Elemental Fingerprinting Combined with Machine Learning Techniques as a Powerful Tool for Geographical Discrimination of Honeys from Nearby Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Samples
2.2. Instrumentation and Reagents
2.3. Sample Preparation
2.4. Elemental Analysis
2.5. Statistical Analysis
3. Results
3.1. Elemental Fingerprints
3.2. Principal Component Analysis
3.3. Classification by LDA and RF
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarez-Suarez, J.M.; Tulipani, S.; Romandini, S.; Bertoli, E.; Battino, M. Contribution of Honey in Nutrition and Human Health: A Review. Mediterr. J. Nutr. Metab. 2010, 3, 15–23. [Google Scholar] [CrossRef]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products. Front. Pharmacol. 2017, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A.; Albujja, M.; Bakar, M.F.A. Honey and Its Nutritional and Anti-Inflammatory Value. BMC Complement. Med. Ther. 2021, 21, 30. [Google Scholar] [CrossRef]
- Almasaudi, S. The Antibacterial Activities of Honey. Saudi J. Biol. Sci. 2021, 28, 2188–2196. [Google Scholar] [CrossRef]
- Afrin, S.; Haneefa, S.M.; Fernandez-Cabezudo, M.J.; Giampieri, F.; al-Ramadi, B.K.; Battino, M. Therapeutic and Preventive Properties of Honey and Its Bioactive Compounds in Cancer: An Evidence-Based Review. Nutr. Res. Rev. 2020, 33, 50–76. [Google Scholar] [CrossRef] [PubMed]
- Martinello, M.; Mutinelli, F. Antioxidant Activity in Bee Products: A Review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Jurica, K.; Brčić Karačonji, I.; Lasić, D.; Bursać Kovačević, D.; Putnik, P. Unauthorized Food Manipulation as a Criminal Offense: Food Authenticity, Legal Frameworks, Analytical Tools and Cases. Foods 2021, 10, 2570. [Google Scholar] [CrossRef]
- Thrasyvoulou, A.; Tananaki, C.; Goras, G.; Karazafiris, E.; Dimou, M.; Liolios, V.; Kanelis, D.; Gounari, S. Legislation of Honey Criteria and Standards. J. Apic. Res. 2018, 57, 88–96. [Google Scholar] [CrossRef]
- Mădaş, M.N.; Mărghitaş, L.A.; Dezmirean, D.S.; Bobiş, O.; Abbas, O.; Danthine, S.; Francis, F.; Haubruge, E.; Nguyen, B.K. Labeling Regulations and Quality Control of Honey Origin: A Review. Food Rev. Int. 2020, 36, 215–240. [Google Scholar] [CrossRef]
- European Commission EU Coordinated Action “From the Hives” (Honey 2021–2022). Available online: https://food.ec.europa.eu/safety/eu-agri-food-fraud-network/eu-coordinated-actions/honey-2021-2022_en#qapdf (accessed on 10 December 2023).
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey Authenticity: Analytical Techniques, State of the Art and Challenges. RSC Adv. 2021, 11, 11273–11294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-H.; Gu, H.-W.; Liu, R.-J.; Qing, X.-D.; Nie, J.-F. A Comprehensive Review of the Current Trends and Recent Advancements on the Authenticity of Honey. Food Chem. X 2023, 19, 100850. [Google Scholar] [CrossRef]
- Ciulu, M.; Serra, R.; Caredda, M.; Salis, S.; Floris, I.; Pilo, M.I.; Spano, N.; Panzanelli, A.; Sanna, G. Chemometric Treatment of Simple Physical and Chemical Data for the Discrimination of Unifloral Honeys. Talanta 2018, 190, 382–390. [Google Scholar] [CrossRef]
- Fernández-Estellé, M.; Hernández-González, V.; Saurina, J.; Núñez, O.; Sentellas, S. Characterization and Classification of Spanish Honeydew and Blossom Honeys Based on Their Antioxidant Capacity. Antioxidants 2023, 12, 495. [Google Scholar] [CrossRef]
- Demir Kanbur, E.; Yuksek, T.; Atamov, V.; Ozcelik, A.E. A Comparison of the Physicochemical Properties of Chestnut and Highland Honey: The Case of Senoz Valley in the Rize Province of Turkey. Food Chem. 2021, 345, 128864. [Google Scholar] [CrossRef] [PubMed]
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef]
- Pohl, P.; Bielawska-Pohl, A.; Dzimitrowicz, A.; Jamroz, P.; Welna, M.; Lesniewicz, A.; Szymczycha-Madeja, A. Recent Achievements in Element Analysis of Bee Honeys by Atomic and Mass Spectrometry Methods. TrAC Trends Anal. Chem. 2017, 93, 67–77. [Google Scholar] [CrossRef]
- Drivelos, S.A.; Georgiou, C.A. Multi-Element and Multi-Isotope-Ratio Analysis to Determine the Geographical Origin of Foods in the European Union. TrAC Trends Anal. Chem. 2012, 40, 38–51. [Google Scholar] [CrossRef]
- Hernanz, D.; Jara-Palacios, M.J.; Santos, J.L.; Gómez Pajuelo, A.; Heredia, F.J.; Terrab, A. The Profile of Phenolic Compounds by HPLC-MS in Spanish Oak (Quercus) Honeydew Honey and Their Relationships with Color and Antioxidant Activity. LWT 2023, 180, 114724. [Google Scholar] [CrossRef]
- Wei, Q.; Sun, J.; Guo, J.; Li, X.; Zhang, X.; Xiao, F. Authentication of Chaste Honey Adulterated with High Fructose Corn Syrup by HS-SPME-GC-MS Coupled with Chemometrics. LWT 2023, 176, 114509. [Google Scholar] [CrossRef]
- Lemus Ringele, G.B.; Beteinakis, S.; Papachristodoulou, A.; Axiotis, E.; Mikros, E.; Halabalaki, M. NMR Metabolite Profiling in the Quality and Authentication Assessment of Greek Honey—Exploitation of STOCSY for Markers Identification. Foods 2022, 11, 2853. [Google Scholar] [CrossRef]
- Schievano, E.; Piana, L.; Tessari, M. Automatic NMR-Based Protocol for Assessment of Honey Authenticity. Food Chem. 2023, 420, 136094. [Google Scholar] [CrossRef] [PubMed]
- Mohamadzade Namin, S.; Yeasmin, F.; Choi, H.W.; Jung, C. DNA-Based Method for Traceability and Authentication of Apis Cerana and A. Dorsata Honey (Hymenoptera: Apidae), Using the NADH Dehydrogenase 2 Gene. Foods 2022, 11, 928. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, J.; Yao, L.; Chen, Q.; Yao, B.; Zhang, Y.; Chen, W. Accuracy and Stability Enhanced Honey Authenticity Visual Tracing Method via False Positive-Eradicating PCR Assisted Nucleic Acid-Capturing Lateral Flow Strip. Food Chem. 2024, 435, 137587. [Google Scholar] [CrossRef] [PubMed]
- Masoomi, S.; Sharifi, H.; Hemmateenejad, B. A Paper-Based Optical Tongue for Characterization of Iranian Honey: Identification of Geographical/Botanical Origins and Adulteration Detection. Food Control 2024, 155, 110052. [Google Scholar] [CrossRef]
- Romano, A.; Cuenca Quicazan, M.; Makhoul, S.; Biasioli, F.; Martinello, L.; Fugatti, A.; Scampicchio, M. Comparison of E-Noses: The Case Study of Honey. Ital. J. Food Sci. 2016, 28, 326–337. [Google Scholar] [CrossRef]
- Ciulu, M.; Oertel, E.; Serra, R.; Farre, R.; Spano, N.; Caredda, M.; Malfatti, L.; Sanna, G. Classification of Unifloral Honeys from SARDINIA (Italy) by ATR-FTIR Spectroscopy and Random Forest. Molecules 2020, 26, 88. [Google Scholar] [CrossRef] [PubMed]
- Caredda, M.; Mara, A.; Ciulu, M.; Floris, I.; Pilo, M.I.; Spano, N.; Sanna, G. Use of Genetic Algorithms in the Wavelength Selection of FT-MIR Spectra to Classify Unifloral Honeys from Sardinia. Food Control 2023, 146, 109559. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. The Use of UV Spectroscopy and SIMCA for the Authentication of Indonesian Honeys According to Botanical, Entomological and Geographical Origins. Molecules 2021, 26, 915. [Google Scholar] [CrossRef] [PubMed]
- Suhandy, D.; Al Riza, D.F.; Yulia, M.; Kusumiyati, K. Non-Targeted Detection and Quantification of Food Adulteration of High-Quality Stingless Bee Honey (SBH) via a Portable LED-Based Fluorescence Spectroscopy. Foods 2023, 12, 3067. [Google Scholar] [CrossRef]
- Egido, C.; Saurina, J.; Sentellas, S.; Núñez, O. Honey Fraud Detection Based on Sugar Syrup Adulterations by HPLC-UV Fingerprinting and Chemometrics. Food Chem. 2024, 436, 137758. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ren, P.; Wu, Y.; He, Q. Recent Advances in Analytical Techniques for the Detection of Adulteration and Authenticity of Bee Products—A Review. Food Addit. Contam. Part A 2021, 38, 533–549. [Google Scholar] [CrossRef] [PubMed]
- García-Seval, V.; Martínez-Alfaro, C.; Saurina, J.; Núñez, O.; Sentellas, S. Characterization, Classification and Authentication of Spanish Blossom and Honeydew Honeys by Non-Targeted HPLC-UV and Off-Line SPE HPLC-UV Polyphenolic Fingerprinting Strategies. Foods 2022, 11, 2345. [Google Scholar] [CrossRef]
- Escuredo, O.; Rodríguez-Flores, M.S.; Meno, L.; Seijo, M.C. Prediction of Physicochemical Properties in Honeys with Portable Near-Infrared (microNIR) Spectroscopy Combined with Multivariate Data Processing. Foods 2021, 10, 317. [Google Scholar] [CrossRef]
- Guelpa, A.; Marini, F.; Du Plessis, A.; Slabbert, R.; Manley, M. Verification of Authenticity and Fraud Detection in South African Honey Using NIR Spectroscopy. Food Control 2017, 73, 1388–1396. [Google Scholar] [CrossRef]
- Drivelos, S.A.; Danezis, G.P.; Halagarda, M.; Popek, S.; Georgiou, C.A. Geographical Origin and Botanical Type Honey Authentication through Elemental Metabolomics via Chemometrics. Food Chem. 2021, 338, 127936. [Google Scholar] [CrossRef]
- Mara, A.; Deidda, S.; Caredda, M.; Ciulu, M.; Deroma, M.; Farinini, E.; Floris, I.; Langasco, I.; Leardi, R.; Pilo, M.I.; et al. Multi-Elemental Analysis as a Tool to Ascertain the Safety and the Origin of Beehive Products: Development, Validation, and Application of an ICP-MS Method on Four Unifloral Honeys Produced in Sardinia, Italy. Molecules 2022, 27, 2009. [Google Scholar] [CrossRef] [PubMed]
- Kastrati, G.; Sopaj, F.; Tašev, K.; Stafilov, T.; Šajn, R.; Paçarizi, M. Analysis of Chemical Elements in Honey Samples in the Territory of Kosovo. J. Food Compos. Anal. 2023, 124, 105505. [Google Scholar] [CrossRef]
- Voyslavov, T.; Mladenova, E.; Balkanska, R. A New Approach for Determination of the Botanical Origin of Monofloral Bee Honey, Combining Mineral Content, Physicochemical Parameters, and Self-Organizing Maps. Molecules 2021, 26, 7219. [Google Scholar] [CrossRef]
- Satta, A.; Verdinelli, M.; Ruiu, L.; Buffa, F.; Salis, S.; Sassu, A.; Floris, I. Combination of Beehive Matrices Analysis and Ant Biodiversity to Study Heavy Metal Pollution Impact in a Post-Mining Area (Sardinia, Italy). Environ. Sci. Pollut. Res. 2012, 19, 3977–3988. [Google Scholar] [CrossRef]
- Bilandžić, N.; Sedak, M.; Đokić, M.; Bošković, A.G.; Florijančić, T.; Bošković, I.; Kovačić, M.; Puškadija, Z.; Hruškar, M. Element Content in Ten Croatian Honey Types from Different Geographical Regions during Three Seasons. J. Food Compos. Anal. 2019, 84, 103305. [Google Scholar] [CrossRef]
- Wu, J.; Duan, Y.; Gao, Z.; Yang, X.; Zhao, D.; Gao, J.; Han, W.; Li, G.; Wang, S. Quality Comparison of Multifloral Honeys Produced by Apis Cerana Cerana, Apis Dorsata and Lepidotrigona Flavibasis. LWT 2020, 134, 110225. [Google Scholar] [CrossRef]
- Zhang, P.; Georgiou, C.A.; Brusic, V. Elemental Metabolomics. Brief. Bioinform. 2018, 19, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Grainger, M.N.C.; Klaus, H.; Hewitt, N.; French, A.D. Investigation of Inorganic Elemental Content of Honey from Regions of North Island, New Zealand. Food Chem. 2021, 361, 130110. [Google Scholar] [CrossRef]
- Girolametti, F.; Illuminati, S.; Annibaldi, A.; Ajdini, B.; Fanelli, M.; Truzzi, C. Mercury in Honey from the Marche Region (Central Italy). Risk Assessment from Human Consumption and Its Use as Bioindicator of Environmental Pollution. Heliyon 2023, 9, e20502. [Google Scholar] [CrossRef]
- Danezis, G.P.; Georgiou, C.A. Elemental Metabolomics: Food Elemental Assessment Could Reveal Geographical Origin. Curr. Opin. Food Sci. 2022, 44, 100812. [Google Scholar] [CrossRef]
- Pellerano, R.G.; Uñates, M.A.; Cantarelli, M.A.; Camiña, J.M.; Marchevsky, E.J. Analysis of Trace Elements in Multifloral Argentine Honeys and Their Classification According to Provenance. Food Chem. 2012, 134, 578–582. [Google Scholar] [CrossRef]
- Pavlin, A.; Kočar, D.; Imperl, J.; Kolar, M.; Marolt, G.; Petrova, P. Honey Origin Authentication via Mineral Profiling Combined with Chemometric Approaches. Foods 2023, 12, 2826. [Google Scholar] [CrossRef]
- Atanassova, J.; Pavlova, D.; Lazarova, M.; Yurukova, L. Characteristics of Honey from Serpentine Area in the Eastern Rhodopes Mt., Bulgaria. Biol. Trace Elem. Res. 2016, 173, 247–258. [Google Scholar] [CrossRef]
- Liu, T.; Ming, K.; Wang, W.; Qiao, N.; Qiu, S.; Yi, S.; Huang, X.; Luo, L. Discrimination of Honey and Syrup-Based Adulteration by Mineral Element Chemometrics Profiling. Food Chem. 2021, 343, 128455. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, H.; Sun, J.; Guo, J.; Wu, L.; Xue, X.; Cao, W. ICP-MS-Based Ionomics Method for Discriminating the Geographical Origin of Honey of Apis Cerana Fabricius. Food Chem. 2021, 354, 129568. [Google Scholar] [CrossRef]
- Zhu, M.; Zhao, H.; Wang, Q.; Wu, F.; Cao, W. A Novel Chinese Honey from Amorpha Fruticosa L.: Nutritional Composition and Antioxidant Capacity In Vitro. Molecules 2020, 25, 5211. [Google Scholar] [CrossRef]
- Bilandžić, N.; Tlak Gajger, I.; Kosanović, M.; Čalopek, B.; Sedak, M.; Solomun Kolanović, B.; Varenina, I.; Luburić, Đ.B.; Varga, I.; Đokić, M. Essential and Toxic Element Concentrations in Monofloral Honeys from Southern Croatia. Food Chem. 2017, 234, 245–253. [Google Scholar] [CrossRef]
- Lazarus, M.; Tariba Lovaković, B.; Orct, T.; Sekovanić, A.; Bilandžić, N.; Đokić, M.; Solomun Kolanović, B.; Varenina, I.; Jurič, A.; Denžić Lugomer, M.; et al. Difference in Pesticides, Trace Metal(Loid)s and Drug Residues between Certified Organic and Conventional Honeys from Croatia. Chemosphere 2021, 266, 128954. [Google Scholar] [CrossRef]
- Grainger, M.N.C.; Klaus, H.; Hewitt, N.; Gan, H.; French, A.D. Graphical Discrimination of New Zealand Honey from International Honey Using Elemental Analysis. Biol. Trace Elem. Res. 2023, 202, 754–764. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Louppis, A.P.; Karabournioti, S.; Kontakos, S.; Papastephanou, C.; Kontominas, M.G. Characterization and Geographical Discrimination of Commercial Citrus Spp. Honeys Produced in Different Mediterranean Countries Based on Minerals, Volatile Compounds and Physicochemical Parameters, Using Chemometrics. Food Chem. 2017, 217, 445–455. [Google Scholar] [CrossRef]
- Czipa, N.; Kovács, B.; Alexa, L.; Gebreyesus, M. Determination of Trace, Micro and Macro Elemental Concentration of Eritrean Honeys. Biol. Trace Elem. Res. 2023. [Google Scholar] [CrossRef]
- Yayinie, M.; Atlabachew, M. Multi-Element Analysis of Honey from Amhara Region-Ethiopia for Quality, Bioindicator of Environmental Pollution, and Geographical Origin Discrimination. Biol. Trace Elem. Res. 2022, 200, 5283–5297. [Google Scholar] [CrossRef] [PubMed]
- Magdas, D.A.; Guyon, F.; Puscas, R.; Vigouroux, A.; Gaillard, L.; Dehelean, A.; Feher, I.; Cristea, G. Applications of Emerging Stable Isotopes and Elemental Markers for Geographical and Varietal Recognition of Romanian and French Honeys. Food Chem. 2021, 334, 127599. [Google Scholar] [CrossRef]
- Louppis, A.P.; Karabagias, I.K.; Kontakos, S.; Kontominas, M.G.; Papastephanou, C. Botanical Discrimination of Greek Unifloral Honeys Based on Mineral Content in Combination with Physicochemical Parameter Analysis, Using a Validated Chemometric Approach. Microchem. J. 2017, 135, 180–189. [Google Scholar] [CrossRef]
- Czipa, N.; Andrási, D.; Kovács, B. Determination of Essential and Toxic Elements in Hungarian Honeys. Food Chem. 2015, 175, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Bodó, A.; Radványi, L.; Kőszegi, T.; Csepregi, R.; Nagy, D.U.; Farkas, Á.; Kocsis, M. Quality Evaluation of Light- and Dark-Colored Hungarian Honeys, Focusing on Botanical Origin, Antioxidant Capacity and Mineral Content. Molecules 2021, 26, 2825. [Google Scholar] [CrossRef] [PubMed]
- Bommuraj, V.; Chen, Y.; Klein, H.; Sperling, R.; Barel, S.; Shimshoni, J.A. Pesticide and Trace Element Residues in Honey and Beeswax Combs from Israel in Association with Human Risk Assessment and Honey Adulteration. Food Chem. 2019, 299, 125123. [Google Scholar] [CrossRef]
- Conti, M.E.; Astolfi, M.L.; Mele, G.; Ristorini, M.; Vitiello, G.; Massimi, L.; Canepari, S.; Finoia, M.G. Performance of Bees and Beehive Products as Indicators of Elemental Tracers of Atmospheric Pollution in Sites of the Rome Province (Italy). Ecol. Indic. 2022, 140, 109061. [Google Scholar] [CrossRef]
- Squadrone, S.; Brizio, P.; Stella, C.; Pederiva, S.; Brusa, F.; Mogliotti, P.; Garrone, A.; Abete, M.C. Trace and Rare Earth Elements in Monofloral and Multifloral Honeys from Northwestern Italy; A First Attempt of Characterization by a Multi-Elemental Profile. J. Trace Elem. Med. Biol. 2020, 61, 126556. [Google Scholar] [CrossRef]
- Perna, A.M.; Grassi, G.; Gambacorta, E.; Simonetti, A. Minerals Content in Basilicata Region (Southern Italy) Honeys from Areas with Different Anthropic Impact. Int. J. Food Sci. Technol. 2021, 56, 4465–4472. [Google Scholar] [CrossRef]
- Di Bella, G.; Lo Turco, V.; Potortì, A.G.; Bua, G.D.; Fede, M.R.; Dugo, G. Geographical Discrimination of Italian Honey by Multi-Element Analysis with a Chemometric Approach. J. Food Compos. Anal. 2015, 44, 25–35. [Google Scholar] [CrossRef]
- Scivicco, M.; Squillante, J.; Velotto, S.; Esposito, F.; Cirillo, T.; Severino, L. Dietary Exposure to Heavy Metals through Polyfloral Honey from Campania Region (Italy). J. Food Compos. Anal. 2022, 114, 104748. [Google Scholar] [CrossRef]
- Gulino, F.; Calà, E.; Cozzani, C.; Vaccari, L.; Oddone, M.; Aceto, M. On the Traceability of Honey by Means of Lanthanide Distribution. Foods 2023, 12, 1803. [Google Scholar] [CrossRef]
- Giglio, A.; Ammendola, A.; Battistella, S.; Naccarato, A.; Pallavicini, A.; Simeon, E.; Tagarelli, A.; Giulianini, P.G. Apis Mellifera Ligustica, Spinola 1806 as Bioindicator for Detecting Environmental Contamination: A Preliminary Study of Heavy Metal Pollution in Trieste, Italy. Environ. Sci. Pollut. Res. 2017, 24, 659–665. [Google Scholar] [CrossRef]
- Quinto, M.; Miedico, O.; Spadaccino, G.; Paglia, G.; Mangiacotti, M.; Li, D.; Centonze, D.; Chiaravalle, A.E. Characterization, Chemometric Evaluation, and Human Health-Related Aspects of Essential and Toxic Elements in Italian Honey Samples by Inductively Coupled Plasma Mass Spectrometry. Environ. Sci. Pollut. Res. 2016, 23, 25374–25384. [Google Scholar] [CrossRef]
- Squadrone, S.; Brizio, P.; Stella, C.; Mantia, M.; Pederiva, S.; Brusa, F.; Mogliotti, P.; Garrone, A.; Abete, M.C. Trace Elements and Rare Earth Elements in Honeys from the Balkans, Kazakhstan, Italy, South America, and Tanzania. Environ. Sci. Pollut. Res. 2020, 27, 12646–12657. [Google Scholar] [CrossRef]
- Đogo Mračević, S.; Krstić, M.; Lolić, A.; Ražić, S. Comparative Study of the Chemical Composition and Biological Potential of Honey from Different Regions of Serbia. Microchem. J. 2020, 152, 104420. [Google Scholar] [CrossRef]
- Vukašinović-Pešić, V.; Blagojević, N.; Brašanac-Vukanović, S.; Savić, A.; Pešić, V. Using Chemometric Analyses for Tracing the Regional Origin of Multifloral Honeys of Montenegro. Foods 2020, 9, 210. [Google Scholar] [CrossRef]
- Rodríguez-Flores, S.; Escuredo, O.; Seijo, M.C. Characterization and Antioxidant Capacity of Sweet Chestnut Honey Produced in North-West Spain. J. Apic. Sci. 2016, 60, 19–30. [Google Scholar] [CrossRef]
- Serra Bonvehi, J.; Ventura Coll, F.; Orantes Bermejo, J.F. Characterization of Avocado Honey (Persea Americana Mill.) Produced in Southern Spain. Food Chem. 2019, 287, 214–221. [Google Scholar] [CrossRef]
- Álvarez-Ayuso, E.; Abad-Valle, P. Trace Element Levels in an Area Impacted by Old Mining Operations and Their Relationship with Beehive Products. Sci. Total Environ. 2017, 599, 671–678. [Google Scholar] [CrossRef]
- Díaz, S.; Paz, S.; Rubio, C.; Gutiérrez, Á.J.; González-Weller, D.; Revert, C.; Bentabol, A.; Hardisson, A. Toxic Metals and Trace Elements in Artisanal Honeys from the Canary Islands. Biol. Trace Elem. Res. 2019, 190, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Gattacceca, J.; Deino, A.; Rizzo, R.; Jones, D.S.; Henry, B.; Beaudoin, B.; Vadeboin, F. Miocene Rotation of Sardinia: New Paleomagnetic and Geochronological Constraints and Geodynamic Implications. Earth Planet. Sci. Lett. 2007, 258, 359–377. [Google Scholar] [CrossRef]
- Gomez, M.E.M.; Hernandez, E.G.; Gomez, J.Y.M.; Marin, J.L.M. Physicochemical Analysis of Spanish Commercial Eucalyptus Honeys. J. Apic. Res. 1993, 32, 121–126. [Google Scholar] [CrossRef]
- Perezarquillue, C.; Conchello, P.; Arino, A.; Juan, T.; Herrera, A. Quality Evaluation of Spanish Rosemary (Rosmarinus officinalis) Honey. Food Chem. 1994, 51, 207–210. [Google Scholar] [CrossRef]
- Persano Oddo, L.; Sabatini, A.G.; Accorti, M.; Colombo, R.; Marcazzan, G.L.; Piana, L.; Piazza, M.G.; Pulcini, P. I Mieli Uniflorali Italiani. Miele di Eucalipto. Nuove Schede Di Caratterizzazione. Available online: http://profilomieli.albomiele.it/html/4_mieli_eucalipto.html (accessed on 10 December 2023).
- Persano Oddo, L.; Sabatini, A.G.; Accorti, M.; Colombo, R.; Marcazzan, G.L.; Piana, L.; Piazza, M.G.; Pulcini, P. I Mieli Uniflorali Italiani. Miele di Rosmarino. Nuove Schede Di Caratterizzazione. Available online: http://profilomieli.albomiele.it/html/4_mieli_rosmarino.html (accessed on 10 December 2023).
- Floris, I.; Satta, A.; Ruiu, L. Honeys of Sardinia (Italy). J. Apic. Res. 2007, 46, 198–209. [Google Scholar] [CrossRef]
- Cabras, P.; Angioni, A.; Tuberoso, C.; Floris, I.; Reniero, F.; Guillou, C.; Ghelli, S. Homogentisic Acid: A Phenolic Acid as a Marker of Strawberry-Tree (Arbutus Unedo) Honey. J. Agric. Food Chem. 1999, 47, 4064–4067. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Forbes-Hernandez, T.; Gasparrini, M.; Bompadre, S.; Quiles, J.; Sanna, G.; Spano, N.; Giampieri, F.; Battino, M. Strawberry-Tree Honey Induces Growth Inhibition of Human Colon Cancer Cells and Increases ROS Generation: A Comparison with Manuka Honey. Int. J. Mol. Sci. 2017, 18, 613. [Google Scholar] [CrossRef] [PubMed]
- Scanu, R.; Spano, N.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Sanna, G.; Tapparo, A. Direct Chromatographic Methods for the Rapid Determination of Homogentisic Acid in Strawberry Tree (Arbutus unedo L.) Honey. J. Chromatogr. A 2005, 1090, 76–80. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Bifulco, E.; JerkoviĆ, I.; Caboni, P.; Cabras, P.; Floris, I. Methyl Syringate: A Chemical Marker of Asphodel (Asphodelus microcarpus Salzm. et Viv.) Monofloral Honey. J. Agric. Food Chem. 2009, 57, 3895–3900. [Google Scholar] [CrossRef]
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool Software). Available online: http://gruppochemiometria.it/index.php/software (accessed on 10 December 2023).
- Templ, M.; Templ, B. Statistical Analysis of Chemical Element Compositions in Food Science: Problems and Possibilities. Molecules 2021, 26, 5752. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Zhang, C.; Ma, Y. (Eds.) Ensemble Machine Learning; Springer: New York, NY, USA, 2012; ISBN 978-1-4419-9325-0. [Google Scholar]
Geographical Origin | LDA | Random Forest | ||
---|---|---|---|---|
Train | Test | Train | Test | |
ITA | 91 ± 5 | 78 ± 6 | 91 ± 3 | 88 ± 4 |
SPA | 92 ± 4 | 79 ± 8 | 92 ± 3 | 91 ± 5 |
Botanical Origin | LDA | Random Forest | ||
Train | Test | Train | Train | |
ASP | 91 ± 6 | 83 ± 9 | 77 ± 9 | 79 ± 9 |
EUC | 84 ± 8 | 63 ± 9 | 80 ± 10 | 81 ± 9 |
MUL | 80 ± 10 | 50 ± 10 | 45 ± 10 | 47 ± 7 |
ROS | 74 ± 9 | 50 ± 15 | 70 ± 10 | 70 ± 10 |
STR | 90 ± 5 | 70 ± 10 | 78 ± 8 | 80 ± 10 |
THI | 76 ± 9 | 60 ± 10 | 76 ± 9 | 78 ± 9 |
Geographical and Botanical Origins | LDA | Random Forest | ||
Train | Test | Train | Test | |
ITA ASP | 90 ± 7 | 82 ± 9 | 75 ± 10 | 78 ± 9 |
ITA EUC | 89 ± 6 | 80 ± 10 | 83 ± 7 | 84 ± 9 |
ITA MUL | 80 ± 7 | 60 ± 10 | 65 ± 10 | 69 ± 9 |
ITA ROS | 98 ± 7 | 50 ± 30 | 20 ± 30 | 30 ± 20 |
ITA STR | 89 ± 6 | 70 ± 10 | 70 ± 10 | 70 ± 10 |
ITA THI | 74 ± 9 | 60 ± 10 | 69 ± 8 | 70 ± 10 |
SPA EUC | 80 ± 15 | 40 ± 20 | 40 ± 30 | 50 ± 20 |
SPA MUL | 70 ± 10 | 30 ± 10 | 50 ± 10 | 50 ± 10 |
SPA ROS | 75 ± 10 | 50 ± 20 | 74 ± 9 | 80 ± 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mara, A.; Migliorini, M.; Ciulu, M.; Chignola, R.; Egido, C.; Núñez, O.; Sentellas, S.; Saurina, J.; Caredda, M.; Deroma, M.A.; et al. Elemental Fingerprinting Combined with Machine Learning Techniques as a Powerful Tool for Geographical Discrimination of Honeys from Nearby Regions. Foods 2024, 13, 243. https://doi.org/10.3390/foods13020243
Mara A, Migliorini M, Ciulu M, Chignola R, Egido C, Núñez O, Sentellas S, Saurina J, Caredda M, Deroma MA, et al. Elemental Fingerprinting Combined with Machine Learning Techniques as a Powerful Tool for Geographical Discrimination of Honeys from Nearby Regions. Foods. 2024; 13(2):243. https://doi.org/10.3390/foods13020243
Chicago/Turabian StyleMara, Andrea, Matteo Migliorini, Marco Ciulu, Roberto Chignola, Carla Egido, Oscar Núñez, Sònia Sentellas, Javier Saurina, Marco Caredda, Mario A. Deroma, and et al. 2024. "Elemental Fingerprinting Combined with Machine Learning Techniques as a Powerful Tool for Geographical Discrimination of Honeys from Nearby Regions" Foods 13, no. 2: 243. https://doi.org/10.3390/foods13020243
APA StyleMara, A., Migliorini, M., Ciulu, M., Chignola, R., Egido, C., Núñez, O., Sentellas, S., Saurina, J., Caredda, M., Deroma, M. A., Deidda, S., Langasco, I., Pilo, M. I., Spano, N., & Sanna, G. (2024). Elemental Fingerprinting Combined with Machine Learning Techniques as a Powerful Tool for Geographical Discrimination of Honeys from Nearby Regions. Foods, 13(2), 243. https://doi.org/10.3390/foods13020243