In Vitro Functional Properties of Rosehips from ‘Aurora’ Edible Garden Rose’s Collection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Morphological Characterization
2.3. Rosehip Extract Preparation
2.4. Determination of TPC
2.5. Determination of TFC
2.6. Quantitative Analysis of Selected Phenolic Compounds by LC-MS/MS
2.7. Determination of Vit C Content
2.8. Antioxidant Potential
2.8.1. DPPH Assay
2.8.2. FRAP Assay
2.9. Inhibition of AChE
2.10. Statistical Analysis
3. Results
3.1. Morphological Features of Rosehips
3.2. Chemical Profile of Rosehip Extracts
3.3. Antioxidant Activity and Potential of Rosehip Extract to Inhibit AChE
3.4. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hegde, A.S.; Gupta, S.; Sharma, S.; Srivatsan, V.; Kumari, P. Edible Rose Flowers: A Doorway to Gastronomic and Nutraceutical Research. Food Res. Int. 2022, 162, 111977. [Google Scholar] [CrossRef] [PubMed]
- Mlcek, J.; Plaskova, A.; Jurikova, T.; Sochor, J.; Baron, M.; Ercisli, S. Chemical, Nutritional and Sensory Characteristics of Six Ornamental Edible Flowers Species. Foods 2021, 10, 2053. [Google Scholar] [CrossRef] [PubMed]
- Božanić Tanjga, B.; Ljubojević, M.; Đukić, A.; Vukosavljev, M.; Ilić, O.; Narandžić, T. Selection of Garden Roses to Improve the Ecosystem Services They Provide. Horticulturae 2022, 8, 883. [Google Scholar] [CrossRef]
- Simin, N.; Lesjak, M.; Živanović, N.; Božanić Tanjga, B.; Orčić, D.; Ljubojević, M. Morphological Characters, Phytochemical Profile and Biological Activities of Novel Garden Roses Edible Cultivars. Horticulturae 2023, 9, 1082. [Google Scholar] [CrossRef]
- Nađpal, J.D.; Lesjak, M.M.; Mrkonjić, Z.O.; Majkić, T.M.; Četojević-Simin, D.D.; Mimica-Dukić, N.M.; Beara, I.N. Phytochemical composition and in vitro functional properties of three wild rose hips and their traditional preserves. Food Chem. 2018, 241, 290–300. [Google Scholar] [CrossRef]
- Patel, S. Rose hip as an underutilized functional food: Evidence-based review. Trends Food Sci. Tech. 2017, 63, 29–38. [Google Scholar] [CrossRef]
- Winther, K.; Vinther Hansen, A.S.; Campbell-Tofte, J. Bioactive ingredients of rose hips (Rosa canina L.) with special reference to antioxidative and anti-inflammatory properties: In vitro studies. Botanics 2016, 6, 11–23. [Google Scholar] [CrossRef]
- Gao, X.; Björk, L.; Trajkovski, V.; Uggla, M. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J. Sci. Food Agr. 2000, 80, 2021–2027. [Google Scholar] [CrossRef]
- Angelov, G.; Boyadzhieva, S.S.; Georgieva, S.S. Rosehip extraction: Process optimization and antioxidant capacity of extracts. Cent. Eur. J. Chem. 2014, 12, 502–508. [Google Scholar] [CrossRef]
- Ilyasoğlu, H. Characterization of Rosehip (Rosa canina L.) Seed and Seed Oil. Int. J. Food Prop. 2014, 17, 1591–1598. [Google Scholar] [CrossRef]
- Aladedunye, F.; Kersting, H.J.; Matthäus, B. Phenolic extract from wild rose hip with seed: Composition, antioxidant activity, and performance in canola oil. Eur. J. Lipid Sci. Technol. 2014, 116, 1025–1034. [Google Scholar] [CrossRef]
- Nađpal, J.D.; Lesjak, M.M.; Šibul, F.S.; Anačkov, G.T.; Četojević-Simin, D.D.; Mimica-Dukić, N.M.; Beara, I.N. Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds. Food Chem. 2016, 192, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Petkova, N.; Ognyanov, M.; Kirchev, M.; Stancheva, M. Bioactive compounds in water extracts prepared from rosehip-containing herbal blends. J. Food Process. Pres. 2020, 45, e14645. [Google Scholar] [CrossRef]
- Nagatomo, A.; Nishida, N.; Matsuura, Y.; Shibata, N. Rosehip Extract Inhibits Lipid Accumulation in White Adipose Tissue by Suppressing the Expression of Peroxisome Proliferator-activated Receptor Gamma. Prev. Nutr. Food Sci. 2013, 18, 85–91. [Google Scholar] [CrossRef]
- Nagatomo, A.; Nishida, N.; Fukuhara, I.; Noro, A.; Kozai, Y.; Sato, H.; Matsuura, Y. Daily intake of rosehip extract decreases abdominal visceral fat in preobese subjects: A randomized, double-blind, placebo-controlled clinical trial. Diabetes Metab. Syndr. Obes. 2015, 8, 147–156. [Google Scholar] [CrossRef]
- Chen, S.J.; Aikawa, C.; Yoshida, R.; Kawaguchi, T.; Matsui, T. Anti-prediabetic effect of rose hip (Rosa canina) extract in spontaneously diabetic Torii rats. J. Sci. Food Agr. 2017, 97, 3923–3928. [Google Scholar] [CrossRef]
- Cagle, P.; Idassi, O.; Carpenter, J.; Minor, R.; Goktepe, I.; Martin, P. Effect of Rosehip (Rosa Canina) Extracts on Human Brain Tumor Cell Proliferation and Apoptosis. J. Cancer Ther. 2012, 3, 534–545. [Google Scholar] [CrossRef]
- Orhan, D.D.; Hartevioğlu, A.; Küpeli, E.; Yesilada, E. In Vivo Anti-Inflammatory and Antinociceptive Activity of the Crude Extract and Fractions from Rosa Canina L. Fruits. J. Ethnopharmacol. 2007, 112, 394–400. [Google Scholar] [CrossRef]
- Simin, N.; Živanović, N.; Božanić Tanjga, B.; Lesjak, M.; Narandžić, T.; Ljubojević, M. New garden rose (Rosa × hybrida) cultivars with intensely colored flowers as rich sources of bioactive compounds. Plants 2024, 13, 424. [Google Scholar] [CrossRef]
- Vossen, E.; Utrera, M.; Smet, S.D.; Morcuende, D.; Estévez, M. Dog Rose (Rosa Canina L.) as a Functional Ingredient in Porcine Frankfurters without Added Sodium Ascorbate and Sodium Nitrite. Meat Sci. 2012, 92, 451–457. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Cristea, E.; Patras, A.; Sturza, R.; Niculaua, M. Rose Hips, a Valuable Source of Antioxidants to Improve Gingerbread Characteristics. Molecules 2020, 25, 5659. [Google Scholar] [CrossRef] [PubMed]
- Igual, M.; Chiş, M.S.; Păucean, A.; Vodnar, D.C.; Muste, S.; Man, S.; Martínez-Monzó, J.; García-Segovia, P. Valorization of Rose Hip (Rosa canina) Puree Co-Product in Enriched Corn Extrudates. Foods 2021, 10, 2787. [Google Scholar] [CrossRef] [PubMed]
- Go, E.; Song, K.B. Antioxidant Properties of Rye Starch Films Containing Rosehip Extract and Their Application in Packaging of Chicken Breast. Starch—Stärke 2019, 71, 1900116. [Google Scholar] [CrossRef]
- Kunc, N.; Mikulič-Petkovšek, M.; Hudina, M.; Bavcon, J.; Vreš, B.; Osterc, G.; Ravnjak, B. Autochthonous Rose Hybrid Rosa pendulina × spinosissima Overshines Main Genotype Rosa pendulina in the Biochemical Characteristics of Their Hips. Horticulturae 2022, 8, 669. [Google Scholar] [CrossRef]
- Ljubojević, M.; Narandžić, T.; Ostojić, J.; Božanić Tanjga, B.; Grubač, M.; Kolarov, R.; Greksa, A.; Pušić, M. Rethinking Horticulture to Meet Sustainable Development Goals—The Case Study of Novi Sad, Serbia. Horticulturae 2022, 8, 1222. [Google Scholar] [CrossRef]
- UPOV. Guidelines for the Conduct of Tests Distinctness, Uniformity and Stability—Rosa L.; International Union for the Protection of New Varieties of Plants: Geneva, Switzerland, 2010. [Google Scholar]
- Šibul, F.S.; Orčić, D.Z.; Svirčev, E.; Mimica-Dukić, N.M. Optimization of extraction conditions for secondary biomolecules from various plant species. Hem. Ind. 2016, 70, 473–483. [Google Scholar] [CrossRef]
- Hernández, Y.; Lobo, G.M.; González, M. Determination of vitamin C in tropical fruits: A comparative evaluation of methods. Food Chem. 2006, 96, 654–664. [Google Scholar] [CrossRef]
- Orčić, D.; Francišković, M.; Bekvalac, K.; Svirčev, E.; Beara, I.; Lesjak, M.; Mimica-Dukić, M. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem. 2014, 143, 48–53. [Google Scholar] [CrossRef]
- Kumari, P.; Raju, D.V.S.; Prasad, K.V.; Saha, S.; Panwar, S.; Paul, S.; Banyal, N.; Bains, A.; Chawla, P.; Fogarasi, M.; et al. Characterization of Anthocyanins and Their Antioxidant Activities in Indian Rose Varieties (Rosa × hybrida) Using HPLC. Antioxidants 2022, 11, 2032. [Google Scholar] [CrossRef]
- Bozhuyuk, M.R.; Ercisli, S.; Karatas, N.; Ekiert, H.; Elansary, H.O.; Szopa, A. Morphological and Biochemical Diversity in Fruits of Unsprayed Rosa canina and Rosa dumalis Ecotypes Found in Different Agroecological Conditions. Sustainability 2021, 13, 8060. [Google Scholar] [CrossRef]
- Ubaydullayev, F.; Gaffarov, S. Selection of prosperous varieties of rosehips (Rosa L.) and their seed productivity in Tashkent oasis, Uzbekistan. E3S Web Conf. 2021, 258, 04027. [Google Scholar] [CrossRef]
- Ercisli, S.; Guleryuz, M. Fruit properties of promising rose hips (Rosa spp.) from the North-eastern Anatolia Region of Turkey. Asian J. Chem. 2006, 18, 239–242. [Google Scholar]
- Türkben, C.; Barat, E.; Çopur, Ö.U.; Durgut, E.; Himelrick, D.G. Evaluation of rose hips (Rosa spp.) selections. Int. J. Fruit Sci. 2005, 5, 113–121. [Google Scholar] [CrossRef]
- Kunc, N.; Hudina, M.; Osterc, G.; Bavcon, J.; Ravnjak, B.; Mikulič-Petkovšek, M. Phenolic Compounds of Rose Hips of Some Rosa Species and Their Hybrids Native Grown in the South-West of Slovenia during a Two-Year Period (2020–2021). Foods 2023, 12, 1952. [Google Scholar] [CrossRef]
- Çelik, F.; Kazankaya, A.; Ercişli, S. Fruit characteristics of some selected promising rose hip (Rosa spp.) cultivars from Van region of Turkey. Afr. J. Agr. Res. 2009, 4, 236–240. [Google Scholar]
- Ipek, P.; Balta, F. Fruit properties of rose hip (Rosa spp.) cultivars selection from Akkus, Ordu province. YYU J. Agr. Sci. 2020, 30, 338–344. [Google Scholar] [CrossRef]
- Medveckienė, B.; Levickienė, D.; Vaitkevičienė, N.; Vaštakaitė-Kairienė, V.; Kulaitienė, J. Changes in Pomological and Physical Parameters in Rosehips during Ripening. Plants 2023, 12, 1314. [Google Scholar] [CrossRef]
- Karataş, N. Fruit morphological and nutritional characteristics of different Rosa pimpinnelifolia cultivars. Int. J. Agric. For. Life Sci. 2021, 5, 184–188. [Google Scholar]
- Sagbas, H.I. Investigation of Fruit Quality and Biochemical Traits of Rosehip (R. canina) Ecotypes in the Aegean Region of Türkiye. Horticulturae 2023, 9, 1292. [Google Scholar] [CrossRef]
- Mertoğlu, K.; Durul, M.S.; Korkmaz, N.; Polat, M.; Bulduk, I.; Esatbeyoglu, T. Screening and classification of rosehip (Rosa canina L.) cultivars based on horticultural characteristics. BMC Plant Biol. 2024, 24, 345. [Google Scholar] [CrossRef]
- Roman, I.; Stanila, A.; Stanila, S. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transilvania. Chem. Cent. J. 2013, 7, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Fascella, G.; D’Angiolillo, F.; Mammano, M.M.; Amenta, M.; Romeo, F.V.; Rapisarda, P.; Ballistreri, G. Bioactive Compounds and Antioxidant Activity of Four Rose Hip Species from Spontaneous Sicilian Flora. Food Chem. 2019, 289, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Esitken, A. Fruit characteristics of native rose hip (Rosa spp.) selections from the Erzurum province of Turkey. N. Z. J. Crop Hortic. Sci. 2004, 32, 51–53. [Google Scholar] [CrossRef]
- Proteggente, A.R.; Pannala, A.S.; Paganga, G.; Buren, L.V.; Wagner, E.; Wiseman, S.; van de Put, F.; Dacombe, C.; Rice-Evans, C.A. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic. Res. 2002, 36, 217–233. [Google Scholar] [CrossRef]
- Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT-Food Sci. Technol. 2014, 57, 126–133. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, M.; Luo, L.; Pan, H.; Zhang, Q.; Yu, C. Metabolic profiles, bioactive compounds and antioxidant activity of rosehips from Xinjiang, China. LWT-Food Sci. Technol. 2023, 174, 114451. [Google Scholar] [CrossRef]
- Ersoy, N.; Bagci, Y.; Zenginbal, H.; Ozen, M.S.; Elidemir, A.Y. Antioxidant properties of Rosehip fruit types (Rosa canina sp.) selected from Bolu-Turkey. Int. J. Sci. Knowl. 2015, 4, 51–59. [Google Scholar]
- Singh, M.; Kaur, M.; Kukreja, H.; Chugh, R.; Silakari, O.; Singh, D. Acetylcholinesterase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection. Eur. J. Med. Chem. 2013, 70, 165–188. [Google Scholar] [CrossRef]
- Olech, M.; Nowak, R.; Załuski, D.; Kapusta, I.; Amarowicz, R.; Oleszek, W. Hyaluronidase, acetylcholinesterase inhibiting potential, antioxidant activity, and LC-ESI-MS/MS analysis of polyphenolics of rose (Rosa rugosa Thunb.) teas and tinctures. Int. J. Food Prop. 2017, 20 (Suppl. S1), S16–S25. [Google Scholar] [CrossRef]
- Nicolescu, A.; Babotă, M.; Zhang, L.; Bunea, C.I.; Gavrilaș, L.; Vodnar, D.C.; Mocan, A.; Crișan, G.; Rocchetti, G. Optimized Ultrasound-Assisted Enzymatic Extraction of Phenolic Compounds from Rosa canina L. Pseudo-Fruits (Rosehip) and Their Biological Activity. Antioxidants 2022, 11, 1123. [Google Scholar] [CrossRef]
Cultivar | Fruit Mass (g) | Fruit Height (mm) | Fruit Width (mm) | Fruit Thickness (mm) | Mesocarp Mass (g) | Mesocarp Thickness (mm) | Seed Number per Fruit | Seed Mass (g) | Mesocarp-to-Fruit Ratio (%) |
---|---|---|---|---|---|---|---|---|---|
PAU | 3.87 b | 12.85 c | 17.55 b | 17.66 b | 3.00 b | 2.95 a | 40.83 a | 0.0135 a | 76.89 a |
BBA | 4.40 ab | 20.72 b | 20.81 ab | 20.44 ab | 3.32 ab | 3.15 a | 56.17 a | 0.0137 a | 75.47 a |
ARA | 4.04 ab | 17.79 b | 19.50 ab | 18.55 b | 3.08 b | 3.06 a | 39.50 a | 0.0136 a | 76.13 a |
BA | 5.15 a | 27.86 a | 23.66 a | 23.82 a | 4.09 a | 3.03 a | 45.17 a | 0.0142 a | 79.5 a |
RWA | 3.96 b | 14.22 c | 17.17 b | 17.53 b | 3.05 b | 3.00 a | 35.18 a | 0.0135 a | 77.02 a |
Cultivar | Fruit Shape | Fruit Color | Mesocarp Color | Taste |
---|---|---|---|---|
PAU | Pitcher-shaped, flattened 100% * | Red | Orange | Medium acidity, medium sweetness |
BBA | Pitcher-shaped, flattened 25% | Red | Orange | Medium acidity, medium sweetness |
ARA | Pitcher-shaped, flattened 50% | Red | Orange | Medium acidity, medium sweetness |
BA | Pitcher-shaped, not flattened | Orange | Orange | Medium acidity, medium sweetness |
RWA | Pitcher-shaped, flattened 75% | Orange | Orange | Medium acidity, medium sweetness |
Cultivar | TPC | TFC | Vit C | ||
---|---|---|---|---|---|
mg GAE/g de | mg GAE/g fw | mg QE/g de | µg QE/g fw | µg/g fw | |
PAU | 55.7 ± 3.55 b | 7.72 ± 0.49 a | 2.14 ± 0.09 a | 296 ± 12.1 a | 2348 ± 121 a |
BBA | 63.9 ± 1.84 a | 6.45 ± 0.19 b | 1.80 ± 0.05 b | 182 ± 4.74 c | 2135 ± 57.0 b |
ARA | 47.4 ± 1.25 c | 4.57 ± 0.12 d | 0.85 ± 0.01 d | 82.1 ± 1.09 e | 2384 ± 0.87 a |
BA | 58.6 ± 2.77 ab | 5.34 ± 0.25 c | 1.12 ± 0.10 c | 102 ± 9.10 d | 2011 ± 36.1 b |
RWA | 37.1 ± 0.99 d | 4.75 ± 0.13 d | 1.70 ± 0.10 b | 218 ± 12.9 b | 218 ± 8.88 c |
Cultivar | Content [μg/g de] * | ||||
---|---|---|---|---|---|
PAU | BBA | ARA | BA | RWA | |
Quinic acid | 176 ** ± 17.6 ac | 132 ± 13.2 bc | 85.9 ± 8.59 d | 161 ± 16.1 ab | 116 ± 11.6 cd |
Hydroxybenzoic acids | |||||
p-Hydroxybenzoic acid | 1.35 ± 0.08 b | 1.63 ± 0.10 a | 1.83 ± 0.11 a | 1.73 ± 0.10 a | 0.79 ± 0.05 c |
Gentisic acid | nd *** | 0.49 ± 0.04 a | 0.58 ± 0.05 a | <0.15 **** | nd |
Protocatechuic acid | 4.81 ± 0.39 a | 5.70 ± 0.46 a | 5.45 ± 0.44 a | 2.70 ± 0.22 b | 2.58 ± 0.21 b |
Gallic acid | 28.0 ± 2.52 c | 46.6 ± 4.20 b | 30.3 ± 2.73 c | 30.3 ± 2.72 c | 63.4 ± 5.71 a |
Syringic acid | 1.23 ± 0.25 ab | 0.65 ± 0.13 b | 1.31 ± 0.26 a | 1.31 ± 0.26 a | nd |
Hydroxycinnamic acids | |||||
p-Coumaric acid | 18.5 ± 1.66 c | 46.7 ± 4.20 a | 18.4 ± 1.66 c | 34.8 ± 3.13 b | 14.5 ± 1.31 c |
Caffeic acid | 5.02 ± 0.35 c | 10.6 ± 0.74 a | 9.60 ± 0.67 a | 7.82 ± 0.55 b | 2.98 ± 0.21 b |
Ferulic acid | 1.55 ± 0.16 cd | 2.38 ± 0.24 b | 2.00 ± 0.20 bc | 3.07 ± 0.31 a | 1.25 ± 0.12 d |
Sinapic acid | nd | nd | <0.60 | <0.60 | 0.89 ± 0.09 |
Chlorogenic acid | 0.46 ± 0.02 c | 0.97 ± 0.05 b | 2.21 ± 0.11 a | 2.39 ± 0.12 a | 0.53 ± 0.03 c |
Coumarins | |||||
Esculetin | 0.20 ± 0.01 b | 0.20 ± 0.01 b | 0.44 ± 0.03 a | 0.15 ± 0.01 c | 0.15 ± 0.01 c |
Flavonols | |||||
Quercetin | 52.4 ± 15.7 b | 124 ± 37.1 a | 106 ± 31.8 ab | 80.4 ± 24.1 ab | 48.5 ± 14.6 b |
Rutin | 36.0 ± 1.08 c | 64.2 ± 1.93 a | 48.8 ± 1.46 b | 29.3 ± 0.88 d | 12.4 ± 0.37 e |
Quercetin 3–O–Glc + Gal | 234 ± 14.0 c | 367 ± 22.0 a | 261 ± 15.7 bc | 291 ± 17.5 b | 343 ± 20.6 a |
Quercitrin | 42.5 ± 2.55 c | 57.7 ± 3.46 b | 45.9 ± 2.75 c | 73.0 ± 4.38 a | 29.2 ± 1.75 d |
Isorhamnetin | 2.23 ± 0.13 a | <1.20 | 1.39 ± 0.08 b | <1.20 | 1.31 ± 0.08 b |
Kaempferol | 5.98 ± 0.42 b | 5.62 ± 0.39 b | 8.02 ± 0.56 a | 5.80 ± 0.41 b | 5.59 ± 0.39 b |
Kaempferol 3–O–Glc | 40.9 ± 1.63 b | 37.9 ± 1.51 b | 46.8 ± 1.87 a | 37.9 ± 1.52 b | 37.9 ± 1.52 b |
Flavones | |||||
Amentoflavone | <4.9 | <4.9 | <4.9 | <4.9 | <4.9 |
Luteolin | <0.60 | 1.27 ± 0.06 | <0.60 | <0.60 | <0.60 |
Luteolin 7–O–Glc | 3.25 ± 0.10 c | 4.14 ± 0.12 a | 1.26 ± 0.04 d | 1.28 ± 0.04 d | 3.56 ± 0.11 b |
Apigenin | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 |
Apigenin 7–O–Glc | 0.15 ± 0.01 bc | 0.40 ± 0.02 a | 0.13 ± 0.01 c | 0.23 ± 0.01 b | nd |
Vitexin | nd | 0.19 ± 0.01 | nd | nd | nd |
Apiin | nd | 0.21 ± 0.01 | nd | nd | nd |
Chrysoeriol | 1.45 ± 0.04 a | 1.16 ± 0.03 b | 0.75 ± 0.02 d | 1.06 ± 0.03 c | <0.60 |
Myricetin | nd | <19.6 | <19.6 | <19.6 | <19.6 |
Flavanones | |||||
Naringenin | 3.13 ± 0.22 c | 6.78 ± 0.47 a | 5.57 ± 0.39 b | 6.61 ± 0.46 a | 1.64 ± 0.11 d |
Flavanols | |||||
Catechin | 347 ± 34.7 a | 279 ± 27.9 b | 146 ± 14.6 c | 94.2 ± 9.42 cd | 43.0 ± 4.30 d |
Epicatechin | 5.84 ± 0.58 a | 3.43 ± 0.34 b | 2.22 ± 0.22 c | 2.87 ± 0.29 bc | 0.58 ± 0.06 d |
Total phenolics [mg/g de] ***** | 1.01 | 1.20 | 0.83 | 0.87 | 0.73 |
Cultivar | IC50 (DPPH) | FRAP | AChE |
---|---|---|---|
µg/mL | mg AAE/g de | % of Inhibition | |
PAU | 34.5 ± 1.47 c | 52.6 ± 3.40 c | 38.8 ± 1.25 a |
BBA | 34.2 ± 2.47 c | 68.5 ± 0.51 a | 38.3 ± 3.14 a |
ARA | 56.0 ± 3.17 b | 37.7 ± 1.76 d | 29.6 ± 1.48 b |
BA | 37.4 ± 1.11 c | 56.6 ± 0.46 b | 37.2 ± 4.00 a |
RWA | 115 ± 9.16 a | 37.5 ± 0.04 d | 40.4 ± 1.80 a |
DPPH | FRAP | AChE | |
---|---|---|---|
Vit C | 0.940 | 0.866 | 0.785 |
TPC | 0.968 | 0.991 | 0.960 |
TFC | 0.856 | 0.913 | 0.950 |
TSC | 0.950 | 0.988 | 0.966 |
Quinic acid | 0.936 | 0.954 | 0.965 |
p-Coumaric acid | 0.899 | 0.942 | 0.827 |
Gallic acid | 0.672 | 0.824 | 0.919 |
Quercetin 3–O–Glc + Gal | 0.841 | 0.946 | 0.977 |
Quercitrin | 0.938 | 0.954 | 0.901 |
Rutin | 0.887 | 0.885 | 0.785 |
Quercetin | 0.862 | 0.907 | 0.844 |
Kaempferol 3–O–Glc | 0.872 | 0.921 | 0.967 |
Catechin | 0.871 | 0.799 | 0.720 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Živanović, N.; Božanić Tanjga, B.; Simin, N.; Lesjak, M.; Blagojević, B.; Pušić Devai, M.; Ljubojević, M.; Narandžić, T. In Vitro Functional Properties of Rosehips from ‘Aurora’ Edible Garden Rose’s Collection. Foods 2024, 13, 3272. https://doi.org/10.3390/foods13203272
Živanović N, Božanić Tanjga B, Simin N, Lesjak M, Blagojević B, Pušić Devai M, Ljubojević M, Narandžić T. In Vitro Functional Properties of Rosehips from ‘Aurora’ Edible Garden Rose’s Collection. Foods. 2024; 13(20):3272. https://doi.org/10.3390/foods13203272
Chicago/Turabian StyleŽivanović, Nemanja, Biljana Božanić Tanjga, Nataša Simin, Marija Lesjak, Bojana Blagojević, Magdalena Pušić Devai, Mirjana Ljubojević, and Tijana Narandžić. 2024. "In Vitro Functional Properties of Rosehips from ‘Aurora’ Edible Garden Rose’s Collection" Foods 13, no. 20: 3272. https://doi.org/10.3390/foods13203272
APA StyleŽivanović, N., Božanić Tanjga, B., Simin, N., Lesjak, M., Blagojević, B., Pušić Devai, M., Ljubojević, M., & Narandžić, T. (2024). In Vitro Functional Properties of Rosehips from ‘Aurora’ Edible Garden Rose’s Collection. Foods, 13(20), 3272. https://doi.org/10.3390/foods13203272