Antioxidant and Biological Activity of Mexican Madroño Fruit (Arbutus arizonica)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Phytochemical Extraction
2.2. Determination of Total Phenolic Content (TPC)
2.3. Determination of Total Flavonoids Content (TFC)
2.4. Determination of the Phytochemical Composition by RP-HPLC
2.5. Antioxidants Assays
2.5.1. 2,2′-Diphenyl-1-picrylhydrazyl (DPPH) Assay
2.5.2. 2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Assay
2.5.3. Protective Effect of Hemolysis Induced on Human Erythrocytes
2.6. Inhibition of Digestive Enzymes
2.6.1. Inhibition of α-Glucosidase
2.6.2. Inhibition of α-Amylase
2.6.3. Inhibition of Pancreatic Lipase
2.7. Antiproliferative Assay
3. Results and Discussion
3.1. Total Phenolic Content (TPC) and Total Flavonoid Content
3.2. Phenolic Acids and Flavonoids by HPLC-DAD
3.3. Antioxidant Capacity
3.4. Digestive Enzymatic Ihibition
3.5. Antiproliferative Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tinoco-Ojanguren, C.; Andrade, J.L.; Briones, O.; Castellanos, A.E. Functional Diversity in Plants: Implications for Conservation Issues of the Mexican Biodiversity. In Mexican Natural Resources Management and Biodiversity Conservation; Ortega-Rubio, A., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 519–554. [Google Scholar] [CrossRef]
- Torrenegra-Alarcón, M.; Villalobos-Lagares, O.; Castellar-Abello, E.; León Méndez, G.; Granados-Conde, C.; Pajaro, N.; Caro Soto, M. Evaluación de la actividad antioxidante de las pulpas de Rubus glaucus B, Vaccinium floribundum K y Beta vulgaris L. Rev. Cuba. Plant. Med. 2016, 21, 1–8. [Google Scholar]
- Li, Y.; Zhang, J.J.; Xu, D.P.; Zhou, T.; Zhou, Y.; Li, S.; Li, H.B. Bioactivities and Health Benefits of Wild Fruits. Int. J. Mol. Sci. 2016, 17, 1258. [Google Scholar] [CrossRef] [PubMed]
- Segura, S.; Fresnedo, J.; Mathuriau, C.; López, J.; Andrés, J.; Muratalla, A. The edible fruit species in Mexico. Genet. Resour. Crop Evol. 2018, 65, 1767–1793. [Google Scholar] [CrossRef]
- Owolodun, B.; Merten, S. Food Security from the Forest: The Case of the Commodification of Baobab Fruit (Adansonia digitata L.) in Boundou Region, Senegal. Land 2023, 12, 1423. [Google Scholar] [CrossRef]
- Sørensen, P.D. Arbutus Linnaeus. In Flora Neotropica Monograph Ericaceae Part II: The Superior-Ovaried Genera; Luteyn, J.L., Ed.; New York Botanical Garden: New York, NY, USA, 1995; pp. 194–221. [Google Scholar]
- González-Elizondo, M.S.; González-Elizondo, M.; Sørensen, P.D. Arbutus bicolor (Ericaceae, Arbuteae), una nueva especie de Mexico. Acta Bot. Mex. 2012, 99, 55–72. [Google Scholar] [CrossRef]
- Laferrière, J.E.; Weber, C.W.; Kohlhepp, E.A. Use and nutritional composition of some traditional mountain Pima plant foods. J. Ethnobiol. 1991, 11, 93–114. [Google Scholar]
- Tenuta, M.C.; Tundis, R.; Xiao, J.; Loizzo, M.R.; Dugay, A.; Deguin, B. Arbutus species (Ericaceae) as source of valuable bioactive products. Crit. Rev. Food Sci. Nutr. 2019, 59, 864–881. [Google Scholar] [CrossRef]
- Pérez-Narváez, O.A.; Leos-Rivas, C.; Rivas-Morales, C.; Villarreal-Treviño, L.; Barrón-González, M.P.; Sánchez-García, E. Actividad antimicrobiana y antioxidante de extractos etanólicos de hoja de Arbutus xalapensis Kunt, Mimosa malacophylla Gray y Teucrium cubense Jacquin. Rev. Tend. En Docencia E Investig. Química 2019, 5, 739–747. Available online: https://zaloamati.azc.uam.mx/handle/11191/7902 (accessed on 15 May 2024).
- Villalón-Rodríguez, E. Evaluación Antibacteriana de Especies Vegetales de un Área de la Sierra Madre Oriental en Santiago, Nuevo León, México. Master’s Thesis, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico, November 2018. [Google Scholar]
- Maiti, R.; González-Rodríguez, H.; Kumari, A.; Chandra Sarkar, N. Macro and micro-nutrient contents of 18 medicinal plants used traditionally to alleviate diabetes in Nuevo Leon, northeast of Mexico. Pak. J. Bot. 2016, 48, 271–276. [Google Scholar]
- Morales, D. Use of Strawberry Tree (Arbutus unedo) as a Source of Functional Fractions with Biological Activities. Foods 2022, 11, 3838. [Google Scholar] [CrossRef]
- Graikou, K.; Andreou, A.; Chinou, I. Chemical profile of Greek Arbutus unedo honey: Biological properties. J. Apic. Res. 2022, 61, 100–106. [Google Scholar] [CrossRef]
- Dib, M.E.A.; Allali, H.; Bendiabdellah, A.; Meliani, N.; Tabti, B. Antimicrobial activity and phytochemical screening of Arbutus unedo L. J. Saudi Chem. Soc. 2013, 17, 381–385. [Google Scholar] [CrossRef]
- Salem, I.B.; Ouesleti, S.; Mabrouk, Y.; Landolsi, A.; Saidi, M.; Boulilla, A. Exploring the nutraceutical potential and biological activities of Arbutus unedo L. (Ericaceae) fruits. Ind. Crops Prod. 2018, 122, 726–731. [Google Scholar] [CrossRef]
- Monroy-García, I.N.; Carranza-Torres, I.E.; Carranza-Rosales, P.; Oyón-Ardoiz, M.; García-Estévez, I.; Ayala-Zavala, J.F.; Morán-Martínez, J.; Viveros-Valdez, E. Phenolic Profiles and Biological Activities of Extracts from Edible Wild Fruits Ehretia tinifolia and Sideroxylon lanuginosum. Foods 2021, 10, 2710. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Nirmala, P.; Pramod, K.J.; Pankaj, P.R.; Sangeeta, R. Total Phenolic, Flavonoid Contents, and Antioxidant Activities of Fruit, Seed, and Bark Extracts of Zanthoxylum armatum DC. Sci. World J. 2020, 2020, 8780704. [Google Scholar] [CrossRef]
- Cervantes-Ramirez, J.G.; Vasquez-Lara, F.; Sanchez-Estrada, A.; Troncoso-Rojas, R.; Heredia-Olea, E.; Islas-Rubio, A.R. Arabinoxylans Release from Brewers’ Spent Grain Using Extrusion and Solid-State Fermentation with Fusarium oxysporum and the Antioxidant Capacity of the Extracts. Foods 2022, 11, 1415. [Google Scholar] [CrossRef]
- Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol. 2002, 79, 379–381. [Google Scholar] [CrossRef]
- Viveros-Valdez, E.; Rivas-Morales, C.; Carranza-Rosales, P.; Mendoza, S.; Schmeda-Hirschmann, G. Free Radical Scavengers from the Mexican Herbal Tea “Poleo” (Hedeoma drummondii). Z. Naturforsch C J. Biosci. 2008, 63, 341–346. [Google Scholar] [CrossRef]
- Silva-Beltrán, N.P.; Balderrama-Carmona, A.P.; López-Cuevas, O.; Portela-Márquez, M.A.; Umsza Guez, M.A.; López-Mata, M.A. Antioxidant and antimicrobial activity of Barchata (Zizhipus Obtusifolia). Ciencias 2019, 6, e523. [Google Scholar]
- Kaskoos, R.A. In-vitro α-glucosidase inhibition and antioxidant activity of methanolic extract of Centaurea calcitrapa from Iraq. Am. J. Essent. Oil. Nat. Prod. 2013, 1, 122–125. [Google Scholar]
- Shuda, P.; Zinjarde, S.S.; Bhargava, S.Y.; Kumar, A.R. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement Altern. Med. 2011, 11, 5. [Google Scholar]
- Maqsood, M.; Ahmed, D.; Atique, I.; Malik, W. Lipase inhibitory activity of Lagenaria siceraria fruit as a strategy to treat obesity. Asian Pac. J. Trop. Med. 2017, 10, 305–310. [Google Scholar] [CrossRef]
- Viveros-Valdez, E.; Rivas-Morales, C.; Oranday-Cárdenas, A.; Castro-Garza, J.; Carranza-Rosales, P. Antiproliferative Effect from the Mexican Poleo (Hedeoma drummondii). J. Med. Food 2010, 13, 740–742. [Google Scholar] [CrossRef]
- Bebek Markovinović, A.; Brdar, D.; Putnik, P.; Bosiljkov, T.; Durgo, K.; Huđek Turković, A.; Brčić Karačonji, I.; Jurica, K.; Pavlić, B.; Granato, D.; et al. Strawberry tree fruits (Arbutus unedo L.): Bioactive composition, cellular antioxidant activity, and 3D printing of functional foods. Food Chem. 2024, 433, 137287. [Google Scholar] [CrossRef] [PubMed]
- Scarano, P.; Guida, R.; Zuzolo, D.; Tartaglia, M.; Prigioniero, A.; Postiglione, A.; Pinto, G.; Illiano, A.; Amoresano, A.; Schicchi, R.; et al. An Endemic Plant of the Mediterranean Area: Phytochemical Characterization of Strawberry Tree (Arbutus unedo L.) Fruits Extracts at Different Ripening Stages. Front. Nutr. 2022, 9, 915994. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Jones, B.; Johnson, C. Influence of Extraction Process, Genotype, and Environmental Conditions on Phenolic Compounds in Fruits. J. Agric. Sci. 2020, 35, 123–135. [Google Scholar]
- Ruiz-Roso, M.B.; Quintela, J.C.; de Santos, J.M.; Lasa, A.; Santiago, P.; Alcarria, E.; Martínez, J.A. Dietary Antioxidant Intake from Foods and Beverages and Long-Term Survival among Spanish Adults. Antioxidants 2020, 9, 597. [Google Scholar]
- Vladimirova, I.; Mikhova, B.; Benbassat, N.; Aneva, I.; Kostova, I.; Georgieva, L.; Valcheva-Kuzmanova, S. Phenolic Profile and Antioxidant Activity of Some Wild Species from Arbutus Genus. Molecules 2020, 25, 5715. [Google Scholar]
- Doukani, K.; Tabak, S. Profil physicochimique du fruit “lendj” (Arbutus unedo L.). Nat. Technol./Nat. Technol. 2015, 12, 53–66. [Google Scholar]
- Isbilir, S.S.; Orak, H.H.; Yagar, H.; Ekinci, N. Determination of antioxidant activities of strawberry tree (Arbutus unedo L.) flowers and fruits at different ripenning stages. Acta Sci. Pol. Hortorum Cultus 2012, 11, 223–237. [Google Scholar]
- Serçe, S.; Özgen, M.; Torun, A.A.; Ercişli, S. Chemical composition, antioxidant activities and total phenolic content of Arbutus andrachne L. (Fam. Ericaceae)(the Greek strawberry tree) fruits from Turkey. J. Food Compos. Anal. 2010, 23, 619–623. [Google Scholar] [CrossRef]
- Oliveira, I.; Baptista, P.; Malheiro, R.; Casal, S.; Bento, A.; Pereira, J.A. Influence of strawberry tree (Arbutus unedo L.) fruit ripening stage on chemical composition and antioxidant activity. Food Res. Int. 2011, 44, 1401–1407. [Google Scholar] [CrossRef]
- Chen, L.; Xin, X.; Yuan, Q.; Su, D.; Liu, W.; Li, X.; Song, Y. Antioxidant and anti-inflammatory effects of flavonoids from Chinese herbal medicines: A review. Food Sci. Nut. 2021, 9, 1341–1354. [Google Scholar]
- Karimi, E.; Oskoueian, E.; Hendra, R.; Oskoueian, A.; Jaafar, H.Z. Phenolic compounds characterization and biological activities of Citrus aurantium bloom. Molecules 2012, 17, 1203–1218. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.N.; Yang, B.; Zhao, M.; Ruenroengklin, N.; Jiang, Y. Application of ultrasonication or high-pressure extraction of flavonoids from litchi fruit pericarp. J. Food Process Eng. 2009, 32, 828–843. [Google Scholar] [CrossRef]
- El Cadi, H.; El Cadi, A.; Kounnoun, A.; Majdoub, Y.; Lovillo, M.; Brigui, J.; Dugo, P.; Mondello, L.; Cacciola, F. Wild strawberry (Arbutus unedo): Phytochemical screening and antioxidant properties of fruits collected in northern Morocco. Arab. J. Chem. 2020, 13, 6299–6311. [Google Scholar] [CrossRef]
- Malik, A.; Khatkar, A.; Kakkar, S. A Review on Pharmacological Activities of Vanillic Acid and its Derivatives. IGJPS Indo Glob. J. Pharm. Sci. 2023, 13, 1–12. [Google Scholar] [CrossRef]
- Ayaz, F.A.; Kucukislamoglu, M.; Reunanen, M. Sugar, Non-volatile and Phenolic Acids Composition of Strawberry Tree (Arbutus unedo L. var. ellipsoidea) Fruits. J. Food Compos. Anal. 2000, 13, 171–177. [Google Scholar] [CrossRef]
- Leal, L.K.; Pierdoná, T.M.; Góes, J.G.; Fonsêca, K.S.; Canuto, K.; Silveira, E.R.; Bezerra, A.M.; Viana, G.S. A comparative chemical and pharmacological study of standardized extracts and vanillic acid from wild and cultivated Amburana cearensis A.C. Smith. Phytomedicine 2011, 18, 230–233. [Google Scholar] [CrossRef]
- Tai, A.; Sawano, T.; Ito, H. Antioxidative Properties of Vanillic Acid Esters in Multiple Antioxidant Assays. Biosci. Biotechnol. Biochem. 2012, 76, 314–318. [Google Scholar] [CrossRef]
- Surya, S.; Sampathkumar, P.; Sivasankaran, S.M.; Pethanasamy, M.; Elanchezhiyan, C.; Deepa, B.; Manoharan, S. Vanillic acid exhibits potent antiproliferative and free radical scavenging effects under in vitro conditions. Int. J. Nutr. Pharmacol. Neurol. Dis. 2023, 13, 188–198. [Google Scholar] [CrossRef]
- Folami, S.O.; Nurudeen, O.Q.; Falana, B.M.; Ajiboye, O.A.; Bamaiyi, J.A. Involvement of Oxidative Stress in Bactericidal Activity of Vanillic Acid Against Staphylococcus aureus. Ann. Clin. Exp. Med. 2020, 1, 67–72. [Google Scholar] [CrossRef]
- Amin, F.; Shah, S.; Kim, M. Vanillic acid attenuates Aβ1-42-induced oxidative stress and cognitive impairment in mice. Sci. Rep. 2017, 7, 40753. [Google Scholar] [CrossRef]
- Liang, C.P.; Chang, C.H.; Liang, C.C.; Hung, K.Y.; Hsieh, C.W. In Vitro Antioxidant Activities, Free Radical Scavenging Capacity, and Tyrosinase Inhibitory of Flavonoid Compounds and Ferulic Acid from Spiranthes sinensis (Pers.) Ames. Molecules 2014, 19, 4681–4694. [Google Scholar] [CrossRef]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef]
- Mancuso, C.; Santangelo, R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem. Toxicol. 2014, 65, 185–195. [Google Scholar] [CrossRef]
- Alu’datt, M.; Rababah, T.M.; Alhamad, M.N.; Al-Mahasneh, M.A.; Ereifej, K.; Al-Karaki, G.; Al-duais, M.; Andrade, J.; Tranchant, C.; Kubow, S.; et al. Profiles of free and bound phenolics extracted from Citrus fruits and their roles in biological systems: Content, and antioxidant, anti-diabetic and anti-hypertensive properties. Food Funct. 2017, 8, 3187–3197. [Google Scholar] [CrossRef]
- Liu, X.; Wu, W.; Li, J. Antioxidant, anti-inflammatory, and antitumor activities of flavonoid rutin in vitro and in vivo models. J. Agric. Food Chem. 2018, 66, 4247–4256. [Google Scholar]
- Wójciak-Kosior, M.; Paduch, R.; Matysik-Woźniak, A.; Lis, W. The influence of rutin on the adhesion of platelets to cancer cells. Chem. Biol. Interact. 2016, 254, 28–37. [Google Scholar]
- Zhang, R.; Kang, K.A.; Piao, M.J.; Lee, K.H. Rutin induces apoptosis in human leukemia cells via regulation of Bcl-2 and Bax expression. Eur. J. Pharmacol. 2015, 764, 558–564. [Google Scholar]
- Sriraksa, R.; Wattanathorn, J.; Muchimapura, S.; Thukham-Mee, W. Rutin prevents memory impairment and hippocampal damage in male Wistar rats with chronic cerebral hypoperfusion. Free Radic. Biol. Med. 2017, 112, 345–352. [Google Scholar]
- Surinenaite, B.; Pukalskas, A.; Venskutonis, P.R. Antimicrobial activity of flavonoid rutin and its complexes with copper(II). Food Control 2017, 73, 1060–1067. [Google Scholar]
- Zhen, J.; Wang, J.; Zhang, H.; Yuan, H. Hepatoprotective effects of rutin against CCl4-induced liver injury in mice through regulation of autophagy and apoptosis. Int. Immunopharmacol. 2016, 31, 116–123. [Google Scholar]
- Magalhães, A.S.; Silva, B.M.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Carvalho, M. Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food Chem. Toxicol. 2009, 47, 1372–1377. [Google Scholar] [CrossRef]
- Jiménez-Aspee, F.; Theoduloz, C.; Pormetter, L.; Mettke, J.; Ávila, F.; Schmeda-Hirschmann, G. Andean Prumnopitys andina (Podocarpacae) Fruit Extracts: Characterization of Secondary Metabolites and Potential Cytoprotective Effect. Molecules 2019, 24, 4028. [Google Scholar] [CrossRef]
- Ruíz-Rodriguez, B.M. Frutos Silvestres de uso Tradicional en la Alimentación: Evaluación de su Valor Nutricional, Compuestos Bioactivos y Capacidad Antioxidante. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, April 2014. [Google Scholar]
- Kapci, B.; Neradová, E.; Čížková, H.; Voldřich, M.; Rajchl, A.; Capanoglu, E. Investigating the antioxidant potential of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013, 52, 219–229. [Google Scholar]
- Saavedra-Molina, A.; Lemus-de la Cruz, J.; Landa-Moreno, C.; Murillo-Villicaña, M.; García-Berumen, C.; Montoya-Pérez, R.; Cortés-Rojo, C. Antioxidant Activity of Natural Products from Medicinal Plants; Intech Open: London, UK, 2024. [Google Scholar] [CrossRef]
- Vega-Vega, V. Enriquecimento de la Capacidad Antioxidante y Proteción Antimicrobiana del Mango Fresco Cortado Aplicando Compuestos Fenólicos de sus Subproductos. Master’s Thesis, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, México, August 2011. [Google Scholar]
- Polidori, M.C.; Stahl, W.; Eichler, O.; Niestroj, I.; Sies, H. Profiles of antioxidants in human plasma. Free Radic. Biol. Med. 2001, 30, 456–462. [Google Scholar] [CrossRef]
- Hossain, U.; Das, A.K.; Ghosh, S.; Sil, P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol. 2020, 145, 111738. [Google Scholar] [CrossRef] [PubMed]
- Ayua, E.O.; Nkhata, S.G.; Namaumbo, S.J.; Kamau, E.H.; Ngoma, T.N.; Aduol, K.O. Polyphenolic inhibition of enterocytic starch digestion enzymes and glucose transporters for managing type 2 diabetes may be reduced in food systems. Heliyon 2021, 7, e06245. [Google Scholar] [CrossRef]
- Inthongkaew, P.; Chatsumpun, N.; Supasuteekul, C. α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum. Rev. Bras. Farmacogn. 2017, 27, 480–487. [Google Scholar] [CrossRef]
- Bento, C.; Gonçalves, A.C.; Silva, B.; Silva, L.R. Peach (Prunus Persica): Phytochemicals and Health Benefits. Food Rev. Int. 2020, 38, 1703–1734. [Google Scholar] [CrossRef]
- Igwe, E.O.; Charlton, K.E. A Systematic Review on the Health Effects of Plums (Prunus domestica and Prunus salicina). Phytother. Res. 2016, 30, 701–731. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef]
- Ćorković, I.; Gašo-Sokač, D.; Pichler, A.; Šimunović, J.; Kopjar, M. Dietary Polyphenols as Natural Inhibitors of α-Amylase and α-Glucosidase. Life 2022, 12, 1692. [Google Scholar] [CrossRef]
- Kotowaroo, M.I.; Mahomoodally, M.F.; Gurib-Fakim, A.; Subratty, A.H. Screening of traditional antidiabetic medicinal plants of Mauritius for possible α-amylase inhibitory effects in vitro. Phytother. Res. 2006, 20, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Grussu, D.; Stewart, D.; McDougall, G.J. Berry polyphenols inhibit α-amylase in vitro: Identifying active components in rowanberry and raspberry. J. Agric. Food Chem. 2011, 59, 2324–2331. [Google Scholar] [CrossRef]
- Buchholz, T.; Melzig, M.F. Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta. Med. 2015, 81, 771–783. [Google Scholar] [CrossRef]
- Mcdougall, G.; Kulkarni, N.; Stewart, D. Berry polyphenols inhibit pancreatic lipase in vitro. Food Chem. 2009, 115, 193–199. [Google Scholar] [CrossRef]
- Xia, W.; Lin, Y.; Gong, E.S.; Li, T.; Lian, F.; Zheng, B.; Liu, R. Wild pink bayberry fruit: The effect of: The vitro gastrointestinal digestion on phytochemical profiles, and antioxidant and antiproliferative activities. Food Funct. 2021, 12, 2126–2136. [Google Scholar] [CrossRef]
- Popović, B.M.; Blagojević, B.; Ždero Pavlović, R.; Mićić, N.; Bijelić, S.; Bogdanović, B.; Mišan, A.; Duarte, C.M.M.; Serra, A.T. Comparison between polyphenol profile and bioactive response in blackthorn (Prunus spinosa L.) genotypes from north Serbia-from raw data to PCA analysis. Food Chem. 2020, 302, 125373. [Google Scholar] [CrossRef]
- Popović, B.M.; Blagojević, B.; Kucharska, A.Z.; Agić, D.; Magazin, N.; Milović, M.; Serra, A.T. Exploring fruits from genus Prunus as a source of potential pharmaceutical agents-In vitro and in silico study. Food Chem. 2021, 358, 129812. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.D.S.; Jordão, N.A.; Soares, N.D.C.P.; DeMesquita, J.F.; Monteiro, M.; Teodoro, A.J. Pharmacokinetic, Antiproliferative and Apoptotic Effects of Phenolic Acids in Human Colon Adenocarcinoma Cells Using In Vitro and In Silico Approaches. Molecules 2018, 23, 2569. [Google Scholar] [CrossRef] [PubMed]
- Sathesh, V.; Jagan, S.; Sharmila, S.; Palanisamy, K.; Nirmala, S.; Devaki, T. Vanillic acid attenuates cell proliferation, xenobiotic enzyme activity, and the status of pulmonary mitochondrial enzymes in lung carcinoma. J. Food Biochem. 2022, 46, e14366. [Google Scholar] [CrossRef]
- Kafoud, A.; Salahuddin, Z.; Ibrahim, R.S.; Al-Janahi, R.; Mazurakova, A.; Kubatka, P.; Büsselberg, D. Potential Treatment Options for Neuroblastoma with Polyphenols through Anti-Proliferative and Apoptotic Mechanisms. Biomolecules 2023, 13, 563. [Google Scholar] [CrossRef]
- Huo, M.; Xia, A.; Cheng, W.; Zhou, M.; Wang, J.; Shi, T.; Cai, C.; Jin, W.; Zhou, M.; Liao, Y.; et al. Rutin Promotes Pancreatic Cancer Cell Apoptosis by Upregulating miRNA-877-3p Expression. Molecules 2022, 27, 2293. [Google Scholar] [CrossRef]
Fruit | TPC [mg EAG/g] *DW | TFC [mg EAG/g] *DW | TEAC [μM/g] *DW | DPPH EC50 [mg/mL] | Hemolysis Inhibition IC50 [µg/mL] |
---|---|---|---|---|---|
Arbutus arizonica | 15.92 ± 3.2 | 4.33 ± 0.3 | 1078 ± 4.9 | 0.89 ± 0.12 a | 358.07 ± 47 a |
** Control | — | — | — | 0.014 ± 3 b | 290 ± 30 a |
Compound | Rt (min) | Content * mg/g | Ecuation | R2 |
---|---|---|---|---|
Gallic acid | 4.41 | 0.553 ± 0.056 | y = 255.41x + 106.72 | 0.9999 |
Chlorogenic acid | 15.54 | 0.459 ± 0.003 | y = 217.64x − 97.638 | 0.9965 |
Vanillic acid | 16.44 | 3.380 ± 0.061 | y = 727.99x − 2451.8 | 0.9972 |
Ferulic acid | 18.12 | 2.441 ± 0.024 | y = 464.55x − 127.53 | 0.9898 |
Rutin | 25.37 | 2.289 ± 0.066 | y = 89.555x + 94.519 | 0.9991 |
Quercetin | 28.15 | 1.674 ± 0.029 | y = 87.583x − 107.99 | 0.9989 |
Fruit | Half Maximal Inhibitory Concentration [mg/mL] | ||||||
---|---|---|---|---|---|---|---|
α-Glu | α-Amy | Lipase | MCF-7 | HeLa | HT-29 | * RBCs | |
A. arizonica | 3.1 ± 0.2 a | >5 | >5 | 2.07 ± 0.3 a | 3.32 ± 0.4 a | 1.79 ± 0.1 a | >5 |
** Control | 0.15 ± 0.04 b | 1.07 ± 0.1 | 0.21 ± 0.05 | 0.016 ± 0.003 b | 0.014 ± 0.005 b | 0.017 ± 0.002 b | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monroy-García, I.N.; Carranza-Rosales, P.; Carranza-Torres, I.E.; Castro-Ochoa, L.D.; González-Villasana, V.; Islas-Rubio, A.R.; Viveros-Valdez, E. Antioxidant and Biological Activity of Mexican Madroño Fruit (Arbutus arizonica). Foods 2024, 13, 2982. https://doi.org/10.3390/foods13182982
Monroy-García IN, Carranza-Rosales P, Carranza-Torres IE, Castro-Ochoa LD, González-Villasana V, Islas-Rubio AR, Viveros-Valdez E. Antioxidant and Biological Activity of Mexican Madroño Fruit (Arbutus arizonica). Foods. 2024; 13(18):2982. https://doi.org/10.3390/foods13182982
Chicago/Turabian StyleMonroy-García, Imelda N., Pilar Carranza-Rosales, Irma Edith Carranza-Torres, Lelie Denisse Castro-Ochoa, Vianey González-Villasana, Alma Rosa Islas-Rubio, and Ezequiel Viveros-Valdez. 2024. "Antioxidant and Biological Activity of Mexican Madroño Fruit (Arbutus arizonica)" Foods 13, no. 18: 2982. https://doi.org/10.3390/foods13182982
APA StyleMonroy-García, I. N., Carranza-Rosales, P., Carranza-Torres, I. E., Castro-Ochoa, L. D., González-Villasana, V., Islas-Rubio, A. R., & Viveros-Valdez, E. (2024). Antioxidant and Biological Activity of Mexican Madroño Fruit (Arbutus arizonica). Foods, 13(18), 2982. https://doi.org/10.3390/foods13182982