The Cardioprotective Properties of Selected Nuts: Their Functional Ingredients and Molecular Mechanisms
Abstract
:1. Introduction
2. Functional Ingredients of Nuts
3. Nuts as a Key Food Component in Cardioprotection
3.1. Mixed Nuts
3.2. Almonds
3.3. Pistachios
3.4. Walnuts
3.5. Other Selected Nuts
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
References
- Kalita, S.; Khandelwal, S.; Madan, J.; Pandya, H.; Sesikeran, B.; Krishnaswamy, K. Amonds and cardiovascular health: A review. Nutrients 2018, 10, 468. [Google Scholar] [CrossRef]
- Barreca, D.; Nabavi, S.M.; Sureda, A.; Rasekhian, M.; Raciti, R.; Silva, A.S.; Annunziata, G.; Arnone, A.; Tenore, G.C.; Suntar, I.; et al. Almonds (Prunus dulcis Mill. D.A. Webb): A source of nutrients and health-promoting compounds. Nutrients 2020, 12, 672. [Google Scholar] [CrossRef]
- Ros, E.; Singh, A.; O’Keefe, J.H. Nuts: Natural pleiotropic nutraceuticals. Nutrients 2021, 13, 3269. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, B.; Pinta, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Cosme, F. Composition of nuts and their potential health benefits—An overview. Foods 2023, 12, 942. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.J.; Teuber, S.S.; Gobeille, A.; Cremin, P.; Waterhouse, A.L.; Steinberg, F.M. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J. Nutr. 2001, 131, 2837–2842. [Google Scholar] [CrossRef]
- Hatipoglu, A.I.; Kanbagli, O.; Balkan, J.; Kucuk, M.; Cevikbas, U.; Aykac-Toker, G.; Berkkan, H.; Uysal, M. Hazelnut oil administration reduces aortic cholesterol accumulation and lipid peroxides in the plasma, liver, and aorta of rabbit fed in high-cholesterol diet. Biosci. Biotech. Biochem. 2004, 68, 2050–2057. [Google Scholar] [CrossRef] [PubMed]
- Mercanhgil, S.M.; Arslan, P.; Alasavar, C.; Okut, E.; Akgul, E.; Pinar, A.; Geyik, P.; Tokgozoglu, L.; Shahidi, F. Effects of hazelnut –enriches diet on plasma cholesterol and lipoprotein profiles in hypercholesterolemic adult men. Eur. J. Clin. Nutr. 2007, 61, 212–220. [Google Scholar] [CrossRef]
- Yucesan, F.B.; Orem, A.; Kural, B.F.; Orem, C.; Turan, I. Hazelnut consumption decreases the susceptibility of LDL to oxidation, plasma oxidized LDL level and increases the ration of large/small LDL in normolipidemic healthy subjects. Anatol. J. Cardiol. 2010, 10, 28–35. [Google Scholar] [CrossRef]
- Gentile, C.; Perrone, A.; Attanzio, A.; Tesoriere, L.; Livrea, M.A. Sicilian pistachio (Pistacia vera L.) nut inhibits expression and release of inflammatory mediators and reverts the increase of paracellular permeability in IL-1b-exposed human intestinal epithelial cells. Eur. J. Nutr. 2015, 54, 811–821. [Google Scholar] [CrossRef]
- Guasch-Ferre, M.; Tessier, A.J.; Peterson, K.S.; Sapp, P.A.; Tapsell, L.C.; Salas-Salvado, J.; Ros, E.; Kris-Etherton, P.M. Effects of nut consumption on blood lipids and lipoproteins: A comprehensive literature update. Nutrients 2023, 15, 596. [Google Scholar] [CrossRef]
- Guasch-Ferre, M.; Li, J.; Hu, F.B.; Salas-Salvado, J.; Tobias, D.K. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: An updated meta-analysis and systematic review of controlled trials. Am. J. Clin. Nutr. 2018, 108, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Olas, B. Biochemistry of blood platelet activation and the beneficial role of plant oils in cardiovascular diseases. Adv. Clin. Chem. 2020, 95, 219–243. [Google Scholar] [PubMed]
- Amaral, J.; Casl, S.; Citova, I.; Santos, A.; Seabra, R.; Oliveira, B. Characterization of several hazelnut (Corylus avellana L.) cultivars based in chemical, fatty acid and sterol composition. Eur. Food Res. Technol. 2006, 222, 274–280. [Google Scholar] [CrossRef]
- Amaral, J.; Casal, S.; Seabra, R.; Oliveira, B. Effects of roasting on hazelnut lipids. J. Agric. Food Chem. 2006, 54, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Shahidi, F. Natural antioxidants in tree nuts. Eur. J. Lipid Technol. 2009, 111, 1056–1062. [Google Scholar] [CrossRef]
- Tomishima, H.; Luo, K.; Mitchell, A.E. The almond (Prunus dulcis): Chemical properties, utilization, and valorization of coproducts. Annu. Rev. 2022, 13, 145–166. [Google Scholar] [CrossRef] [PubMed]
- Orem, A.; Balaban Yucesan, F.; Orem, C.; Akcan, B.; Vanizor Kural, B.; Alasalvar, C.; Shahidi, F. Hazelnut-enriched diet improves cardiovascular risk biomarkers beyond a lipid-lowering effect in hypercholesterolemic subjects. J. Clin. Lipidol. 2013, 7, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Durak, I.; Koksal, I.; Kacmaz, M.; Buyukkocak, S.; Cimen, B.M.Y.; Ozturk, H.S. Hazelnut supplementation enhances plasma antioxidant potential and lowers plasma cholesterol levels. Clin. Chem. Acta 1999, 284, 113–115. [Google Scholar] [CrossRef]
- Ciemniewska, H.; Ratusz, K. Characteristics of hazelnuts from three hazel cultivars grown in Poland. Oilseed Crops 2012, 33, 273–283. [Google Scholar]
- Mingrou, L.; Guo, S.; Ho, C.-T.; Bai, N. review on chemical compositions and biological activities of peanut (Arachis hypogeae L.). J. Food Biochem. 2022, 46, e14119. [Google Scholar] [CrossRef]
- Ebrahem, K.S.; Richardson, D.G.; Tetley, R.M. Changes in oil content, fatty acid and vitamin E composition in developing hazelnut kernels. Acta Hortic. 1994, 351, 669–676. [Google Scholar] [CrossRef]
- Seyhan, F.; Ozay, G.; Saklar, S.; Erta, E.; Satir, G.; Alasalvar, C. Chemical changes of three native Turkish hazelnut varieties (Corylus avellana L.) during fruit development. Food Chem. 2007, 105, 590–596. [Google Scholar] [CrossRef]
- Ciemniewska-Zytkiewicz, H.; Pasini, F.; Verardo, V.; Brys, J.; Koczon, P.; Caboni, M.F. Changes of the lipid fraction during fruit development in hazelnuts (Corylus avellana L.) grown in Poland. Eur. J. Lip Sci. Technol. 2015, 117, 710–717. [Google Scholar] [CrossRef]
- Alasalvar, C.; Amaral, J.; Satir, G.; Shahidi, F. Lipid characterisitics and essential minerals of native Turkish hazelnut varieties (Corylus avellana L.). Food Chem. 2009, 113, 919–925. [Google Scholar] [CrossRef]
- Alasalvar, C.; Bolling, B.W. Rewiev of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113, S68–S78. [Google Scholar] [CrossRef]
- Alasalvar, C.; Karamac, M.; Kosinska, A.; Rybarczyk, A.; Shahidi, F.; Amarowicz, R. Antioxidant activity of hazelnut skin phenolics. J. Agric. Food Chem. 2009, 57, 4645–4650. [Google Scholar] [CrossRef]
- Alasalvar, C.; Amaral, J.S.; Shahidi, F. Functional lipid characteristics of Turkish Tombul hazelnut (Corylus avelllana L.). J. Agric. Food Chem. 2006, 54, 10177–10183. [Google Scholar] [CrossRef]
- Ciemniewska-Zytkiewicz, H.; Krygier, K.; Brys, J. Nutritional value of nuts and their importance in diet. Adv. Food Process. Technol. 2014, 1, 90–96. [Google Scholar]
- Ciemniewska-Zytkiewicz, H.; Verardo, V.; Pasini, F.; Brys, J.; Koczon, P.; Caboni, M.F. Determination of lipid and phenolic fraction in two hazelnut (Corylus avellana L.) cultivators grown in Poland. Food Chem. 2015, 169, 615–622. [Google Scholar] [CrossRef]
- Wang, T.; Hicks, K.B.; Moreau, R. Antioxidant activity of phytosterols, oryzanol and other phytosterols conjugates. J. Am. Oil Chem. Soc. 2002, 79, 1201–1206. [Google Scholar] [CrossRef]
- Miraliakbari, H.; Shahidi, F. Oxidative stability of tree nut oils. J. Agric. Food Chem. 2008, 56, 4751–4759. [Google Scholar] [CrossRef] [PubMed]
- Yada, S.; Huang, G.; Lapsley, K. Natural variability in the nutrient composition of California-grown almonds. J. Food Compos. Anal. 2013, 30, 80–85. [Google Scholar] [CrossRef]
- Awad, A.B.; Chan KCDownie, A.C.; Fink, C.S. Peanuts as a source of β-sitosterol, a sterol with anticancer properties. Nutr. Cancer 2000, 36, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Cherif, A.O.; Messaouda, M.B.; Kaabi, B.; Pellerin, I.; Boukhchina, S.; Kallel, H.; Pepe, C. Characteristics and pathways of bioactive 4-desmethylsterols, triterpene alcohols and 4α-monomethylsterols, from developing Tunisian cultivars and wild peanut (Arachis hypogeae L.). Plant Physiol. Biochem. 2011, 49, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Alberti, A.; Riethmuller, E.; Beni, S.; Kery, A. Evaluation of radical scavenging activity of Sempervivum tectorum and Corylus avellana extracts with different phenolic composition. Nat. Prod. Commun. 2016, 11, 469–474. [Google Scholar] [PubMed]
- Tas, G.N.; Gokmen, V. Phenolic compounds in natural and roasted nuts and their skins: A brief review. Curr. Opin. Food Sci. 2017, 14, 103–109. [Google Scholar] [CrossRef]
- Longo, E.; Rosseti, F.; Merkyte, V.; Boselli, E. Disambiguation of isomeric procyanidins with cyclic B-type and non-cyclic A-type structures from wine and peanut skin with HPLC-HDX-HRMS/MS. J. Am. Soc. Mass. Spectr. 2018, 29, 2268–2277. [Google Scholar] [CrossRef]
- Smeriglio, A.; Mandalari, G.; Bisigano, C.; Filocarmo, A.; Barreca, D.; Belloco, E.; Trombeta, D. Polyphenolic content and biological properties of Avola almond (Prunus dulcis Mill. D.A. Webb) skin and its industrial by products. Ind. Crops Prod. 2015, 83, 283–293. [Google Scholar] [CrossRef]
- Contini, M.; Baccelloni, S.; Massanitini, R.; Anelli, G. Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin waste by long maceration at room temperature. Food Chem. 2008, 110, 659–669. [Google Scholar] [CrossRef]
- Bertolino, M.; Belviso, S.; Bello, B.D.; Ghirardello, D.; Giordano, M.; Rolle, L.; Gerbi, V.; Zeppa, G. Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT-Food Sci. Technol. 2015, 63, 1145–1154. [Google Scholar] [CrossRef]
- Yuan, B.; Lu, M.; Eskridge, K.M.; Isom, L.D.; Hanna, M.A. Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells. Food Chem. 2018, 244, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.W.; Oliver Chen, C.Y.; McKay, D.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactive, impact factors: A systematic review of almonds, Brazil, cashews, hazelnuts, macademias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [PubMed]
- Oliviera, I.; Sousa, A.; Valentão, P.; Andrade, P.B.; Ferriera, I.; Ferreres, F.; Bento, A.; Seabra, R.; Estevinho, L.; Pereira, J.A. Hazel (Corylus avellana L.) leaves as source of antimicrobial and antioxidant compounds. Food Chem. 2007, 105, 1018–1025. [Google Scholar] [CrossRef]
- Shahidi, F.; Alasalvar, C.; Liyana-Pathirana, C.M. Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J. Agric. Food Chem. 2007, 55, 1212–1220. [Google Scholar] [CrossRef]
- Contini, M.; Frangipane, M.T.; Massantini, R. Antioxidants in hazelnut. In Nuts and Seeds in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 611–652. [Google Scholar]
- Delgado, T.; Malheiro, R.; Pereira, J.A.; Ramslhosa, E. Hazelnut (Corylus avellana L.) kernels as a source of antioxidants and their potential in relation to other nuts. Industr. Crops Prod. 2010, 32, 621–626. [Google Scholar] [CrossRef]
- Locatelli, M.; Travaglia, F.; Coisson, J.D.; Martelli, A.; Stevigny, C.; Arlorio, M. Total antioxidant activity of hazelnut skin (Nocciola Piemonte PGI): Impact of different roasting conditions. Food Chem. 2010, 119, 1647–1655. [Google Scholar] [CrossRef]
- Gu, L.; Kelm, M.A.; Hammersone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Gebhardt, S.; Prior, R.L. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J. Nutr. 2004, 134, 613–617. [Google Scholar]
- Wozniak, M.; Waskiewicz, A.; Ratajczak, I. The content of phenolic compounds and mineral elements in edible nuts. Molecules 2022, 27, 4326. [Google Scholar] [CrossRef]
- Lv, H.; She, G. Naturally occurring diarylheptanoids. Nat. Prod. Commun. 2010, 5, 1687–1708. [Google Scholar] [CrossRef]
- Lv, H.; She, G. Naturally occurring diarylheptanoids—A supplementary version. Rec. Nat. Prod. 2012, 6, 321–333. [Google Scholar]
- Masullo, M.; Mari, A.; Cerulli, A.; Bottone, A.; Kontek, B.; Olas, B.; Pizza, C.; Piacente, S. Quali-quantitative analysis of the phenolic fraction of the flowers of Corylus avellana, source of the Italian PGI product “Nicciola di Giffoni”: Isolation of antioxidant diarylheptanoids. Phytochemistry 2016, 130, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Masullo, M.; Cantone, V.; Verulli, A.; Lauro, G.; Pizza, C.; Bifulco, G.; Piacente, S.; Messano, F.; Russo, G.L. Giffonins J–P, highly hydroxylated cyclized diarylheptanoids from the leaves of Corylus avellana Cultivar “Tonda di Giffoni”. J. Nat. Prod. 2015, 78, 2975–2982. [Google Scholar] [CrossRef]
- Masullo, M.; Cerulli, A.; Olas, B.; Pizza, C.; Piacente, S. Giffonins a–I, antioxidant cyclized diarylheptanoids from the leaves of the hazelnut tree (Corylus avellana), source of the Italian PGI Product “Nicciola di Giffoni”. J. Nat. Prod. 2015, 78, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Cerulli, A.; Lauro, G.; Masullo, M.; Cantone, V.; Olas, B.; Kontek, B.; Nazzaro, F.; Bifulco, G.; Piacente, S. Cyclic diarylheptanoids from Corylus avellana green leafy covers: determination of their absolute configurations and evaluation of their antioxidant and antimicrobial activities. J. Nat. Prod. 2017, 80, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Jirasek, P. Synthesis of Natural and Non-Natural Diarylheptanoids and Evaluation of Their Neuroprotecive Activity. Bachelor’s Thesis, Der Fakultat fur Chemie und Pharmazie der Universitat Regensburg, Regensburg, Germany, 2014. [Google Scholar]
- Chang, S.K.; Alasalvar, C.; Bolling, B.W.; Shahidi, F. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits—A comprehensive review. J. Funct. Foods 2016, 26, 88–122. [Google Scholar] [CrossRef]
- Sobolev, V.S.; Krausert, N.M.; Gloer, J.B. New monomeric stilbenoids from peanut (Arachis hypogeae) seed challenged by an Aspergillus flavus Strain. J. Agric. Food Chem. 2016, 64, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, V.S.; Neff, S.A.; Gloer, J.B. New stilbenoids from peanuts (Arachis hypogeae) seeds challenged by an Aspergullus caelatus Strain. J. Agric. Food Chem. 2009, 57, 62–68. [Google Scholar] [CrossRef]
- Sobolev, V.S.; Neff, S.A.; Gloer, J.B. New dimeric stilbenoids from fungal-challenged peanut (Arachis hypogeae) seeds. J. Agric. Food Chem. 2010, 58, 875–881. [Google Scholar] [CrossRef]
- Dugo, G.; La Pera, L.; Lo Turco, V.; Mavrogeni, E.; Alfa, M. Determination of selenium in nuts by cathodic stripping potentiometry (CSP). J. Agric. Food Chem. 2003, 51, 3722–3725. [Google Scholar] [CrossRef]
- Dos Santos, J.L.; de Quadros, A.S.; Weschenfelder, C.; Garofallo, S.B.; Marcadenti, A. Oxidative stress biomarkers, nut-related antioxidants, and cardiovascular disease. Nutrients 2020, 12, 682. [Google Scholar] [CrossRef]
- Hojjati, M.; Calin-Sanchez, A.; Razavi, S.H.; Carbonell-Barrachina, A.A. Effect of roasting on colour and volatile composition of pistachios (Pistacia vera L.). Int. J. Food Sci. 2013, 48, 437–443. [Google Scholar] [CrossRef]
- Duduzile Buthelezi, N.M.; Samukelo Magwaza, L.; Zeray Tesfay, S. Postharvest pre-storage processing improves antioxidants, nutritional and sensory quality of macadamia nuts. Sci. Hortic. 2019, 251, 197–208. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Trapani, S.; Fregapane, G.; Salvador, M.D. Phenolics, tocopherols, and volatiles changes during virgin pistachio oil processing under different technological conditions. Eur. J. Lipid Sci. Technol. 2018, 120, 180–221. [Google Scholar] [CrossRef]
- Mateos, R.; Salvador, M.D.; Fregapane, G.; Goya, L. Why should pistachio be a regular food in our diet? Nutrients 2022, 14, 3207. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekara, N.; Shahidi, F. Effects of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. J. Agric. Food Chem. 2011, 59, 5006–5014. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hwang, H.J.; Kim, H.S.; Park, H. Time and intervention effects of daily alomond intake on the changes of lipid profile and body composition among free-living healthy adults. J. Med. Food 2018, 21, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chang, X.; Hu, X.; Brennan, C.S.; Guo, X. Effect of thermal processing on phenolic profiles and antioxidant activities in Castanea mollissima. Int. J. Food Sci. Technol. 2017, 52, 439–447. [Google Scholar] [CrossRef]
- Liu, K.; Hui, S.; Wang, B.; Kaliannan, K.; Guo, X.; Liang, L. Comparative effects of different types of tree nut consumption on blood lipids: A network meta-analysis of clinical trials. Am. J. Clin. Nutr. 2020, 111, 219–227. [Google Scholar] [CrossRef]
- Lin, J.T.; Liu, S.C.; Hu, C.C.; Shyu, C.Y.; Hsu, Y.D.J. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel. Food Chem. 2016, 190, 520–528. [Google Scholar] [CrossRef]
- Cuadrado, C.; Sanchiz, A.; Linacero, R. Nut allergencity: Effect of food processing. Allergies 2021, 1, 150–162. [Google Scholar] [CrossRef]
- Tian, Y.; Rao, H.; Zhang, K.; Tao, S.; Xue, W.T. Effects of different thermal processing methods on the structure and allergenicity of peanut allergen Ara h 1. Food Sci. Nutr. 2018, 6, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- Glenn, A.J.; Aune, D.; Freisling, H.; Mohammadifard, N.; Kendall, C.W.C.; Salas-Salvado, J.; Jenkins, D.J.A.; Hu, F.B.; Sievenpiper, J.L. Nuts and cardiovascular disease outcomes: A review of the evidence and future directions. Nutrients 2023, 15, 911. [Google Scholar] [CrossRef]
- Hong, M.; Groven, S.; Marx, A.; Rasmussen, C.; Beidler, J. Anti-inflammatorory, antioxidant, and hypolipidemic effects of mixed nuts in atherogenic diet-fed rats. Molecules 2018, 23, 3126. [Google Scholar] [CrossRef] [PubMed]
- Arnesen, E.K.; Thorisdottir, B.; Barebring, L.; Soderlund, F.; Nwaru, B.I.; Spielau, U.; Dierke, J.; Ramel, A.; Lamberg-Allardt, C.; Akesson, A. Nuts and seeds consumption and risk of cardiovascular disease, type 2 diabetes and their risk factors: A systematic review and meta-analysis. Food Nutr. Res. 2023, 67, 8961–8969. [Google Scholar] [CrossRef] [PubMed]
- Houston, L.; Probst, Y.C.; Singh, M.C.; Neale, E.P. Tree nut and peanut consumption and risk of cardiovascular diseases: A systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 2023, 14, 1029–1049. [Google Scholar] [CrossRef]
- Abbasifard, M.; Jamialahmadi, T.; Reiner, Z.; Eid, A.H.; Sahebkar, A. The effect of nuts consumption on circulating oxidized low-density lipoproteins: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2023, 37, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Surra, J.C.; Barranquero, C.; Torcal, M.P.; Orman, I.; Segovia, J.C.; Guillen, N.; Navarro, M.A.; Arnal, C.; Osada, J. In comparison with pal oil, dietary nut supplementation delays the progression of atherosclerotic lesions in female apoE-deficient mice. Br. J. Nutr. 2013, 109, 202–209. [Google Scholar] [CrossRef]
- Becerra-Tomas, N.; Paz-Graniel, J.; Kendell, C.W.C.; Kahleova, H.; Rahelic, D.; Sievenpiper, J.L.; Salas-Salvado, J. Nut consumption and incidence of cardiovascular diseases and cardiovascular disease mortality: A meta-analysis of prospective cohort studies. Nutr. Res. 2019, 17, 691–709. [Google Scholar] [CrossRef]
- Schiwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knuppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of hypertension: A systematic review and dose-response meta-analysis of prospective studies. Adv. Nutr. 2017, 8, 793–803. [Google Scholar] [CrossRef]
- Nora, C.L.; Zhang, L.; Castro, R.J.; Marx, A.; Carman, H.B.; Lum, T.; Tsimikas, S.; Hong, M.Y. Effects of mixed nut consumption on LDL cholesterol, lipoprotein(a), and other cardiometabolic risk factors in overweight and obese adults. Nutr. Metab. Cardovasc. Dis. 2023, 33, 1529–1538. [Google Scholar] [CrossRef]
- Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360, 1903–1913. [Google Scholar] [PubMed]
- Viguiliouk, E.; Kendall, C.W.; Blanco Mejia, S.; Cozma, A.I.; Ha, V.; Mirahimi, A.; Jayalath, V.H.; Augustin, L.S.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled dietary trials. PLoS ONE 2014, 9, e103376. [Google Scholar] [CrossRef] [PubMed]
- Del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Mohammadifard, N.; Salehi-Abargouei, A.; Salas-Salvado, J.; Guasch-Ferre, M.; Humphries, K.; Sarrafzadegan, N. The effect of tree nut, peanut, and soy nut consumption on blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Am. J. Clin. Nutr. 2015, 101, 966–982. [Google Scholar] [CrossRef]
- Neale, E.P.; Tapsell, L.C.; Guan, V.; Batterham, M.J. The effect of nut consumption on markers of inflammation and endothelial function: A systematic review and meta-analysis of randomized controlled trials. BMJ Open 2017, 7, e016863. [Google Scholar] [CrossRef]
- Tindal, A.M.; Johnston, E.A.; Kris-Etherton, P.M.; Petersen, K.S. The effect of nuts on markers of glycemic control: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2019, 109, 297–314. [Google Scholar] [CrossRef]
- Eslampour, E.; Asbaghi, O.; Hadi, A.; Abedi, S.; Ghaedi, E.; Lazaridi, A.V.; Miraghajani, M. The effect of almond intake on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2020, 50, 102399. [Google Scholar] [CrossRef]
- Nishi, S.K.; Viguiliouk, E.; Blanco Mejia, S.; Kendall, C.W.C.; Bazinet, R.P.; Hanley, A.J.; Comelli, E.M.; Salas Salvado, J.; Jenkins, D.J.A.; Sievenpiper, J.L. Are fatty nuts a weight concern? A systematic review and meta-analysis and dose-response meta-regression of prospective cohorts and randomized controlled trials. Obes. Rev. 2021, 22, e13330. [Google Scholar] [CrossRef]
- Lee, Y.L.; Nam, G.E.; Seo, J.A.; Yoon, T.; Seo, I.; Lee, J.H.; Kim, N.H. Nut consumption has favorable effects on lipid profiles of Korean women with metabolic syndrome. Nutr. Res. 2014, 34, 814–820. [Google Scholar] [CrossRef]
- Lopez-Uriarte, P.; Nogues, R.; Saez, G.; Bullo, M.; Romeu, M.; Masana, L.; Salas-Salvado, J. Effect of nut consumption on oxidative stress and the endothelial function in metabolic syndrome. Clin. Nutr. 2010, 29, 33–380. [Google Scholar] [CrossRef]
- Yang, J.; Lee, R.; Schulz, Z.; Hsu, A.; Pai, J.; Yang, S.; Henning, S.M.; Huang, J.; Jacobs, J.P.; Heber, D.; et al. Mixed nuts as healthy snacks: Effect on tryptophan metabolism and cardiovascular risk factors. Nutrients 2023, 15, 569. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Oh, C.M.; Kang, J.G.; Seok, H.S.; Jung, J.Y. The association between left ventricular hypertrophy and consumption of nuts, including peanuts, pine nuts, and almonds. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Weschenfelder, C.; de Quadros, A.S.; dos Santos, J.L.; Garofallo, S.B.; Marcadenti, A. Adipokines and adipose tissue-related metabolites, nuts and cardiovascular disease. Metabolites 2020, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Phung, O.J.; Makanji, S.S.; White, C.M.; Coleman, C.I. Almonds have a neutral effect on serum lipid profile: A meta-analysis of randomized trials. J. Am. Diet. Assoc. 2009, 109, 865–873. [Google Scholar] [CrossRef]
- Bento, A.P.; Cominetti, C.; Simoes Filho, A.; Naves, M.M. Baru almond improves lipid profile in mildly hypercholesterolemic subjects: A randomized, controlled, crossover study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1330–1336. [Google Scholar] [CrossRef]
- Zibaeenezhad, M.J.; Ostovan, P.; Mosavat, S.H.; Zamirian, M.; Attar, A. Almond oil for patients with hyperlipidemia: A randomized open-label controlled clinical trial. Complement. Ther. Med. 2019, 42, 33–36. [Google Scholar] [CrossRef]
- Hyson, D.A.; Schneeman, B.O.; Davis, P.A. Almonds and almond oil have similar effects on plasma lipids and LDL oxidation in healthy men and women. J. Nutr. 2002, 132, 703–707. [Google Scholar] [CrossRef]
- Moosavian, S.P.; Rahimlou, M.; Rezei Kelishadi, M.; Moradi, S.; Jalili, C. Effects of almond on cardiometabolic outcomes in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2022, 36, 1839–1853. [Google Scholar] [CrossRef]
- Foster, G.D.; Shantz, K.L.; Vander Veur, S.S.; Oliver, T.L.; Lent, M.R.; Virus, A.; Szapary, P.O.; Rader, D.J.; Zemel, B.S.; Gilden-Tsai, A. A randomized trial of the effects of an almond-enriched, hypocaloric diet in the treatment of obesity. Am. J. Clin. Nutr. 2012, 96, 249–254. [Google Scholar] [CrossRef]
- Dhillon, J.; Tan, S.Y.; Mattes, R.D. Almond consumption during energy restriction lowers truncal fat and blood pressure in compliant overweight or obese adults. J. Nutr. 2016, 146, 2513–2519. [Google Scholar] [CrossRef]
- Rajaram, S.; Connel, K.M.; Sabate, J. Effect of almond-enriched high-monounsaturated fat diet on selected markers of inflammation: A randomized, controlled, crossover study. Br. J. Nutr. 2010, 103, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Li, N.; Zhang, W.; Zhang, X.; Lapsley, K.; Huang, G.; Blumberg, J.; Ma, G.; Chen, J. A pilot study on the effects of almond consumption on DNA damage and oxidative stress in smokers. Nutr. Cancer 2006, 54, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Jia, X.; Chen, C.Y.; Blumberg, J.B.; Song, Y.; Zhang, W.; Zhang, X.; Ma, G.; Chen, J. Almond consumption reduces oxidative DNA damage and lipid peroxidation in male smokers. J. Nutr. 2007, 137, 2717–2722. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Holbrook, M.; Duess, M.A.; Dohadwala, M.M.; Hamburg, N.M.; Asztalos, B.F.; Milbury, P.E.; Blumberg, J.B.; Vita, J.A. Effect of almond consumption on vascular function in patients with coronary artery disease: A randomized, controlled, cross-over trial. Nutr. J. 2015, 14, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Cervellin, G.; Mattiuzzi, C. More pistachio nuts for improving the blood lipid profile. Systematic review of epidemiological evidence. Acta Bioemed 2016, 87, 5–12. [Google Scholar]
- Edwards, K.; Kwaw, I.; Matud, J.; Kurtz, I. Effect of pistachio nuts on serum lipid levels in patients with moderate hypercholesterolemia. J. Am. Coll. Nutr. 1999, 18, 229–232. [Google Scholar] [CrossRef]
- Kocyigit, A.; Koylu, A.A.; Keles, H. Effects of pistachio nuts consumption on plasma lipid profile and oxidative status in healthy volunteers. Nutr. Metab. Cardiovasc. 2006, 16, 202–209. [Google Scholar] [CrossRef]
- Sheridan, M.J.; Cooper, J.N.; Erario, M.; Cheifetz, C.E. Pistachio nut consumption and serum lipid levels. J. Am. Coll. Nutr. 2007, 26, 141–148. [Google Scholar] [CrossRef]
- Gebauer, S.K.; West, S.G.; Kay, C.D.; Aalaupovic, P.; Bagshaw, D.; Kris-Etherton, P.M. Effects of pistachios on cardiovascular disease risk factors and potential mechanisms of action: A dose-response study. Am. J. Clin. Nutr. 2008, 88, 651–659. [Google Scholar] [CrossRef]
- Sari, I.; Baltaci, Y.; Bagci, C.; Davutoglu, V.; Erel, O.; Celik, H.; Ozer, O.; Aksoy, N.; Aksoy, M. Effect of pistachio diet on lipid parameters, endothelial function, inflammation, and oxidative stress: A prospective study. Nutrition 2010, 26, 399–404. [Google Scholar] [CrossRef]
- Wang, P.; Sheng, Y.; Samadi, M. Effects of almond consumption on lipid profile in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trails. Arch. Physiol. Biochem. 2021, 126, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Z.; Liu, Y.; Lv, X.; Yan, W. Effect of pistachios on body weight in Chinese subjects with metabolic syndrome. Nutr. J. 2012, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- West, S.G.; Gebauer, S.K.; Kay, C.D.; Bagshaw, D.M.; Savastano, D.M.; Diefenbach, C.; Kris-Etherton, P.M. Diets containing pistachios reduce systolic blood pressure and peripheral vascular responses to stress in adults with dyslipidemia. Hypertension 2012, 60, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Sauder, K.A.; McCrea, C.E.; Ulbrecht, J.S.; Kris-Etherton, P.M.; West, S.G. Pistachio nut consumption modifies systemic hemodynamics, increases heart rate variability, and reduces ambulatory blood pressure in well-controlled type 2 diabetes: A randomized trial. J. Am. Heart Assoc. 2014, 3, e000873. [Google Scholar] [CrossRef] [PubMed]
- Ostovan, M.; Bagher Fazljou, S.M.; Khazreai, H.; Araj Khodaei, M.; Torbati, M. The anti-inflammatory effect of Pistacia lentiscus in a rat model of colitis. J. Inflamm. Res. 2020, 13, 369–376. [Google Scholar] [CrossRef]
- Gulati, S.; Mistra, A.; Pandey, R.M.; Bhatt, S.P.; Saluja, S. Effects of pistachio nuts on body composition, metabolic, inflammatory and oxidative stress parameters in Asian Indians with metabolic syndrome. A 24-wk randomized control trial. Nutrition 2014, 30, 192–197. [Google Scholar] [CrossRef]
- Alturfan, A.A.; Emekeli-Alturfan, E.; Uslu, E. Consumption of pistachio nuts beneficially affect blood lipids and total antioxidant activity in rats fed a high-cholesterol diet. Folia Biol. 2009, 55, 132–136. [Google Scholar]
- Paternini, I.; Impellizzeri, D.; Cordaro, M.; Siracusa, R.; Bisignano, C.; Gugliandolo, E.; Cuzzocrea, S. The anti-inflammatory and antioxidant potential of pistachios (Pistacia vera L.) in vitro and in vivo. Nutrients 2017, 9, 915. [Google Scholar] [CrossRef]
- Ersoz, E.; Aydin, M.S.; Hacanli, Y.; Kankilic, N.; Koyuncu, I.; Guldur, M.E.; Temiz, E.; Cakmak, Y.; Egi, K.; Dikme, R.; et al. Cardioprotective effect of Pistacia vera L. (green pistachio) hull extract in wistar albino rats with doxorubicin-induced cardiac damage. Anatol. J. Cardiol. 2022, 1, 135–144. [Google Scholar] [CrossRef]
- Sehaki, C.; Jullian, N.; Ayati, F.; Fernane, F.; Gontier, E. A review of Pistacia leniscus polyphenols: Chemical diversity and pharmacological activities. Plants 2023, 12, 279. [Google Scholar] [CrossRef]
- Berryman, C.E.; Grieger, J.A.; West, S.G.; Chen, C.Y.O.; Blumberg, J.B.; Rothblat, G.H.; Kris-Etherton, P.M. Acute consumption of walnuts and walnut components differentially affect postprandial lipemia, endothelial function, oxidative stress, and cholesterol efflux in humans with mild hypercholesterolemia. J. Nutr. 2013, 143, 788–794. [Google Scholar] [CrossRef]
- Sheng, J.; Yang, X.; Chen, J.; Peng, T.; Yin, X.; Liu, W.; Yang, X. Antioxidative effects and mechanism study of bioactive peptides from defatted walnut (Juglans regia L.) meal hydrolysate. J. Agric. Food Chem. 2019, 67, 3305–3312. [Google Scholar] [CrossRef] [PubMed]
- Avila, J.A.D.; Alvarez-Parrilla, E.; Lopez-Diaz, J.A.; Maldonado-Mendoza, I.; Gomez-Garcia, M.D.C.; De La Rosa, L.A. The pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets. Food Chem. 2015, 168, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Cogan, B.; Pearson, R.C.; Paton, C.M.; Jenkins, N.T.; Cooper, J.A. Pecan-enriched diet improves cholesterol profiles and enhances postprandial microvascular reactivity in older adults. Nutr. Res. 2023, 111, 44–58. [Google Scholar] [CrossRef]
- Ferrari, C.K.B. Anti-atherosclerotic and cardiovascular protective benefits of Brazilian nuts. Front. Biosci. Sch. 2020, 12, 38–56. [Google Scholar] [CrossRef] [PubMed]
- Stockler-Pinto, M.B.; Marfa, D.; Moraes, C.; Lobo, J.; Boaventura, G.T.; Farage, N.E.; Malm, O. Brazil nut (Bartholletia excels, H.B.K.) improves oxidative stress and inflammation biomarkers in hemodialysis patients. Biol. Trace Elem. Res. 2014, 158, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.B.S.; Reis, B.Z.; Rogero, M.W.; Vargas-Mendez, E.; Barbosa, F.; Cercato, C.; Cozzolino, S.M.F. Consumption of Brazil nuts with selenium levels increased increased inflammation biomarkers in obese women: A randomized controlled trial. Nutrition 2019, 63, 162–168. [Google Scholar] [CrossRef]
- Maranhao, P.A.; Kraemer-Aguiar, L.G.; de Oliveira, C.L.; Kuschnir, M.C.; Vieira, Y.R.; Souza, M.G.; Bouskela, E. Brazil nuts intake improves lipid profile, oxidative stress and microvascular function in obese adolescents: A randomized controlled trial. Nutr. Metab. 2011, 8, 32. [Google Scholar] [CrossRef]
- Huguenin, G.V.; Oliveira, G.M.M.; Moreira, A.S.B.; Saint’Pierre, T.D.; Goncalves, R.A.; Pinheiro-Mulder, A.R.; Rosa, G. Improvement of antioxidant status after Brazil nut intake in hypertensive and dyslipidemic subjects. Nutr. J. 2015, 14, 1–10. [Google Scholar] [CrossRef]
- Colpo, E.; Vilanova, C.D.A.; Reetz, L.G.B.; Duarte, M.M.M.F.; Farias, I.L.G.; Muller, E.I.; Muller, A.L.H.; Flores, E.M.M.; Wagner, R.; da Rocha, J.B.T. A single consumption of high amounts of the Brazil nuts improves lipid profile of healthy volunteers. J. Nutr. Metab. 2013, 2013, 653185. [Google Scholar] [CrossRef]
- Colpo, E.; Vilanova, C.D.D.A.; Reetz, L.G.B.; Duarte, M.M.M.F.; Farias, I.L.G.; Meinerz, D.F.; Mariano, D.O.C.; Vendrusculo, R.G.; Boligon, A.A.; Corte, C.L.D.; et al. Brazil nut consumption by healthy volunteers improves inflammatory parameters. Nutrition 2014, 30, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Mukuddem-Petersen, J.; Oosthuizen, W.; Jering, J.C. A systematic review of the effects of nuts on blood lipid profiles in human. J. Nutr. 2005, 135, 2082–2089. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.; Apolinario, D.; Bandeira, V.S.; Busse, A.L.; Magaldi, R.M.; Jacob-filho, W.; Cozzolino, S.M. Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: A randomized controlled pilot trial. Eur. J. Nutr. 2016, 55, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Morvaridzadeh, M.; Sepidarkish, M.; Farsi, F.; Akbari, A.; Mostafai, R.; Omidi, A.; Potter, E.; Heshmati, J. Effect of cashew nut on lipid profiles: A systematic review and meta-analysis. Complement. Med. Res. 2020, 27, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Jalali, M.; Karamizadeh, M.; Ferns, G.A.; Zare, M.; Moosavian, S.P.; Akbarzadeh, M. The effects of cashew nut intake on lipid profile and blood pressure: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2020, 50, 102387. [Google Scholar] [CrossRef] [PubMed]
- Parilli-Moser, I.; Hurtado-Barroso, S.; Guasch-Ferre, M.; Lamuela-Raventos, R.M. Effect of peanut consumption on cardiovascular risk factors: A randomized clinical trial and meta-analysis. Front. Nutr. 2022, 9, 853378. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Sabate, J.; Heskey, C.; Oda, K.; Miles, F.; Rajaram, S. Macadamia nut effects on cardiometabolic risk factors: A randomized trial. J. Nutr. Sci. 2023, 12, e55. [Google Scholar] [CrossRef]
- Rajaram, S.; Damasceno, N.R.T.; Braga, R.A.M.; Martinez, R.; Kris-Etherton, P.; Sala-Vila, A. Effect of nuts on markers of inflammation and oxidative stress: A narrative review. Nutrients 2023, 15, 1099. [Google Scholar] [CrossRef]
- Sabate, J. Nut consumption and blood lipid levels. Arch. Inter. Med. 2010, 170, 821–829. [Google Scholar] [CrossRef]
- Mejia, B.S.; Kendall, C.W.C.; Viguiliouk, E.; Augustin, L.S.; Ha, V.; Cozma, A.I.; Mirrahimi, A.; Maroleanu, A.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on metabolic syndrome criteria: A systematic review and meta-analysis of randomized controlled trials. BMJ Open 2014, 4, e004660. [Google Scholar] [CrossRef]
- Xia, J.; Yu, J.; Xu, D.; Yang, C.; Xia, H.; Sun, G. The effects of peanuts and tree nuts on lipid profile in type 2 diabetic patients: A systematic review and meta-analysis of randomized, controlled-feeding clinical studies. Front. Nutr. 2021, 8, 765571. [Google Scholar] [CrossRef] [PubMed]
- Eslami, O.; Khorrmrouz, F.; Sohouli, M.; Bagheri, N.; Shidfr, F.; Fernandez, M.L. Effect of nuts on components of metabolic syndrome in healthy adults with overweight/obesity: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2459–2469. [Google Scholar] [CrossRef] [PubMed]
- Lee-Bravatti, M.A.; Wang, J.; Avendano, E.E.; King, L.; Johnson, E.J.; Raman, G. Almond consumption and risk factors for cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 2019, 10, 1076–1088. [Google Scholar] [CrossRef] [PubMed]
- Asbaghi, O.; Moodi, V.; Hadi, A.; Eslampour, E.; Shirinbakhshmasoleh, M.; Ghaedi, E.; Miraghajani, M. The effect of almond intake on lipid profile: A systematic review and meta-analysis of randomized controlled trials. Food Funct. 2021, 12, 1882–1896. [Google Scholar] [CrossRef]
- Jalali-Khanabadi, B.A.; Mozaffari-Khosravi, H.; Parsaeyan, N. Effects of almond dietary supplementation on coronary heart disease lipid risk factors and serum lipid oxidation parameters in men with mild hyperlipidemia. J. Alter. Complement. Med. 2010, 16, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Marchie, A.; Parker, T.L.; Connelly, P.W.; Qian, W.; Haight, J.S.; Faulkner, D.; Vidgen, E.; Lapsley, K.G.; et al. Dose response of almonds on coronary heart disease risk factors: Blood lipids, oxidized low-density lipoptoteins, lipoprotein(a), homocysteine, and pulmonary nitric oxide: A randomized, controlled, crossover trial. Circulation 2002, 106, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Banel, D.K.; Hu, F.B. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: A meta-analysis and systematic review. Am. J. Clin. Nutr. 2009, 90, 56–63. [Google Scholar] [CrossRef]
- Arabi, S.M.; Bahrami, L.S.; Milkarizi, N.; Nematy, M.; Kalmykov, V.; Sahebkar, A. Impact of walnut consumption on cardio metabolic and anthtropometric parameters in metabolic syndrome patients: GRADE-assessed systematic review and dose-response meta-analysis of data from randomized controlled trials. Pharmacol. Res. 2022, 178, 106190. [Google Scholar] [CrossRef]
- Mates, L.; Popa, D.S.; Rusu, M.E.; Fizesan, I.; Leucuta, D. Walnut intake interventions targeting biomarkers of metabolic syndrome and inflammation in middle-aged and older adults: A systematic review and meta-analysis of randomized controlled trials. Antioxidants 2022, 11, 1412. [Google Scholar] [CrossRef]
- Hadi, A.; Asbaghi, O.; Kazemi, M.; Haghighian, H.K.; Pantovic, A.; Ghaedi, E.; Abolhasani Zadeh, F. Consumption of pistachio nuts positively affects lipid profiles: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2021, 63, 5358–5371. [Google Scholar] [CrossRef]
- Guaraldi, F.; Deon, V.; Del Bo, C.; Vendrame, S.; Porrini, M.; Riso, P.; Guardamagna, O. Effect of short-term hazelnut consumption on DNA damage and oxidized LDL in children and adolescents with primary hyperlipidemia: A randomized controlled trial. J. Nutr. Biochem. 2018, 57, 206–211. [Google Scholar] [CrossRef] [PubMed]
Nuts | Protein (g/100 g) | Lipid (g/100 g) | SFA (g/100 g) | MUFA (g/100 g) | PUFA (g/100 g) | Phytosterols (g/100 g) | Fiber (g/100 g) | Phenolic Compounds (mg/100 g) | Selenium (µg/100 g) |
---|---|---|---|---|---|---|---|---|---|
Almonds | 16.8–25.4 | 43.3–50.6 | 3.9 | 31.5 | 12.3 | 162 | 11.8–13.0 | 287 | 4.1–53.1 |
Brazil nuts | 14.3 | 66.4 | 15.1 | 24.5 | 24.4 | 72 | 7.5 | 244 | 50–250 |
Cashew nuts | 17.5–19.0 | 42.8–43.9 | 46.4 | 27.3 | 7.8 | 120 | 1.4–3.3 | 233 | 5.97–19.9 |
Hazelnuts | 14.5–15.2 | 59.8–61.5 | 60.8 | 45.7 | 7.8 | 115 | 3.3–9.7 | 671 | 2.4–186 |
Macadamia nuts | 7.5–8.6 | 76.0 | 76.0 | 58.9 | 1.4 | 119 | 8.0 | 3.6 | |
Peanuts | 25.8 | 49.2 | 6.2 | 24.4 | 15.6 | 126 | 8.5 | 126 | 7.2–9.3 |
Pecan nuts | 9.0–9.3 | 72.0 | 6.2 | 40.8 | 21.6 | 113 | 9.6 | 406 | 1.14–3.8 |
Pine nuts | 13.7 | 68.4 | 4.9 | 18.8 | 34.1 | 120 | 3.7 | 1284 | 0.7 |
Pistachios | 19.4–22.1 | 44.4–45.4 | 5.4 | 25.0 | 14.1 | 272 | 10.3 | 58 | 7.0–89.3 |
Walnuts | 14.4–16.0 | 64.5–65.4 | 6.1 | 8.9 | 38.1 | 143 | 6.7 | 1420 | 4.9 |
Nuts | Sample Size, Duration of Intervention, and Dose | Characteristics of Participants | Results | References |
---|---|---|---|---|
Mixed nuts | ||||
583 participants, 3–8 weeks, 34–100 g/day | Normalipidemia and hypercholesterolemia | Decrease in LDL concentration | [141] | |
2211 participants, 3 weeks-18 months, 30–85.5 g/day | Healthy or dyslipidemia | Decrease in triglyceride concentration | [142] | |
2582 participants, 3–26 weeks, 5–100 g/day | Healthy adults | Decrease in triglyceride, LDL, and ApoB concentration | [85] | |
1677 participants, 3–24 weeks, 15–168 g/day | Healthy adults | Decrease in triglyceride and LDL concentration | [70] | |
1041 participants, 6–52 weeks, 6–128 g/day | Diabetic patients | Decrease in triglyceride concentration | [143] | |
711 participants, 4–72 weeks, 20–60 g/day | Healthy adults | Decrease in triglyceride concentration | [144] | |
60 participants, 6 weeks, 30 g/day | Metabolic syndrome | No change in ox-LDL and MDA | [91] | |
50 participants, 12 weeks, 30 g/day | Metabolic syndrome | Reduction in oxidative stress | [92] | |
56 participants, 12 weeks, 1.5 oz | Overweight and obese subjects | Changes in tryptophan metabolism | [93] | |
34 participants, 16 weeks, 42.5 g/day | Overweight and obese subjects | Decrease in LDL concentration and diastolic blood pressure No change in oxidative stress | [82] | |
Almonds | ||||
142 participants, 4 weeks, 25–168 g/day | Healthy adults | Decrease in LDL concentration | [96] | |
534 participants, 4–16 weeks, 37–113 g/day | Healthy adults | Decrease in triglyceride and LDL concentration | [145] | |
2049 participants, 3–77 weeks, 10–168 g/day | Healthy adults | Decrease in triglyceride and LDL concentration | [146] | |
120 participants, 3–12 weeks, 30–60 g/day | Diabetic patients | No change in lipid profile | [113] | |
264 participants, 4–12 weeks, 29–113 g/day | Diabetic patients | Decrease in LDL concentration | [100] | |
20 participants, 6 weeks, 20 g/day | Mildly hypercholesterolemic subjects | Decrease in total cholesterol and LDL | [97] | |
85 participants, 20 weeks, 56 g/day | Healthy adults | Decrease in triglyceride, LDL and total cholesterol concentration | [68] | |
30 participants, 4 weeks, 60 g/day | Mild hypercholesterolemia | Decrease in total cholesterol and LDL | [147] | |
27 participants, 4 weeks, 73 g/day | Hyperlipidemic patients | Decrease in LDL, ox-LDL, lipoprotein A, and LDL/HDL ratio | [148] | |
45 participants, 6 weeks, 85 g/day | Patients with coronary artery disease | No change in lipid profile and blood pressure; increased NO | [106] | |
123 participants, 18 months, 28 g/day | Overweight or obese adults | Reduction in bodyweight, and no significant changes in body composition | [102] | |
97 participants, 4 weeks, 10 mL oil twice daily | Hyperlipidemic patients | Decrease in total cholesterol and LDL | [98] | |
30 participants, 4 weeks, 86 and 164 g/day | Male smokers | Decrease in MDA; increase in SOD and GSH-Px | [105] | |
60 participants, 4 weeks, 84 g/day | Smokers | Decrease in MDA; no changes in SOD and GSH-Px | [104] | |
Walnuts | ||||
365 participants, 4–24 weeks, 15–108 g/day | Healthy adults | Decrease in triglyceride and LDL concentration | [149] | |
1059 participants, 4 weeks-1 year, 15–108 g/day | Healthy adults | Decrease in triglyceride and total cholesterol concentration | [10] | |
506 participants, 4–112 days, 30–108 g/day | Metabolic syndrome | Decrease in triglyceride concentration | [150] | |
2466 participants, 4 weeks-2 years, 19.3–75 g/day | Healthy middle-aged and older adults | Decrease in triglyceride and total cholesterol concentration | [151] | |
Cashews | ||||
392 participants, 4–2 weeks, 30–42 g/day | Healthy adults | No change in lipid profile | [137] | |
Pistachios | ||||
771 participants, 3–24 weeks, 32–126 g/day | Healthy adults | Decrease in triglyceride, LDL and total cholesterol concentration | [152] | |
Peanuts | ||||
643 participants, 2–24 weeks, 25–200 g/day | Healthy adults | Decrease in triglyceride concentration | [138] | |
Hazelnuts | ||||
60 participants, 8 weeks, 15–30 g/day | Children and adolescents with primary hyperlipidemia | No change in oxLDL level | [153] | |
Brazil nuts | ||||
91 participants, 12 weeks, 13 g/day | Hypertensive and dyslipidemia subjects | Decrease in ox-LDL concentration; increase in glutathione peroxidase activity | [131] | |
17 participants, 16 weeks, 15–25 g/day | Obese adolescents | Decrease in ox-LDL concentration | [130] | |
50 participants, 12 weeks, 30 g/day | Metabolic syndrome | Reduction in oxidative stress | [92] | |
Pecan | ||||
44 participants, 4 weeks, 68 g/day | Older adults | Improving cholesterol profile and enhancing postprandial microvascular reactivity | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olas, B. The Cardioprotective Properties of Selected Nuts: Their Functional Ingredients and Molecular Mechanisms. Foods 2024, 13, 242. https://doi.org/10.3390/foods13020242
Olas B. The Cardioprotective Properties of Selected Nuts: Their Functional Ingredients and Molecular Mechanisms. Foods. 2024; 13(2):242. https://doi.org/10.3390/foods13020242
Chicago/Turabian StyleOlas, Beata. 2024. "The Cardioprotective Properties of Selected Nuts: Their Functional Ingredients and Molecular Mechanisms" Foods 13, no. 2: 242. https://doi.org/10.3390/foods13020242
APA StyleOlas, B. (2024). The Cardioprotective Properties of Selected Nuts: Their Functional Ingredients and Molecular Mechanisms. Foods, 13(2), 242. https://doi.org/10.3390/foods13020242