P. Transcriptome and WGCNA reveal hub genes in sugarcane tiller seedlings in response to drought stress. Sci. Rep. 2023, 13, 12823. [Google Scholar] [CrossRef]
- Yao, M.; Wang, X.; Long, J.; Bai, S.; Cui, Y.; Wang, Z.; Liu, C.; Liu, F.; Wang, Z.; Li, Q. Identification of key modules and candidate genes for powdery mildew resistance of wheat-Agropyron cristatum translocation line WAT-2020-17-6 by WGCNA. Plants 2023, 12, 335. [Google Scholar] [CrossRef]
- Liu, P.; Li, M. Experimental Techniques in Plant Physiology; Science Press: Beijing, China, 2007; pp. 86–87. [Google Scholar]
- Liu, C. Specification and Data Standards for Grape Germplasm Resource Description; China Agricultural Press: Beijing, China, 2006; pp. 98–102. [Google Scholar]
- Meng, L.; Yang, Y.; Ma, Z.; Jiang, J.; Zhang, X.; Chen, Z.; Cui, G.; Yin, X. Integrated physiological, transcriptomic and metabolomic analysis of the response of Trifolium pratense L. to Pb toxicity. J. Hazard. Mater. 2022, 436, 129128. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.-K.; Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.-M.; Antonescu, C.-M.; Chang, T.-C.; Mendell, J.-T.; Salzberg, S.-L. StringTie enables improved reconstruction of a transcriptome from rna-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Varet, H.; Brillet-Guéguen, L.; Coppée, J.-Y.; Dillies, M.-A. SARTools: A DESeq2- and EdgeR-Based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS ONE 2016, 11, e0157022. [Google Scholar] [CrossRef]
- Robinson, M.-D.; McCarthy, D.-J.; Smyth, G.-K. Edger: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Cheng, W.; Jia, G.; Zhang, J.; Lin, L.; Cui, M.; Zhang, D.; Jiao, M.; Zhao, X.; Wang, S.; Dong, J.; et al. Transcriptome and metabolome analysis of the synthesis pathways of allelochemicals in Eupatorium adenophorum. ACS Omega 2022, 7, 16803–16816. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Ou, L.; Ren, X.; Yang, X.; Tan, Y.; Zhou, X.; Jin, L. Transcriptomic and metabolomic analysis reveal possible molecular mechanisms regulating tea plant growth elicited by chitosan oligosaccharide. Int. J. Mol. Sci. 2022, 23, 5469. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Yin, T.; Zhou, D.; Zhang, H.; Yang, F.; Wang, S.; Long, C.; Fu, X.; Liu, H.; Guo, L.; et al. Transcriptome differential expression analysis of defoliation in different lemon varieties under drought treatment. PLoS ONE 2024, 19, e0299261. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, E.; Di Mola, I.; Ottaiano, L.; Bilotto, M.; Petriccione, M.; Ferrara, E.; Mori, M.; Morra, L. Assessing yield and quality of Melon (Cucumis melo L.) improved by biodegradable mulching film. Plants 2023, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Beelagi, R.; Singh, V.P.; Jat, R.; Singh, P.K.; Rai, R.; Singh, A.; Basile, B.; Mataffo, A.; Corrado, G.; Kumar, P. Enhancing the fruit yield and quality in pomegranate: Insights into drip irrigation and mulching strategies. Plants 2023, 12, 3241. [Google Scholar] [CrossRef]
- Zhang, X.; You, S.; Tian, Y.; Li, J. Comparison of plastic film, biodegradable paper and bio-based film mulching for summer tomato production: Soil properties, plant growth, fruit yield and fruit quality. Sci. Hortic. 2019, 249, 38–48. [Google Scholar] [CrossRef]
- Yang, L.; Wang, M.; Li, S.; Yu, J.; Chen, Y.; Yang, H.; Wang, W.; Chen, H.; Hong, L. Effect of different mulching practices on bacterial community composition and fruit quality in a citrus orchard. Agriculture 2023, 13, 1914. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Jin, L.; Wei, S.; Wang, S.; Jin, N.; Wang, J.; Xie, J.; Feng, Z.; Zhang, G.; et al. Combined straw and plastic film mulching can increase the yield and quality of open field loose-curd cauliflower. Front. Nutr. 2022, 9, 888728. [Google Scholar] [CrossRef]
- Zhenhai, H. Effect of different reflecting films on berry quality and sucrose metabolism of grape in greenhouse. J. Fruit Sci. 2008, 25, 178–181. [Google Scholar]
- Odediran, A.; Yu, J.; Gu, S. The effect of layers of high tunnel covering and soil mulching on tomato fruit quality. J. Sci. Food Agric. 2023, 103, 7176–7186. [Google Scholar] [CrossRef]
- Jiao, Y.; Xu, W.; Duan, D.; Wang, Y.; Nick, P. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence. J. Exp. Bot. 2016, 67, 5841–5856. [Google Scholar] [CrossRef]
- Aleynova, O.A.; Suprun, A.R.; Nityagovsky, N.N.; Dubrovina, A.S.; Kiselev, K.V. The influence of the grapevine bacterial and fungal endophytes on biomass accumulation and stilbene production by the In vitro cultivated cells of Vitis amurensis Rupr. Plants 2021, 10, 1276. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zheng, R.; Lu, J.; Li, X.; Wang, D.; Cai, X.; Ren, X.; Kong, Q. Trends in the potential of stilbenes to improve plant stress tolerance: Insights of plant defense mechanisms in response to biotic and abiotic stressors. J. Agric. Food Chem. 2024, 72, 7655–7671. [Google Scholar] [CrossRef] [PubMed]
- Dubrovina, A.S.; Kiselev, K.V. Regulation of stilbene biosynthesis in plants. Planta 2017, 246, 597–623. [Google Scholar] [CrossRef] [PubMed]
- Höll, J.; Vannozzi, A.; Czemmel, S.; D’Onofrio, C.; Walker, A.R.; Rausch, T.; Lucchin, M.; Boss, P.K.; Dry, I.B.; Bogs, J. The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 2013, 25, 4135–4149. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Guo, D.; Li, G.; Yang, Y.; Zhang, G.; Li, S.; Liang, Z. The grapevine R2R3-type MYB transcription factor VdMYB1 positively regulates defense responses by activating the stilbene synthase gene 2 (VdSTS2). BMC Plant Biol. 2019, 19, 478. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y. Transcription factor VqERF114 regulates stilbene synthesis in Chinese wild Vitis quinquangularis by interacting with VqMYB35. Plant Cell Rep. 2019, 38, 1347–1360. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, C.; Liu, W.; Wang, Y. The WRKY53 transcription factor enhances stilbene synthesis and disease resistance by interacting with MYB14 and MYB15 in Chinese wild grape. J. Exp. Bot. 2020, 71, 3211–3226. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Riccioni, G.; Gammone, M.A.; Tettamanti, G.; Bergante, S.; Pluchinotta, F.R.; D’Orazio, N. Resveratrol and anti-atherogenic effects. Int. J. Food Sci. Nutr. 2015, 66, 603–610. [Google Scholar] [CrossRef]
- Prabha, B.; Lekshmy Krishnan, S.; Abraham, B.; Jayamurthy, P.; Radhakrishnan, K.V. An insight into the mechanistic role of (-)-ampelopsin F from Vatica chinensis L. in inducing insulin secretion in pancreatic beta cells. Bioorg. Med. Chem. 2024, 103, 117695. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Zorita, S.; Milton-Laskibar, I.; Eseberri, I.; Beaumont, P.; Courtois, A.; Krisa, S.; Portillo, M.P. Beneficial effects of ε-viniferin on obesity and related health alterations. Nutrients 2023, 15, 928. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.-D.; Luo, M.; Huang, S.-Y.; Saimaiti, A.; Shang, A.; Gan, R.-Y.; Li, H.-B. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxid. Med. Cell. Longev. 2021, 2021, 9932218. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, P.; Courtois, A.; Atgié, C.; Richard, T.; Krisa, S. In the shadow of resveratrol: Biological activities of epsilon-viniferin. J. Physiol. Biochem. 2022, 78, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-Y.; Shih, Y.-Y.; Yeh, Y.-T.; Huang, C.-H.; Liao, C.-A.; Hu, C.-Y.; Nagabhushanam, K.; Ho, C.-T.; Chen, Y.-K. Pterostilbene and its derivative 3’-hydroxypterostilbene ameliorated nonalcoholic fatty liver disease through synergistic modulation of the gut microbiota and SIRT1/AMPK signaling pathway. J. Agric. Food Chem. 2022, 70, 4966–4980. [Google Scholar] [CrossRef]
- McCormack, D.; McFadden, D. Pterostilbene and cancer: Current review. J. Surg. Res. 2012, 173, e53–e61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wu, W.; Wang, Z.; Chen, Z.; Wang, X. Soil-Mulching Treatment Enhances the Content of Stilbene in Grape Berries: A Transcriptomic and Metabolomic Analysis. Foods 2024, 13, 3208. https://doi.org/10.3390/foods13193208
Wang B, Wu W, Wang Z, Chen Z, Wang X. Soil-Mulching Treatment Enhances the Content of Stilbene in Grape Berries: A Transcriptomic and Metabolomic Analysis. Foods. 2024; 13(19):3208. https://doi.org/10.3390/foods13193208
Chicago/Turabian StyleWang, Bo, Weimin Wu, Zhuangwei Wang, Zhenxiao Chen, and Xicheng Wang. 2024. "Soil-Mulching Treatment Enhances the Content of Stilbene in Grape Berries: A Transcriptomic and Metabolomic Analysis" Foods 13, no. 19: 3208. https://doi.org/10.3390/foods13193208
APA StyleWang, B., Wu, W., Wang, Z., Chen, Z., & Wang, X. (2024). Soil-Mulching Treatment Enhances the Content of Stilbene in Grape Berries: A Transcriptomic and Metabolomic Analysis. Foods, 13(19), 3208. https://doi.org/10.3390/foods13193208