Recent Approaches to the Formulation, Uses, and Impact of Edible Coatings on Fresh Peach Fruit
Abstract
:1. Introduction
Postharvest Complications
2. Natural Edible Coatings: An Overview
3. The Need for a Natural Edible Coating
4. Classifications of Edible Coatings for Postharvest Application of Peach Fruit
4.1. Lipids
4.2. Proteins
4.3. Polysaccharides
4.4. Composites or Bi-Layer Natural Edible Coatings
5. Edible Coatings’ Effects on Physico-Chemical Properties of Peach Fruit
5.1. Pigments and Color Attributes
5.2. Firmness
5.3. Total Soluble Solids and Titratable Acidity
6. Edible Coatings’ Effect on Physiological Factors of Peach Fruit
6.1. Ethylene Production
6.2. Respiration Rate
7. Natural Coatings’ Effects on Antioxidant and Phytochemical Properties of Peach Fruit
8. Edible Coatings’ Effect on Decay and Physiological Disorders in Peach Fruit
8.1. Shrivel
8.2. Weight Loss
8.3. Decay
8.4. Chilling Injuries
9. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ferguson, B.; Hldelorand, R.; Hespendheild, G. All about Growing Fruits, Berries and Nuts; Ortho Books: San Francisco, CA, USA, 1987. [Google Scholar]
- Food and Agriculture Organization of the United Nations (Ed.) The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; ISBN 978-92-5-109551-5. [Google Scholar]
- Zhao, H.; Jiao, W.; Cui, K.; Fan, X.; Shu, C.; Zhang, W.; Cao, J.; Jiang, W. Near-Freezing Temperature Storage Enhances Chilling Tolerance in Nectarine Fruit through Its Regulation of Soluble Sugars and Energy Metabolism. Food Chem. 2019, 289, 426–435. [Google Scholar] [CrossRef]
- Stacewicz-Sapuntzakis, M.; Bowen, P.E.; Hussain, E.A.; Damayanti-Wood, B.I.; Farnsworth, N.R. Chemical Composition and Potential Health Effects of Prunes: A Functional Food? Crit. Rev. Food Sci. Nutr. 2001, 41, 251–286. [Google Scholar] [CrossRef]
- Kluge, R.A.; Jacomino, A.P. Shelf Life of Peaches Treated with 1-Methylcyclopropene. Sci. Agric. 2002, 59, 69–72. [Google Scholar] [CrossRef]
- Bakshi, P.; Masoodi, F.A. Effect of Pre-Storage Heat Treatment on Enzymological Changes in Peach. J. Food Sci. Technol. 2010, 47, 461–464. [Google Scholar] [CrossRef]
- Zeb, J.; Khan, Z. Peach Marketing in NWFP. Sarhad J. Agric. 2008, 24, 161. [Google Scholar]
- Akbudak, B.; Eris, A. Effect of some postharvest treatments and controlled atmosphere (ca) storage on basic quality criteria of peaches and nectarines. Acta Hortic. 2003, 599, 297–303. [Google Scholar] [CrossRef]
- Awad, M.A.; Al-Qurashi, A.D.; Elsayed, M.I. Effect of Pre-Storage Salicylic Acid and Oxalic Acid Dipping on Chilling Injury and Quality of ‘Taify’ Pomegranates during Cold Storage. J. Food Agric. Environ. 2013, 1111, 117–122. [Google Scholar]
- Infante, R.; Meneses, C.; Defilippi, B.G. Effect of Harvest Maturity Stage on the Sensory Quality of ‘Palsteyn’ Apricot (Prunus armeniaca L.) after Cold Storage. J. Hortic. Sci. Biotechnol. 2008, 83, 828–832. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Valero, D. Harvesting and Postharvest Handling of Peaches for the Fresh Market. In The Peach: Botany, Production and Uses; CAB International: Wallingford, UK, 2008; pp. 575–596. [Google Scholar] [CrossRef]
- Girardi, C.L.; Corrent, A.R.; Lucchetta, L.; Zanuzo, M.R.; da Costa, T.S.; Brackmann, A.; Twyman, R.M.; Nora, F.R.; Nora, L.; Silva, J.A.; et al. Effect of Ethylene, Intermittent Warming and Controlled Atmosphere on Postharvest Quality and the Occurrence of Woolliness in Peach (Prunus persica Cv. Chiripá) during Cold Storage. Postharvest Biol. Technol. 2005, 38, 25–33. [Google Scholar] [CrossRef]
- Zzaman, W.; Yang, T.A. Moisture, Color and Texture Changes in Cocoa Seeds duringSuperheated Steam Roasting. J. Appl. Sci. Res. 2013, 9, 1–7. [Google Scholar]
- Ziedan, E.S.; Farrag, E. Fumigation of Peach Fruits with Essential Oils to Control Postharvest Decay. Res. J. Agric. Biol. Sci. 2008, 4, 512–519. [Google Scholar]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A. Food Preservation Techniques and Nanotechnology for Increased Shelf Life of Fruits, Vegetables, Beverages and Spices: A Review. Environ. Chem. Lett. 2021, 19, 1715–1735. [Google Scholar] [CrossRef]
- Moniharapon, E.; Hashinaga, F. Antimicrobial Activity of Atung (Parinarium Glaberrimum Hassk) Fruit Extract. Pak. J. Biol. Sci. 2004, 7, 1057–1061. [Google Scholar] [CrossRef]
- Coates; Johnson, G.; Coates, L.M.; Johnson, G.I.; Dale, M. Postharvest Pathology of Fruit and Vegetables. In Plant Pathogens and Plant Diseases; Brown, J., Ogle, H., Eds.; Rockvale Publications: College Grove, TN, USA, 1997; pp. 533–547. [Google Scholar]
- Crisosto, C.H.; Mitchell, F.G.; Ju, Z. Susceptibility to Chilling Injury of Peach, Nectarine, and Plum Cultivars Grown in California. HortScience 1999, 34, 1116–1118. [Google Scholar] [CrossRef]
- Kumar, D.; Kalita, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef]
- Farcuh, M.; Rivero, R.M.; Sadka, A.; Blumwald, E. Ethylene Regulation of Sugar Metabolism in Climacteric and Non-Climacteric Plums. Postharvest Biol. Technol. 2018, 139, 20–30. [Google Scholar] [CrossRef]
- Minas, I.S.; Font i Forcada, C.; Dangl, G.S.; Gradziel, T.M.; Dandekar, A.M.; Crisosto, C.H. Discovery of Non-Climacteric and Suppressed Climacteric Bud Sport Mutations Originating from a Climacteric Japanese Plum Cultivar (Prunus salicina Lindl.). Front. Plant Sci. 2015, 6, 316. [Google Scholar] [CrossRef]
- Guillén, F.; Díaz-Mula, H.M.; Zapata, P.J.; Valero, D.; Serrano, M.; Castillo, S.; Martínez-Romero, D. Aloe Arborescens and Aloe Vera Gels as Coatings in Delaying Postharvest Ripening in Peach and Plum Fruit. Postharvest Biol. Technol. 2013, 83, 54–57. [Google Scholar] [CrossRef]
- Wills, R.B.H.; McGlasson, W.B.; Graham, D.; Lee, T.H.; Hall, E.G. Postharvest Handling and Physiology of Horticultural Crops. Available online: https://www.yumpu.com/en/document/read/11491312/postharvest-handling-and-physiology-of-horticultural-crops (accessed on 12 June 2023).
- Nunes, C.N.; Emond, J.-P. Relationship between Weight Loss and Visual Quality of Fruits and Vegetables. Proc. Fla. State Hortic. Soc. 2007, 120, 235–245. [Google Scholar]
- de Moura, I.G.; de Sá, A.V.; Abreu, A.S.L.M.; Machado, A.V.A. Bioplastics from Agro-Wastes for Food Packaging Applications. In Food Packaging; Elsevier: Amsterdam, The Netherlands, 2017; pp. 223–263. ISBN 978-0-12-804302-8. [Google Scholar]
- Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of Edible Films and Coatings from Alginates and Carrageenans. Carbohydr. Polym. 2016, 137, 360–374. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, M.; Bhandari, B. Nanotechnology—A Shelf Life Extension Strategy for Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2020, 60, 1706–1721. [Google Scholar] [CrossRef]
- Mahajan, B.V.C.; Tandon, R.; Kapoor, S.; Sidhu, M.K. Natural Coatings for Shelf-Life Enhancement and Quality Maintenance of Fresh Fruits and Vegetables—A Review. J. Postharvest Technol. 2018, 6, 12–26. [Google Scholar]
- Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz, A. Edible Films and Coatings: Structures, Active Functions and Trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, W. UV Treatment Improved the Quality of Postharvest Fruits and Vegetables by Inducing Resistance. Trends Food Sci. Technol. 2019, 92, 71–80. [Google Scholar] [CrossRef]
- Skurtys, O.P.; Velasquez, O.; Henriquez, S.; Matiacevich, E.J.; Osorio, P. Wetting Behaviour of Edible Coating (Opuntia Ficusindica) and Its Application to Extend Strawberry (Fragaria Ananassa) Shelf Life. Food Chem. 2005, 91, 751–756. [Google Scholar]
- Park, H.J.; Chinnan, M.S.; Shewfelt, R.L. EDIBLE CORN-ZEIN FILM COATINGS to EXTEND STORAGE LIFE of TOMATOES. J. Food Process. Preserv. 1994, 18, 317–331. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Raybaudi-Massilia, R.M.; Soliva-Fortuny, R.C.; Avena-Bustillos, R.J.; McHugh, T.H.; Martín-Belloso, O. Apple Puree-Alginate Edible Coating as Carrier of Antimicrobial Agents to Prolong Shelf-Life of Fresh-Cut Apples. Postharvest Biol. Technol. 2007, 45, 254–264. [Google Scholar] [CrossRef]
- Khan, M.K.I.; Cakmak, H.; Tavman, Ş.; Schutyser, M.; Schroёn, K. Anti-Browning and Barrier Properties of Edible Coatings Prepared with Electrospraying. Innov. Food Sci. Emerg. Technol. 2014, 25, 9–13. [Google Scholar] [CrossRef]
- Avena-Bustillos, R.J.; Cisneros-Zevallos, L.A.; Krochta, J.M.; Saltveit, M.E. Application of Casein-Lipid Edible Film Emulsions to Reduce White Blush on Minimally Processed Carrots. Postharvest Biol. Technol. 1994, 4, 319–329. [Google Scholar] [CrossRef]
- Andrade, R.; Skurtys, O.; Osorio, F. Drop Impact Behavior on Food Using Spray Coating: Fundamentals and Applications. Food Res. Int. 2013, 54, 397–405. [Google Scholar] [CrossRef]
- Krochta, J.M.; De Mulder-Johnston, C. Edible and Biodegradable Polymer Films: Challenges and Opportunities. Food Technol. 1997, 51, 61–74. [Google Scholar]
- McHugh, T.H.; Senesi, E. Apple Wraps: A Novel Method to Improve the Quality and Extend the Shelf Life of Fresh-Cut Apples. J. Food Sci. 2000, 65, 480–485. [Google Scholar] [CrossRef]
- Andrade, R.D.; Skurtys, O.; Osorio, F.A. Atomizing Spray Systems for Application of Edible Coatings. Compr. Rev. Food Sci. Food Saf. 2012, 11, 323–337. [Google Scholar] [CrossRef]
- Raghav, P.K.; Agarwal, N.; Saini, M. Edible Coating of Fruits and Vegetables: A Review. Education 2016, 1, 188–204. [Google Scholar]
- Ncama, K.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z. Plant-Based Edible Coatings for Managing Postharvest Quality of Fresh Horticultural Produce: A Review. Food Packag. Shelf Life 2018, 16, 157–167. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Development and Application of Rice Starch Based Edible Coating to Improve the Postharvest Storage Potential and Quality of Plum Fruit (Prunus salicina). Sci. Hortic. 2018, 237, 59–66. [Google Scholar] [CrossRef]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Srivastav, M.; Varghese, E. Effect of Chitosan Coating on Postharvest Life and Quality of Plum during Storage at Low Temperature. Sci. Hortic. 2017, 226, 104–109. [Google Scholar] [CrossRef]
- Vásconez, M.B.; Flores, S.K.; Campos, C.A.; Alvarado, J.; Gerschenson, L.N. Antimicrobial Activity and Physical Properties of Chitosan–Tapioca Starch Based Edible Films and Coatings. Food Res. Int. 2009, 42, 762–769. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Ramaswamy, H.S.; Marcotte, M. Shelf-Life Extension of Peaches through Sodium Alginate and Methyl Cellulose Edible Coatings. Int. J. Food Sci. Technol. 2008, 43, 951–957. [Google Scholar] [CrossRef]
- Toğrul, H.; Arslan, N. Extending Shelf-Life of Peach and Pear by Using CMC from Sugar Beet Pulp Cellulose as a Hydrophilic Polymer in Emulsions. Food Hydrocoll. 2004, 18, 215–226. [Google Scholar] [CrossRef]
- Gonçalves, F.P.; Martins, M.C.; Junior, G.J.S.; Lourenço, S.A.; Amorim, L. Postharvest Control of Brown Rot and Rhizopus Rot in Plums and Nectarines Using Carnauba Wax. Postharvest Biol. Technol. 2010, 58, 211–217. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; Leyva, J.M.; Ortega-Ramírez, L.A.; Carrazco-Lugo, D.K.; Pérez-Carlón, J.J.; Melgarejo-Flores, B.G.; González-Aguilar, G.A.; Miranda, M.R.A. Pectin-Cinnamon Leaf Oil Coatings Add Antioxidant and Antibacterial Properties to Fresh-Cut Peach: Antibacterial and Antioxidant Pectin-Cinnamon Coatings. Flavour Fragr. J. 2013, 28, 39–45. [Google Scholar] [CrossRef]
- Pizato, S.; Cortez-Vega, W.R.; de Souza, J.T.A.; Prentice-Hernández, C.; Borges, C.D. Effects of Different Edible Coatings in Physical, Chemical and Microbiological Characteristics of Minimally Processed Peaches (Prunus persica L. Batsch). J. Food Saf. 2013, 33, 30–39. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Singh, Z.; Khan, A.S. Postharvest Aloe Vera Gel-Coating Modulates Fruit Ripening and Quality of ‘Arctic Snow’ Nectarine Kept in Ambient and Cold Storage. Int. J. Food Sci. Technol. 2009, 44, 1024–1033. [Google Scholar] [CrossRef]
- Jiao, W.; Shu, C.; Li, X.; Cao, J.; Fan, X.; Jiang, W. Preparation of a Chitosan-Chlorogenic Acid Conjugate and Its Application as Edible Coating in Postharvest Preservation of Peach Fruit. Postharvest Biol. Technol. 2019, 154, 129–136. [Google Scholar] [CrossRef]
- Li, X.; Du, X.; Liu, Y.; Tong, L.; Wang, Q.; Li, J. Rhubarb Extract Incorporated into an Alginate-Based Edible Coating for Peach Preservation. Sci. Hortic. 2019, 257, 108685. [Google Scholar] [CrossRef]
- Zhang, L.; Kou, X.; Huang, X.; Li, G.; Liu, J.; Ye, J. Peach-Gum: A Promising Alternative for Retarding the Ripening and Senescence in Postharvest Peach Fruit. Postharvest Biol. Technol. 2020, 161, 111088. [Google Scholar] [CrossRef]
- Hazrati, S.; Beyraghdar Kashkooli, A.; Habibzadeh, F.; Tahmasebi-Sarvestani, Z.; Sadeghi, A. Evaluation of Aloe Vera Gel as an Alternative Edible Coating for Peach Fruits During Cold Storage Period. Gesunde Pflanz. 2017, 69, 131–137. [Google Scholar] [CrossRef]
- Sortino, G.; Saletta, F.; Puccio, S.; Scuderi, D.; Allegra, A.; Inglese, P.; Farina, V. Extending the Shelf Life of White Peach Fruit with 1-Methylcyclopropene and Aloe Arborescens Edible Coating. Agriculture 2020, 10, 151. [Google Scholar] [CrossRef]
- Donhowe, I.G.; Fennema, O. The effects of plasticizers on crystallinity, permeability, and mechanical properties of methylcellulose films. J. Food Process. Preserv. 1993, 17, 247–257. [Google Scholar] [CrossRef]
- Guilbert, S.; Gontard, N.; Gorris, L.G.M. Prolongation of the Shelf-Life of Perishable Food Products Using Biodegradable Films and Coatings. LWT Food Sci. Technol. 1996, 29, 10–17. [Google Scholar] [CrossRef]
- Kurek, M.; Ščetar, M.; Galić, K. Edible Coatings Minimize Fat Uptake in Deep Fat Fried Products: A Review. Food Hydrocoll. 2017, 71, 225–235. [Google Scholar] [CrossRef]
- Li, P.; Barth, M.M. Impact of Edible Coatings on Nutritional and Physiological Changes in Lightly-Processed Carrots. Postharvest Biol. Technol. 1998, 14, 51–60. [Google Scholar] [CrossRef]
- Cha, D.S.; Chinnan, M.S. Biopolymer-Based Antimicrobial Packaging: A Review. Crit. Rev. Food Sci. Nutr. 2004, 44, 223–237. [Google Scholar] [CrossRef]
- Arnon-Rips, H.; Poverenov, E. Improving Food Products’ Quality and Storability by Using Layer by Layer Edible Coatings. Trends Food Sci. Technol. 2018, 75, 81–92. [Google Scholar] [CrossRef]
- Dhall, R.K. Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef]
- Rojas-Argudo, C.; del Río, M.A.; Pérez-Gago, M.B. Development and Optimization of Locust Bean Gum (LBG)-Based Edible Coatings for Postharvest Storage of ‘Fortune’ Mandarins. Postharvest Biol. Technol. 2009, 52, 227–234. [Google Scholar] [CrossRef]
- Lin, D.; Zhao, Y. Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Compr. Rev. Food Sci. Food Saf. 2007, 6, 60–75. [Google Scholar] [CrossRef]
- Gennadios, A. Edible Coating and Film Based on Proteins. In Edible and Coating and Films to Improved Food Quality; Intech: London, UK, 1994; Chapter 9; pp. 201–277. [Google Scholar]
- Baldwin, E.A.; Baker, R.A. Use of Proteins in Edible Coatings for Whole and Minimally Processed Fruits and Vegetables. In Protein-Based Films and Coatings; CRC Press: Boca Raton, FL, USA, 2002; pp. 501–515. [Google Scholar]
- Yousuf, B.; Qadri, O.S.; Srivastava, A.K. Recent Developments in Shelf-Life Extension of Fresh-Cut Fruits and Vegetables by Application of Different Edible Coatings: A Review. LWT 2018, 89, 198–209. [Google Scholar] [CrossRef]
- Gennadios, A. Protein-Based Films and Coatings; CRC Press: Boca Raton, FL, USA, 2002; ISBN 978-1-4200-3198-0. [Google Scholar]
- Armghan Khalid, M.; Niaz, B.; Saeed, F.; Afzaal, M.; Islam, F.; Hussain, M.; Mahwish; Muhammad Salman Khalid, H.; Siddeeg, A.; Al-Farga, A. Edible Coatings for Enhancing Safety and Quality Attributes of Fresh Produce: A Comprehensive Review. Int. J. Food Prop. 2022, 25, 1817–1847. [Google Scholar] [CrossRef]
- Galgano, F. Biodegradable Packaging and Edible Coating for Fresh-Cut Fruits and Vegetables. Ital. J. Food Sci. 2015, 27, 1–20. [Google Scholar] [CrossRef]
- Riva, S.C.; Opara, U.O.; Fawole, O.A. Recent Developments on Postharvest Application of Edible Coatings on Stone Fruit: A Review. Sci. Hortic. 2020, 262, 109074. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Nisperos-Carriedo, M.O.; Baker, R.A. Use of Edible Coatings to Preserve Quality of Lightly (and Slightly) Processed Products. Crit. Rev. Food Sci. Nutr. 1995, 35, 509–524. [Google Scholar] [CrossRef]
- Kester, J.J.; Fennema, O.R. Edible Films and Coatings: A Review. Food Technol. 1986, 40, 47–59. [Google Scholar]
- Petriccione, M.; Mastrobuoni, F.; Pasquariello, M.; Zampella, L.; Nobis, E.; Capriolo, G.; Scortichini, M. Effect of Chitosan Coating on the Postharvest Quality and Antioxidant Enzyme System Response of Strawberry Fruit during Cold Storage. Foods 2015, 4, 501–523. [Google Scholar] [CrossRef]
- Ali, A.; Maqbool, M.; Alderson, P.G.; Zahid, N. Effect of Gum Arabic as an Edible Coating on Antioxidant Capacity of Tomato (Solanum lycopersicum L.) Fruit during Storage. Postharvest Biol. Technol. 2013, 76, 119–124. [Google Scholar] [CrossRef]
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of Alginate Edible Coating on Preserving Fruit Quality in Four Plum Cultivars during Postharvest Storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar] [CrossRef]
- Marty, I.; Bureau, S.; Sarkissian, G.; Gouble, B.; Audergon, J.M.; Albagnac, G. Ethylene Regulation of Carotenoid Accumulation and Carotenogenic Gene Expression in Colour-Contrasted Apricot Varieties (Prunus armeniaca). J. Exp. Bot. 2005, 56, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Romero, D.; Alburquerque, N.; Valverde, J.M.; Guillén, F.; Castillo, S.; Valero, D.; Serrano, M. Postharvest Sweet Cherry Quality and Safety Maintenance by Aloe Vera Treatment: A New Edible Coating. Postharvest Biol. Technol. 2006, 39, 93–100. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Abedi, B.; Bodaghi, H.; Davarynejad, G.; Haratizadeh, H.; Conte, A. Investigation of Developed Clay-Nanocomposite Packaging Film on Quality of Peach Fruit (Prunus persica Cv. Alberta) during Cold Storage. J. Food Process. Preserv. 2018, 42, e13466. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; Cereda, M.P. Pós-colheita de pêssegos (Prunus pérsica L. Bastsch) revestidos com filmes a base de amido como alternativa à cera comercial. Food Sci. Technol. 2003, 23, 28–33. [Google Scholar] [CrossRef]
- Mahfoudhi, N.; Hamdi, S. Use of Almond Gum and Gum Arabic as Novel Edible Coating to Delay Postharvest Ripening and to Maintain Sweet Cherry (Prunus avium) Quality during Storage. J. Food Process. Preserv. 2015, 39, 1499–1508. [Google Scholar] [CrossRef]
- Andrade, S.C.A.; Baretto, T.A.; Arcanjo, N.M.O.; Madruga, M.S.; Meireles, B.; Cordeiro, Â.M.T.; Barbosa de Lima, M.A.; de Souza, E.L.; Magnani, M. Control of Rhizopus Soft Rot and Quality Responses in Plums (Prunus domestica L.) Coated with Gum Arabic, Oregano and Rosemary Essential Oils. J. Food Process. Preserv. 2017, 41, e13251. [Google Scholar] [CrossRef]
- Liu, K.; Yuan, C.; Chen, Y.; Li, H.; Liu, J. Combined Effects of Ascorbic Acid and Chitosan on the Quality Maintenance and Shelf Life of Plums. Sci. Hortic. 2014, 176, 45–53. [Google Scholar] [CrossRef]
- Xie, F.; Yuan, S.; Pan, H.; Wang, R.; Cao, J.; Jiang, W. Effect of Yeast Mannan Treatments on Ripening Progress and Modification of Cell Wall Polysaccharides in Tomato Fruit. Food Chem. 2017, 218, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Zakani, M.; Shahi, K.H.; Asni Ashar, M. Effect of Potrosin on Lifetime and Physiology Postharvest Fruit Strawberry, Peach, Apricot, Sweet Cherry. J. Agric. Sci. Nat. Res. 2008, 12, 219–228. [Google Scholar]
- Trigo, J.M. Qualidade de Mamão “Formosa” Minimamente Processado Utilizando Revestimentos Comestíveis; Mestrado em Ciência e Tecnologia de Alimentos, Universidade de São Paulo: Piracicaba, Brazil, 2010. [Google Scholar]
- Li, H.; Yu, T. Effect of Chitosan on Incidence of Brown Rot, Quality and Physiological Attributes of Postharvest Peach Fruit. J. Sci. Food Agric. 2001, 81, 269–274. [Google Scholar] [CrossRef]
- Abbas, M.F.; Fandi, B.S. Respiration Rate, Ethylene Production and Biochemical Changes during Fruit Development and Maturation of Jujube (Ziziphus Mauritiana Lamk). J. Sci. Food Agric. 2002, 82, 1472–1476. [Google Scholar] [CrossRef]
- Torres-León, C.; Vicente, A.A.; Flores-López, M.L.; Rojas, R.; Serna-Cock, L.; Alvarez-Pérez, O.B.; Aguilar, C.N. Edible Films and Coatings Based on Mango (Var. Ataulfo) by-Products to Improve Gas Transfer Rate of Peach. LWT 2018, 97, 624–631. [Google Scholar] [CrossRef]
- González-Aguilar, G.A.; Valenzuela-Soto, E.; Lizardi-Mendoza, J.; Goycoolea, F.; Martínez-Téllez, M.A.; Villegas-Ochoa, M.A.; Monroy-García, I.N.; Ayala-Zavala, J.F. Effect of Chitosan Coating in Preventing Deterioration and Preserving the Quality of Fresh-Cut Papaya ‘Maradol’. J. Sci. Food Agric. 2009, 89, 15–23. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Yuan, S.; Li, Q.; Pan, H.; Cao, J.; Jiang, W. Compositional Modifications of Bioactive Compounds and Changes in the Edible Quality and Antioxidant Activity of ‘Friar’ Plum Fruit during Flesh Reddening at Intermediate Temperatures. Food Chem. 2018, 254, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shu, C.; Fan, X.; Cao, J.; Jiang, W. Near-Freezing Temperature Storage Prolongs Storage Period and Improves Quality and Antioxidant Capacity of Nectarines. Sci. Hortic. 2018, 228, 196–203. [Google Scholar] [CrossRef]
- Drogoudi, P.D.; Tsipouridis, C.G. Effects of Cultivar and Rootstock on the Antioxidant Content and Physical Characters of Clingstone Peaches. Sci. Hortic. 2007, 115, 34–39. [Google Scholar] [CrossRef]
- Remorini, D.; Tavarini, S.; Degl’Innocenti, E.; Loreti, F.; Massai, R.; Guidi, L. Effect of Rootstocks and Harvesting Time on the Nutritional Quality of Peel and Flesh of Peach Fruits. Food Chem. 2008, 110, 361–367. [Google Scholar] [CrossRef]
- Monagas, M.; Bartolomé, B.; Gómez-Cordovés, C. Updated Knowledge about the Presence of Phenolic Compounds in Wine. Crit. Rev. Food Sci. Nutr. 2005, 45, 85–118. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Mula, H.M.; Serrano, M.; Valero, D. Alginate Coatings Preserve Fruit Quality and Bioactive Compounds during Storage of Sweet Cherry Fruit. Food Bioprocess. Technol. 2012, 5, 2990–2997. [Google Scholar] [CrossRef]
- Gol, N.B.; Patel, P.R.; Rao, T.V.R. Improvement of Quality and Shelf-Life of Strawberries with Edible Coatings Enriched with Chitosan. Postharvest Biol. Technol. 2013, 85, 185–195. [Google Scholar] [CrossRef]
- Kim, I.-H.; Lee, H.; Kim, J.E.; Song, K.B.; Lee, Y.S.; Chung, D.S.; Min, S.C. Plum Coatings of Lemongrass Oil-incorporating Carnauba Wax-based Nanoemulsion. J. Food Sci. 2013, 78, E1551–E1559. [Google Scholar] [CrossRef]
- Rocha, A.M.C.N.; Brochado, C.M.; Kirby, R.; Morais, A.M.M.B. Shelf-Life of Chilled Cut Orange Determined by Sensory Quality. Food Control 1995, 6, 317–322. [Google Scholar] [CrossRef]
- Nguyen, T.B.T.; Ketsa, S.; van Doorn, W.G. Relationship between Browning and the Activities of Polyphenoloxidase and Phenylalanine Ammonia Lyase in Banana Peel during Low Temperature Storage. Postharvest Biol. Technol. 2003, 30, 187–193. [Google Scholar] [CrossRef]
- Altunkaya, A.; Gökmen, V. Effect of Various Inhibitors on Enzymatic Browning, Antioxidant Activity and Total Phenol Content of Fresh Lettuce (Lactuca Sativa). Food Chem. 2008, 107, 1173–1179. [Google Scholar] [CrossRef]
- Khaliq, G.; Ramzan, M.; Baloch, A.H. Effect of Aloe Vera Gel Coating Enriched with Fagonia Indica Plant Extract on Physicochemical and Antioxidant Activity of Sapodilla Fruit during Postharvest Storage. Food Chem. 2019, 286, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Kritzinger, I.; Theron, K.I.; Lötze, G.F.A.; Lötze, E. Peel Water Vapour Permeance of Japanese Plums as Indicator of Susceptibility to Postharvest Shriveling. Sci. Hortic. 2018, 242, 188–194. [Google Scholar] [CrossRef]
- Vázquez-Celestino, D.; Ramos-Sotelo, H.; Rivera-Pastrana, D.M.; Vázquez-Barrios, M.E.; Mercado-Silva, E.M. Effects of Waxing, Microperforated Polyethylene Bag, 1-Methylcyclopropene and Nitric Oxide on Firmness and Shrivel and Weight Loss of ‘Manila’ Mango Fruit during Ripening. Postharvest Biol. Technol. 2016, 111, 398–405. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Day, K.R. Stone Fruit. In Crop Post-Harvest: Science and Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 212–225. ISBN 978-1-4443-5465-2. [Google Scholar]
- Certel, M.; Uslu, M.K.; Ozdemir, F. Effects of Sodium Caseinate- and Milk Protein Concentrate-Based Edible Coatings on the Postharvest Quality of Bing Cherries. J. Sci. Food Agric. 2004, 84, 1229–1234. [Google Scholar] [CrossRef]
- Dong, F.; Wang, X. Guar Gum and Ginseng Extract Coatings Maintain the Quality of Sweet Cherry. LWT 2018, 89, 117–122. [Google Scholar] [CrossRef]
- Burdon, J.; Punter, M.; Billing, D.; Pidakala, P.; Kerr, K. Shrivel Development in Kiwifruit. Postharvest Biol. Technol. 2014, 87, 1–5. [Google Scholar] [CrossRef]
- Benítez, S.; Achaerandio, I.; Sepulcre, F.; Pujolà, M. Aloe Vera Based Edible Coatings Improve the Quality of Minimally Processed ‘Hayward’ Kiwifruit. Postharvest Biol. Technol. 2013, 81, 29–36. [Google Scholar] [CrossRef]
- Chaple, S.; Vishwasrao, C.; Ananthanarayan, L. Edible Composite Coating of Methyl Cellulose for Post-Harvest Extension of Shelf-Life of Finger Hot Indian Pepper (Pusa Jwala). J. Food Process. Preserv. 2017, 41, e12807. [Google Scholar] [CrossRef]
- Díaz-Pérez, J.C.; Muy-Rangel, M.D.; Mascorro, A.G. Fruit Size and Stage of Ripeness Affect Postharvest Water Loss in Bell Pepper Fruit (Capsicum annuum L.). J. Sci. Food Agric. 2007, 87, 68–73. [Google Scholar] [CrossRef]
- Xin, Y.; Chen, F.; Lai, S.; Yang, H. Influence of Chitosan-Based Coatings on the Physicochemical Properties and Pectin Nanostructure of Chinese Cherry. Postharvest Biol. Technol. 2017, 133, 64–71. [Google Scholar] [CrossRef]
- Ma, L.; Cao, J.; Xu, L.; Zhang, X.; Wang, Z.; Jiang, W. Effects of 1-Methylcyclopropene in Combination with Chitosan Oligosaccharides on Post-Harvest Quality of Aprium Fruits. Sci. Hortic. 2014, 179, 301–305. [Google Scholar] [CrossRef]
- Paladines, D.; Valero, D.; Valverde, J.M.; Díaz-Mula, H.; Serrano, M.; Martínez-Romero, D. The Addition of Rosehip Oil Improves the Beneficial Effect of Aloe Vera Gel on Delaying Ripening and Maintaining Postharvest Quality of Several Stonefruit. Postharvest Biol. Technol. 2014, 92, 23–28. [Google Scholar] [CrossRef]
- Morillon, V.; Debeaufort, F.; Blond, G.; Capelle, M.; Voilley, A. Factors Affecting the Moisture Permeability of Lipid-Based Edible Films: A Review. Crit. Rev. Food Sci. Nutr. 2002, 42, 67–89. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gago, M.B.; Rojas, C.; DelRio, M.A. Effect of Lipid Type and Amount of Edible Hydroxypropyl Methylcellulose-Lipid Composite Coatings Used to Protect Postharvest Quality of Mandarins Cv. Fortune. J. Food Sci. 2002, 67, 2903–2910. [Google Scholar] [CrossRef]
- Ni, Y.; Turner, D.; Yates, K.M.; Tizard, I. Isolation and Characterization of Structural Components of Aloe vera L. Leaf Pulp. Int. Immunopharmacol. 2004, 4, 1745–1755. [Google Scholar] [CrossRef]
- Moore, D.E.; McAnalley, B.H. Drink Containing Mucilaginous Polysaccharides and Its Preparation. U.S. Patent US5443830A, 22 August 1995. [Google Scholar]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Sobrino-López, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Shelf-Life Extension of Fresh-Cut “Fuji” Apples at Different Ripeness Stages Using Natural Substances. Postharvest Biol. Technol. 2007, 45, 265–275. [Google Scholar] [CrossRef]
- Villalobos-Carvajal, R.; Hernández-Muñoz, P.; Albors, A.; Chiralt, A. Barrier and Optical Properties of Edible Hydroxypropyl Methylcellulose Coatings Containing Surfactants Applied to Fresh Cut Carrot Slices. Food Hydrocoll. 2009, 23, 526–535. [Google Scholar] [CrossRef]
- Navarro, D.; Díaz-Mula, H.M.; Guillén, F.; Zapata, P.J.; Castillo, S.; Serrano, M.; Valero, D.; Martínez-Romero, D. Reduction of Nectarine Decay Caused by Rhizopus Stolonifer, Botrytis Cinerea and Penicillium Digitatum with Aloe Vera Gel Alone or with the Addition of Thymol. Int. J. Food Microbiol. 2011, 151, 241–246. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Q.; Ge, L.; Zhang, G.; Zhang, X.; Zhang, X. Chitin Enhances Biocontrol of Rhodotorula Mucilaginosa to Postharvest Decay of Peaches. Int. J. Biol. Macromol. 2016, 88, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Khare, S.; Tonk, A.; Rawat, A. Foodborne Diseases Outbreak in India: A Review. Int. J. Food Sci. Nutr. 2018, 3, 9–10. [Google Scholar]
- Nayik, G.; Majid, I.; Kumar, V. Developments in Edible Films and Coatings for the Extension of Shelf Life of Fresh Fruits. Am. J. Nutr. Food Sci. 2015, 2, 16–20. [Google Scholar]
- Romanazzi, G.; Nigro, F.; Ippolito, A. Short Hypobaric Treatments Potentiate the Effect of Chitosan in Reducing Storage Decay of Sweet Cherries. Postharvest Biol. Technol. 2003, 29, 73–80. [Google Scholar] [CrossRef]
- Hajji, S.; Younes, I.; Affes, S.; Boufi, S.; Nasri, M. Optimization of the Formulation of Chitosan Edible Coatings Supplemented with Carotenoproteins and Their Use for Extending Strawberries Postharvest Life. Food Hydrocoll. 2018, 83, 375–392. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, F.; Lai, S.; Wang, H.; Yang, H. Impact of Soybean Protein Isolate-Chitosan Edible Coating on the Softening of Apricot Fruit during Storage. LWT 2018, 96, 604–611. [Google Scholar] [CrossRef]
- Bal, E. Postharvest Application of Chitosan and Low Temperature Storage Affect Respiration Rate and Quality of Plum Fruits. J. Agric. Sci. Technol. 2013, 15, 1219–1230. [Google Scholar]
- Petersen, K.; Væggemose Nielsen, P.; Bertelsen, G.; Lawther, M.; Olsen, M.B.; Nilsson, N.H.; Mortensen, G. Potential of Biobased Materials for Food Packaging. Trends Food Sci. Technol. 1999, 10, 52–68. [Google Scholar] [CrossRef]
- Bourtoom, T. Edible Films and Coatings: Characteristics and Properties. Int. Food Res. J. 2008, 15, 237–248. [Google Scholar]
- Rodrigues, C.; Gaspar, P.D.; Simões, M.P.; Silva, P.D.; Andrade, L.P. Review on Techniques and Treatments toward the Mitigation of the Chilling Injury of Peaches. J. Food Process. Preserv. 2022, 46, e14358. [Google Scholar] [CrossRef]
- Abbasi, N.; Ali, I.; Hafiz, I.; Alenazi, M.; Shafiq, M. Effects of Putrescine Application on Peach Fruit during Storage. Sustainability 2019, 11, 2013. [Google Scholar] [CrossRef]
- Nilo-Poyanco, R.; Vizoso, P.; Sanhueza, D.; Balic, I.; Meneses, C.; Orellana, A.; Campos-Vargas, R. A Prunus Persica Genome-Wide RNA-Seq Approach Uncovers Major Differences in the Transcriptome among Chilling Injury Sensitive and Non-Sensitive Varieties. Physiol. Plant. 2019, 166, 772–793. [Google Scholar] [CrossRef]
- Zhou, D.; Sun, Y.; Li, M.; Zhu, T.; Tu, K. Postharvest Hot Air and UV-C Treatments Enhance Aroma-Related Volatiles by Simulating the Lipoxygenase Pathway in Peaches during Cold Storage. Food Chem. 2019, 292, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Lurie, S.; Crisosto, C.H. Chilling Injury in Peach and Nectarine. Postharvest Biol. Technol. 2005, 37, 195–208. [Google Scholar] [CrossRef]
- Shan, T.; Jin, P.; Zhang, Y.; Huang, Y.; Wang, X.; Zheng, Y. Exogenous Glycine Betaine Treatment Enhances Chilling Tolerance of Peach Fruit during Cold Storage. Postharvest Biol. Technol. 2016, 114, 104–110. [Google Scholar] [CrossRef]
- Manganaris, G.A.; Vasilakakis, M.; Diamantidis, G.; Mignani, I. Changes in Cell Wall Neutral Sugar Composition and Ethylene Evolution as Potential Indicators of Woolliness in Cold-Stored Nectarine Fruit. J. Food Qual. 2005, 28, 407–416. [Google Scholar] [CrossRef]
- Zhang, D.; Quantick, P.C. Effects of Chitosan Coating on Enzymatic Browning and Decay during Postharvest Storage of Litchi (Litchi Chinensis Sonn.) Fruit. Postharvest Biol. Technol. 1997, 12, 195–202. [Google Scholar] [CrossRef]
- Navarro-Tarazaga, M.L.; Sothornvit, R.; Pérez-Gago, M.B. Effect of Plasticizer Type and Amount on Hydroxypropyl Methylcellulose−Beeswax Edible Film Properties and Postharvest Quality of Coated Plums (Cv. Angeleno). J. Agric. Food Chem. 2008, 56, 9502–9509. [Google Scholar] [CrossRef]
- Germano, T.A.; Aguiar, R.P.; Bastos, M.S.R.; Moreira, R.A.; Ayala-Zavala, J.F.; de Miranda, M.R.A. Galactomannan-Carnauba Wax Coating Improves the Antioxidant Status and Reduces Chilling Injury of ‘Paluma’ Guava. Postharvest Biol. Technol. 2019, 149, 9–17. [Google Scholar] [CrossRef]
- Rasouli, M.; Koushesh Saba, M.; Ramezanian, A. Inhibitory Effect of Salicylic Acid and Aloe Vera Gel Edible Coating on Microbial Load and Chilling Injury of Orange Fruit. Sci. Hortic. 2019, 247, 27–34. [Google Scholar] [CrossRef]
Quality Aspect | Primary Concern |
---|---|
Texture (mouth feel) | Fibrousness/toughness |
Juiciness | |
Crispness | |
Softness/firmness | |
Appearance (visual) | Defects |
Gloss | |
Size | |
Form and shape | |
Color (uniformity, intensity) | |
Nutritional value | Minerals |
Vitamins | |
Flavor (aroma, taste) | Astringency |
Acidity | |
Bitterness | |
Sweetness | |
Volatile compounds | |
Safety | Chemical contaminants |
Toxic substances | |
Microbial contamination |
Fruit | Edible Coating | Formulations | Storage Condition | Findings | References |
---|---|---|---|---|---|
Peach (‘Alberta’) | Methylcellulose (MC) and Alginate (A) | MC 3%, A 2% | 15 °C and 40% RH, stored for 21 days (A) and 24 days (MC) | Moisture loss, changes in quality parameters, and respiration rate were much lower in coated peaches. MC-coated fruit shows (68%) a high effect regarding respiration than A (62%). | [46] |
Peach (Persica vulgaris Miller.) | Wax and Carboxymethylcellulose (CMC) | 25 °C and 75% RH, stored for 12 days | Reduces respiration, weight loss, and moisture barrier and partially inhibits PPO activity. | [47] | |
Nectarines | Carnauba Wax | Retards fungal and enhances brightness and firmness of fruit, and no spore germination of R. stolonifera and M. fructicola. | [48] | ||
Peach (‘Jefferson’) | Pectin and Cinnamon Essential Oil (EO) | 5 °C and 90% RH, stored for 15 days | Enhances antioxidant and antimicrobial activity. Decreases microbial growth. Retards color, taste, and flavor changes. | [49] | |
Peach (‘RedHeaven’) | Aloe Vera or Aloe Arborescens gels | 20 °C and 85% RH, stored for 6 days | Retards ethylene production and weight loss. A significant delay was found in color change and ripening index. | [22] | |
Peach (Granada cultivar) | Xanthan Gum, TaraGum, Sodium Alginate | Xanthan gum (0.5% w/v), tara gum (0.5% w/v), alginate (2% w/v) | 4 ± 1 °C, stored for 12 days | Tara gum showed the best result and led to firmness maintenance, mass loss reduction, lower mold and yeast growth, and lower color alteration. | [50] |
Nectarine (‘Arctic Snow’) | Aloe Vera Gel | Aloe vera gel dried powder (200:1) | 20 ± 1 °C and 60 ± 5% RH, stored for 8 days. In separate trials, fruits were kept at 0 ± 0.5 °C and 90 ± 5% RH for 3 and 6 weeks before ripening at 20 ± 1 °C | Reduction was found in respiration rate, production of ethylene, electrolyte leakage, weight loss, and maintaining firmness. | [51] |
Peach | Chitosan (CS), Chitosan Chlorogenic Acid Conjugate CS-g-CGA | 20 °C, stored for 8 days | CS-g-CGA maintained soluble solid contents, firmness, titratable acidity, and L-ascorbic acid contents well. It also prevented decay index, respiration rate, and weight loss increase. | [52] | |
Peach | Sodium Alginate (SA), Rhubarb | 1% sodium alginate and rhubarb-SA | 28 ± 1 °C and 90% RH, stored for 7 days | Reduction was found in respiration rate, weight loss, PPO Activity and MDA content. It also has good anti-fungal activity. | [53] |
Peach (‘Jinxiu’) | Peach Gum | Peach gum 1%, 5% and 10% v/v | 8 °C, stored for 25 days | Fruit softening, ethylene production, and reduction in sorbitol are repressed. Weight loss is also reduced. | [54] |
Peach | Aloe Vera Gel | A. gel diluted with distilled water (1:3) | 1 °C and 95% RH, stored for 30 days | Reduction in total soluble solids (TSS), weight loss, titratable acidity (TA) color change. Increased visual properties have more favorable texture and flavor. | [55] |
White Peach Fruit (‘Settembrina’) | Aloe Arborescens (EC), 1-Methycyclopropene (1-MCP) | EC 40% (v/w), 1-MCP 0.14%, EC 40% (v/w) + 1-MCP 0.14% | Stored at 1 °C for 28 days, whereas in second trial, fruits were transferred at 20 °C for six days | Retards ripening and maintains flesh firmness, color, and weight. Decreases transpiration and respiration. | [56] |
Effect of Edible Coatings on Physico-Chemical Properties of Peach | |||
---|---|---|---|
Quality Parameter | Coating Material | Effect of Coating | References |
Pigment and color attributes | Aloe arborescens and aloe vera gel. | Deferred external color changes. A lower decrease in chroma index. | [22] |
Aloe vera gel | Greater hue angle. Gradual decrease in hue angle. Yet, less decrease in comparison to coated ones. | [55] | |
Tara gum | Less alteration in color as compared to control group. | [50] | |
Firmness | Methylcellulose and sodium alginate | Retained significantly more firmness during storage in comparison with control fruit. | [46] |
Rhubarb-SA (sodium alginate) | Showed significantly higher firmness than control group. | [53] | |
Aloe vera gel | Minimum firmness loss was observed at later storage period. | [55] | |
CS-g-CGA (chitosan chlorogenic acid conjugate) | Retard decrease in firmness. | [52] | |
1-Methylcyclopropene (1-MCP) and aloe arborescens (EC) | Showed good firmness values. | [56] | |
Cassava starch, microemulsion based on cassava starch, and commercial wax coating | Reduction in firmness was observed in all treatments. | [81] | |
Total soluble solids | CS-g-CGA (chitosan chlorogenic acid conjugate) | Retarded TSS rise in peach fruit | [52] |
Aloe vera gel | Aloe vera-coated peaches show a slight reduction in TSS compared to a control group. | [55] | |
Aloe arborescens (EC), 1-Methylcyclopropene (1-MCP), or EC+1-MCP | A significant reduction in TSS values in comparison with the control group | [56] | |
Titratable acidity | Tara gum and xanthan gum | Showed a reduction in TSS and slowed down ripening. | [87] |
Methylcellulose and sodium alginate | Experienced a minimum decrease in TA compared to control group. | [46] | |
Chitosan | Reduces acidity at slower rate. | [88] | |
Effect of edible coatings on physiological factors of Peach Fruit. | |||
Ethylene production | Aloe vera gel | Reduction in ethylene production during storage. | [22,51] |
Glycerol, mango seed kernel antioxidant extracts, and mango peel solution | 64% reduction in ethylene production was found. | [90] | |
Respiration rate | Methylcellulose and sodium alginate | Reduced the rate of respiration by 68% and 62%, respectively. | [46] |
Chitosan or chitosan chlorogenic acid | Prevented peach fruit respiration rates from rising during storage. | [52] | |
Effect of edible coatings on antioxidant and phytochemical properties of peach fruit. | |||
Antioxidant and phytochemical properties | Sodium alginate alone or in combination with rhubarb (rhubarb-SA) | Showed significant lower PPO values in rhubarb-SA-coated fruit throughout storage in comparison with 1.0% SA and control group. The PPO values were found to be 20.8% greater in control group than with rhubarb-SA 14.9% and SA coatings 1.0%. | [53] |
Aloe arborescens (EC) and 1-Methylcyclopropene (1-MCP), or EC+1MCP | Accumulation of total phenol content (TPC), which prolonged the shelf life and lowered the decay incidence. | [103] | |
Effect of edible coatings on decay index and physiological disorders of peach fruit. | |||
Weight loss | Chitosan CS and chitosan chlorogenic acid conjugate | Significant reduction in weight loss during storage. | [52] |
Aloe vera gel | Throughout ripening, a significant weight loss decrease was noticed. Aloe vera gel had a 65.3% lower mean weight loss than uncoated ones. | [51] | |
Tara gum | Tara gum-coated peaches resulted in a minimum mass loss of 7.60%. Thus, in terms of mass loss, Tara gum showed the best results. | [50] | |
Decay index | Chitosan chlorogenic acid conjugate (CS-g-CGA) | Showed lower decay index of about 20.6% in comparison with a control group. | [52] |
Sodium alginate | Decay index was found to be significantly less as compared to control group. | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aaqil, M.; Peng, C.; Kamal, A.; Nawaz, T.; Gong, J. Recent Approaches to the Formulation, Uses, and Impact of Edible Coatings on Fresh Peach Fruit. Foods 2024, 13, 267. https://doi.org/10.3390/foods13020267
Aaqil M, Peng C, Kamal A, Nawaz T, Gong J. Recent Approaches to the Formulation, Uses, and Impact of Edible Coatings on Fresh Peach Fruit. Foods. 2024; 13(2):267. https://doi.org/10.3390/foods13020267
Chicago/Turabian StyleAaqil, Muhammad, Chunxiu Peng, Ayesha Kamal, Taufiq Nawaz, and Jiashun Gong. 2024. "Recent Approaches to the Formulation, Uses, and Impact of Edible Coatings on Fresh Peach Fruit" Foods 13, no. 2: 267. https://doi.org/10.3390/foods13020267
APA StyleAaqil, M., Peng, C., Kamal, A., Nawaz, T., & Gong, J. (2024). Recent Approaches to the Formulation, Uses, and Impact of Edible Coatings on Fresh Peach Fruit. Foods, 13(2), 267. https://doi.org/10.3390/foods13020267