Volatile Constituents of Some Myrtaceous Edible and Medicinal Fruits from the Brazilian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Obtaining and Analyzing Volatile Concentrates
2.3. Multivariate Statistical Analysis
3. Results and Discussion
3.1. Eugenia stipitata McVaugh–Myrtaceae
3.2. Eugenia uniflora L.–Myrtaceae
3.3. Myrciaria dubia (Kunth) McVaugh–Myrtaceae
3.4. Psidium guajava L.–Myrtaceae
3.5. Psidium guineense Sw.–Myrtaceae
3.6. Fruit Scent: Chemistry and Ecological Function
3.7. Multivariate Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Homma, A.K.O. Extrativismo vegetal ou plantio: Qual a opção para a Amazônia? In Extrativismo Vegetal na Amazônia: História, Ecologia, Economia e Domesticação; Homma, A.K.O., Ed.; Embrapa: Brasília, Brazil, 2014. [Google Scholar]
- Freitas, D.G.C.; Mattietto, R.A. Ideal sweetness of mixed juices from Amazon fruits. Cienc. Tecnol. Aliment. 2013, 33, 148–154. [Google Scholar] [CrossRef]
- Fachinello, J.C.; Nachtigal, J.C. Introdução à fruticultura. In Fruticultura: Fundamentos e Práticas, 2nd ed.; Fachinello, J.C., Nachtigal, J.C., Kersten, E., Eds.; Embrapa Clima Temperado: Pelotas, Brazil, 2009. [Google Scholar]
- Clerici, M.T.P.S.; Carvalho-Silva, L.B. Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Res. Int. 2011, 44, 1658–1670. [Google Scholar] [CrossRef]
- Cavalcante, P.B. Frutas comestíveis da Amazônia, 7th ed.; Museu Paraense Emílio Goeldi, Coleção Adolpho Ducke: Belém, Brazil, 2010. [Google Scholar]
- Bicas, J.L.; Molina, G.; Dionísio, A.P.; Barros, F.F.C.; Wagner, R.; Marostica, M.R., Jr.; Pastore, G.M. Volatile constituent of exotic fruits from Brazil. Food Res. Int. 2011, 44, 1843–1855. [Google Scholar] [CrossRef]
- Neves, L.C.; de Campos, A.J.; Benedette, R.M.; Tosin, J.M.; Chagas, E.A. Characterization of the antioxidant capacity of native fruits from the Brazilian Amazon Region. Rev. Bras. Frutic. 2002, 34, 1165–1173. [Google Scholar] [CrossRef]
- IBGE 2019. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?id=22269&view=detalhes (accessed on 18 February 2024).
- El Hadi, M.A.M.; Zhang, F.-J.; Wu, F.-F.; Zhou, C.-H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef]
- Likens, S.T.; Nickerson, G.B. Detection of certain hop oil constituents in brewing products. Am. Soc. Brew. Chem. Proc. 1964, 22, 5–13. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Mondello, L. FFNSC 2—Flavors and Fragrances of Natural and Synthetic Compounds, Mass Spectral Database; John Wiley and Sons Inc.: New York, NY, USA, 2011. [Google Scholar]
- Van de Doll, H.; Kratz, P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Minitab Statistical Software. Available online: https://minitab.com/en-us/ (accessed on 13 February 2024).
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestree Database: A Tree Reference and Selection Guide, Version 4.0. 2009. Available online: http://www.worldagroforestry.org/treedb2/aftpdfs/eugenia_stipitata.pdf (accessed on 13 February 2024).
- Franco, M.R.B.; Shibamoto, T. Volatile composition of some Brazilian fruits: Umbu-caja (Spondias citherea), Camu-camu (Myrciaria dubia), Araçá-boi (Eugenia stipitata), and Cupuaçu (Theobroma grandiflorum). J. Agric. Food Chem. 2000, 48, 1263–1265. [Google Scholar] [CrossRef]
- Pino, J.A.; Quijano, C.E. Volatile compounds of Arazá fruit (Eugenia stipitata McVaught). Rev. Cenic Cienc. Quim. 2007, 38, 363–366. Available online: http://www.redalyc.org/articulo.oa?id=181621616001 (accessed on 13 February 2024).
- Medeiros, J.R.; Medeiros, N.; Medeiros, H.; Davin, L.B.; Lewis, N.G. Composition of the bioactive essential oils from the leaves of Eugenia stipitata McVaugh ssp. sororia from the Azores. J. Essent. Oil Res. 2003, 15, 293–295. [Google Scholar] [CrossRef]
- dos Santos, C.R.B.; Sampaio, M.G.V.; Vandesmet, L.C.S.; dos Santos, B.S.; de Menezes, S.A.; Portela, B.Y.M.; Gomes, D.W.R.; Correia, M.T.S.; Gomez, M.C.V.; Menezes, I.R.A.; et al. Chemical composition and biological activities of the essential oil from Eugenia stipitata McVaught leaves. Nat. Prod. Res. 2023, 37, 3844–3850. [Google Scholar] [CrossRef]
- Missouri Botanical Garden. Available online: https://www.tropicos.org/name/22101634 (accessed on 13 February 2024).
- Pino, J.A.; Bello, A.; Urquiola, A.; Aguero, J.; Marbot, R. Fruit volatiles of Cayena Cherry (Eugenia uniflora L.) from Cuba. J. Essent. Oil Res. 2003, 15, 70–71. [Google Scholar] [CrossRef]
- Oliveira, A.L.; Lopes, R.B.; Cabral, F.A.; Eberlin, M.N. Volatile compounds from Pitanga fruit (Eugenia uniflora L.). Food Chem. 2006, 99, 1–5. [Google Scholar] [CrossRef]
- Marin, R.; Apel, M.A.; Limberger, R.P.; Raseira, M.C.B.; Pereira, J.F.M.; Zuanazzi, J.A.S.; Henriques, A.T. Volatile Components and Antioxidant Activity from some Myrtaceous Fruits cultivated in Southern Brazil. Lat. Am. J. Pharm. 2008, 27, 172–177. [Google Scholar]
- Ogunwande, I.A.; Olawore, N.O.; Ekundayo, O.; Walker, T.M.; Schmidt, J.M.; Setzer, W.N. Studies on essential oil composition, antibacterial and cytotoxicity of Eugenia uniflora L. Int. J. Aromather. 2005, 15, 147–152. [Google Scholar] [CrossRef]
- Maia, J.G.S.; Andrade, E.H.A.; da Silva, M.H.L.; Zoghbi, M.G.B. A new chemotype of Eugenia uniflora L. from North Brazil. J. Essent. Oil Res. 1999, 11, 727–729. [Google Scholar] [CrossRef]
- Costa, D.P.; Alves Filho, L.G.; Silva, L.M.A.; Santos, S.C.; Passos, X.S.; Silva, M.R.R.; Seraphin, J.C.; Ferri, P.H. Influence of fruit biotypes on the chemical composition and antifungal activity of the essential oils of Eugenia uniflora leaves. J. Braz. Chem. Soc. 2010, 21, 851–858. [Google Scholar] [CrossRef]
- Flora do Brasil. Myrciaria, Jardim Botânico do Rio de Janeiro. 2020. Available online: http://floradoBrasil,jbrj.gov.br/reflora/floradobrasil/FB24032 (accessed on 18 January 2024).
- Quijano, C.E.; Pino, J.A. Analysis of volatile compounds of camu-camu [Myrciaria dubia (HBK) McVaught] fruit isolated by different methods. J. Essent. Oil Res. 2007, 19, 527–533. [Google Scholar] [CrossRef]
- García-Chacón, J.M.; Forero, D.P.; Peterson, D.G.; Osorio, C. Aroma characterization and in vitro antihypertensive activity of Amazonian Camu-camu (Myrciaria dubia) fruit. J. Food Bioact. 2023, 21, 55–61. [Google Scholar] [CrossRef]
- da Costa, J.S.; Andrade, W.M.S.; de Figueiredo, R.O.; Santos, P.V.L.; Freitas, J.J.S.; Setzer, W.N.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Chemical composition and variability of the volatile components of Myrciaria species growing in the Amazon region. Molecules 2022, 27, 2234. [Google Scholar] [CrossRef]
- Missouri Botanical Garden. Available online: https://www.tropicos.org/name/22101794 (accessed on 13 February 2024).
- Mahattanatawee, K.; Goodner, K.L.; Baldwin, E.A. Volatile constituents and character impact compounds of selected Florida’s tropical fruit. Proc. Fla. State Hort. Soc. 2005, 118, 414–418. [Google Scholar]
- Chen, H.-C.; Sheu, M.-J.; Lin, L.-Y.; Wu, C.-M. Chemical composition of the leaf essential oil of Psidium guajava L. from Taiwan. J. Essent. Oil Res. 2006, 19, 345–347. [Google Scholar] [CrossRef]
- Pino, J.A.; Bent, L. Odour-active compounds in guava (Psidium guajava L. cv. Red Suprema). J. Sci. Food Agric. 2013, 93, 3114–3120. [Google Scholar] [CrossRef] [PubMed]
- Soares, F.D.; Pereira, T.; Marques, M.O.M.; Monteiro, A.R. Volatile and non-volatile chemical composition of the white guava fruit (Psidium guajava) at different stages of maturity. Food Chem. 2007, 100, 15–21. [Google Scholar] [CrossRef]
- El-Ahmady, S.H.; Ashour, M.L.; Wink, M. Chemical composition and anti-inflammatory activity of the essential oils of Psidium guajava fruits and leaves. J. Essent. Oil Res. 2013, 25, 475–481. [Google Scholar] [CrossRef]
- Missouri Botanical Garden. Available online: https://www.tropicos.org/name/22102032 (accessed on 13 February 2024).
- Peralta-Bohorquezo, A.F.; Parada, F.; Quijano, C.E.; Pino, J.A. Analysis of volatile compounds of Sour Guava (Psidium guineense Swartz) fruit. J. Essent. Oil Res. 2011, 22, 493–498. [Google Scholar] [CrossRef]
- Abrao, F.Y.; da Costa, H.M.; Fiuza, T.S.; Romano, C.A.; Ferreira, H.D.; da Cunha, L.C.; Oliveira Neto, J.R.; de Paula, J.R. Anatomical study of the leaves and evaluation of the chemical composition of the volatile oils from Psidium guineense Swartz leaves and fruits. Res. Soc. Dev. 2021, 10, e49110615929. [Google Scholar] [CrossRef]
- Tucker, A.O.; Maciarello, M.J.; Landrum, L.R. Volatile leaf oils of American Myrtaceae. III. Psidium cattleianum Sabine, P. friedrichsthalianum (Berg) Niedenzu, P. guajava L., P. guineense Sw., and P. sartorianum (Berg) Niedenzu. J. Essent. Oil Res. 1995, 7, 187–190. [Google Scholar] [CrossRef]
- do Nascimento, K.F.; Moreira, F.M.F.; Santos, J.A.; Kassuya, A.L.; Croda, J.H.R.; Cardoso, C.A.L.; Vieira, M.C.; Ruiz, A.L.T.G.; Foglio, M.A.; de Carvalho, J.E.; et al. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol. 2017, 210, 351–358. [Google Scholar] [CrossRef]
- da Silva, J.D.; Luz, A.I.R.; da Silva, M.H.L.; Andrade, E.H.A.; Zoghbi, M.G.B.; Maia, J.G.S. Essential oils of the leaves and stems of four Psidium spp. Flav. Frag. J. 2003, 18, 240–243. [Google Scholar] [CrossRef]
- Figueiredo, P.L.B.; Silva, R.C.; da Silva, J.K.R.; Suemitsu, C.; Mourão, R.H.V.; Maia, J.G.S. Chemical variability in the essential oil of leaves of Araçá (Psidium guineense Sw.), with occurrence in the Amazon. Chem. Cent. J. 2018, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.C.; da Costa, J.S.; Figueiredo, R.O.; Setzer, W.N.; da Silva, J.K.R.; Mmaia, J.G.S.; Figueiredo, P.L.B. Monoterpenes and sesquiterpenes of essential oils from Psidium species and their biological properties. Molecules 2021, 26, 965. [Google Scholar] [CrossRef]
- Nevo, O.; Aysse, M. Fruit scent: Biochemistry, ecological function, and evolution. In Co-Evolution of Secondary Metabolites; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 403–425. [Google Scholar]
- Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Floral scents and fruit aromas: Functions, Compositions, biosynthesis, and regulation. Front. Plant Sci. 2022, 13, 860157. [Google Scholar] [CrossRef] [PubMed]
- Romero, H.; Pott, D.M.; Vallarino, J.G.; Osorio, S. Metabolomics based evaluation of crop quality changes as a consequence of climate change. Metabolites 2021, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Goff, S.A.; Klee, H.J. Plant volatile compounds: Sensory cues for health and nutritional value? Science 2006, 311, 815–819. [Google Scholar] [CrossRef]
Constituents | RICal | RILit | % |
---|---|---|---|
Ethyl butanoate | 799 | 802 a | 2.1 |
(3Z)-Hexenol | 848 | 850 a | 0.6 |
n-Hexanol | 860 | 863 a | 1.1 |
2-Heptanol | 894 | 891 b | 1.2 |
α-Pinene | 932 | 932 a | 17.4 |
Hexanoic acid (Caproic acid) | 970 | 967 a | 0.1 |
β-Pinene | 976 | 974 a | 6.8 |
Myrcene | 989 | 988 a | 0.4 |
Hexyl acetate | 1011 | 1007 a | 0.8 |
Limonene | 1027 | 1024 a | 1.7 |
(E)-β-Ocimene | 1045 | 1044 a | 0.8 |
p-Mentha-2,4(8)-diene | 1087 | 1085 a | 1.4 |
Terpinen-4-ol | 1176 | 1174 a | 0.3 |
α-Terpineol | 1189 | 1186 a | 9.6 |
n-Hexyl 2-methyl butanoate | 1236 | 1233 a | 1.4 |
δ-Elemene | 1336 | 1335 | 4.1 |
Hexyl hexanoate | 1385 | 1382 a | 3.5 |
β-Elemene | 1392 | 1389 a | 1.8 |
(E)-Caryophyllene | 1419 | 1417 a | 0.4 |
β-Chamigrene | 1475 | 1476 a | 1.2 |
γ-Muurolene | 1481 | 1478 a | 2.6 |
Germacrene D | 1486 | 1484 a | 0.5 |
β-Selinene | 1492 | 1489 a | 1.3 |
(Z)-α-Bisabolene | 1502 | 1506 a | 0.5 |
δ-Cadinene | 1523 | 1522 a | 0.7 |
Citronellyl butanoate | 1532 | 1530 a | 15.6 |
Caryophyllene oxide | 1583 | 1582 a | 0.4 |
Junenol | 1618 | 1618 a | 1.9 |
1-epi-Cubenol | 1628 | 1627 a | 0.3 |
γ-Eudesmol | 1631 | 1630 a | 0.8 |
epi-α-Muurolol | 1642 | 1640 a | 3.2 |
Cubenol | 1646 | 1645 a | 0.8 |
Pogostol | 1654 | 1651 a | 13.5 |
Monoterpene hydrocarbons Oxygenated monoterpenes Sesquiterpene hydrocarbons Oxygenated sesquiterpenes Fatty acid derivatives | 28.5 | ||
25.5 | |||
13.1 | |||
20.9 | |||
10.8 | |||
Total (%) | 98.8 |
Constituents | RICal | RILit | % |
---|---|---|---|
n-Octane | 797 | 800 a | 0.1 |
Myrcene | 989 | 988 a | 1.6 |
Limonene | 1027 | 1024 a | 0.1 |
(Z)-β-Ocimene | 1034 | 1032 a | 4.6 |
(E)-β-Ocimene | 1045 | 1044 a | 11.1 |
Linalool | 1098 | 1095 a | 0.3 |
allo-Ocimene | 1127 | 1128 a | 0.1 |
δ-Terpineol | 1161 | 1162 a | 0.3 |
α-Terpineol | 1189 | 1186 a | 0.1 |
δ-Elemene | 1337 | 1335 a | 0.4 |
β-Elemene | 1391 | 1389 a | 1.5 |
(E)-Caryophyllene | 1419 | 1417 a | 1.5 |
γ-Elemene | 1433 | 1434 a | 1.5 |
α-Humulene | 1453 | 1452 a | 0.1 |
β-Chamigrene | 1475 | 1476 a | 0.6 |
γ-Muurolene | 1480 | 1478 a | 0.9 |
β-Selinene | 1485 | 1489 a | 0.2 |
δ-Selinene | 1490 | 1492 a | 0.2 |
Curzerene | 1497 | 1499 a | 30.5 |
cis-α-Bisabolene | 1509 | 1506 a | 0.1 |
δ-Cadinene | 1523 | 1522 a | 0.1 |
γ-Cuprenene | 1534 | 1532 a | 0.1 |
α-Cadinene | 1537 | 1537 a | 1.1 |
Selina-4(15),7(11)-diene | 1541 | 1540 a | 0.2 |
Germacrene B | 1556 | 1557 a | 2.3 |
Spathulenol | 1576 | 1577 a | 0.4 |
Cubeban-11-ol | 1593 | 1595 a | 0.2 |
cis-β-Elemenone | 1589 | 1589 a | 0.3 |
trans-β-Elemenone | 1603 | 1601 a | 4.1 |
1,10-di-epi-Cubenol | 1617 | 1618 a | 0.4 |
10-epi-γ-Eudesmol | 1625 | 1622 a | 0.1 |
γ-Eudesmol | 1631 | 1630 a | 0.5 |
epi-α-Muurolol | 1641 | 1640 a | 0.2 |
Pogostol | 1654 | 1651 a | 1.2 |
Atractylone | 1659 | 1657 a | 13.1 |
Selin-11-en-4-α-ol | 1662 | 1658 a | 0.2 |
Germacrone | 1692 | 1693 a | 15.4 |
Zizanal | 1694 | 1697 a | 2.1 |
Maiurone | 1709 | 1709 a | 0.3 |
γ-Eudesmol acetate | 1780 | 1783 a | 1.3 |
Monoterpene hydrocarbons Oxygenated monoterpenes Sesquiterpene hydrocarbons Oxygenated sesquiterpenes Fatty acid derivatives | 17.5 | ||
0.7 | |||
41.3 | |||
39.8 | |||
0.1 | |||
Total (%) | 99.4 |
Constituents | RICal | RILit | % |
---|---|---|---|
2,4-Dimethyl-3-pentanone | 795 | 788 a | 0.1 |
(3Z)-Hexenal | 798 | 797 a | 0.1 |
Furfural | 827 | 828 a | 0.3 |
(2E)-Hexenal | 847 | 846 a | 0.1 |
(3Z)-Hexenol | 851 | 850 a | 0.1 |
α-Thujene | 925 | 924 a | 0.3 |
α-Pinene | 934 | 932 a | 55.8 |
α-Fenchene | 946 | 945 a | 0.1 |
Camphene | 947 | 946 a | 0.2 |
β-Pinene | 976 | 974 a | 2.6 |
Myrcene | 989 | 988 a | 0.1 |
α-Phellandrene | 1005 | 1002 a | 0.1 |
α-Terpinene | 1016 | 1014 a | 0.1 |
p-Cymene | 1023 | 1020 a | 0.1 |
Limonene | 1027 | 1024 a | 3.7 |
1,8-Cineole | 1030 | 1026 a | 0.1 |
(Z)-β-Ocimene | 1035 | 1032 a | 0.2 |
(E)-β-Ocimene | 1046 | 1044 a | 13.1 |
γ-Terpinene | 1057 | 1054 a | 0.3 |
Terpinolene | 1087 | 1086 a | 2.9 |
endo-Fenchol | 1112 | 1114 a | 0.3 |
α-Campholenal | 1125 | 1122 a | 0.1 |
trans-Pinocarveol | 1138 | 1135 a | 0.1 |
cis-β-Terpineol | 1143 | 1140 a | 0.1 |
Camphene hydrate | 1147 | 1145 a | 0.1 |
Borneol | 1164 | 1165 a | 0.3 |
Terpinen-4-ol | 1176 | 1174 a | 0.3 |
α-Terpineol | 1190 | 1186 a | 10.0 |
γ-Terpineol | 1196 | 1199 a | 0.1 |
(E)-Caryophyllene | 1419 | 1417 a | 4.2 |
γ-Elemene | 1433 | 1434 a | 0.1 |
α-Humulene | 1453 | 1452 a | 0.2 |
Bicyclogermacrene | 1496 | 1497 a | 0.1 |
δ-Amorphene | 1508 | 1511 a | 0.1 |
δ-Cadinene | 1523 | 1522 a | 0.1 |
Germacrene B | 1556 | 1559 a | 0.4 |
Monoterpene hydrocarbons | 79.6 | ||
Oxygenated monoterpenes | 11.5 | ||
Sesquiterpene hydrocarbons | 5.2 | ||
Fatty acid derivatives | 0.7 | ||
Total (%) | 97.0 |
Constituents | RICal | RILit | % |
---|---|---|---|
Hexanal | 800 | 801 a | 15.4 |
(2E)-Hexenal | 847 | 846 a | 21.7 |
n-Hexanol | 862 | 863 a | 2.2 |
(3Z)-Hexenyl acetate | 1006 | 1004 a | 0.5 |
2-Ethylhexanol | 1026 | 1030 a | 1.8 |
(Z)-β-Ocimene | 1036 | 1032 a | 2.6 |
(E)-β-Ocimene | 1046 | 1044 a | 1.3 |
α-Copaene | 1376 | 1374 a | 0.6 |
(E)-Caryophyllene | 1420 | 1417 a | 4.1 |
β-Selinene | 1487 | 1489 a | 1.6 |
α-Selinene | 1496 | 1498 a | 1.1 |
Caryophyllene oxide | 1583 | 1582 a | 9.2 |
Ledol | 1604 | 1602 a | 0.9 |
Humulene epoxide II | 1609 | 1608 a | 0.6 |
Muurola-4,10(14)-dien-1-β-ol | 1629 | 1630 a | 4.8 |
Caryophylla-4(12),8(13)-dien-5-α-ol | 1636 | 1639 a | 3.3 |
Caryophylla-4(12),8(13)-dien-5-β-ol | 1637 | 1639 a | 10.5 |
α-Muurolol | 1641 | 1644 a | 1.4 |
β-Eudesmol | 1645 | 1649 a | 2.4 |
Pogostol | 1648 | 1651 a | 8.3 |
14-hydroxy-9-epi-(E)-Caryophyllene | 1664 | 1668 a | 2.4 |
Monoterpene hydrocarbons | 3.9 | ||
Sesquiterpene hydrocarbons | 7.4 | ||
Oxygenated sesquiterpenes | 43.8 | ||
Fatty acid derivatives | 41.6 | ||
Total (%) | 96.7 |
Constituents | RICal | RILit | % |
---|---|---|---|
Ethyl butanoate | 799 | 802 a | 12.1 |
Butyl acetate | 806 | 807 a | 0.2 |
(2E)-Hexenal | 846 | 846 a | 2.6 |
n-Hexanol | 860 | 863 a | 0.8 |
Isopentyl acetate | 870 | 869 a | 0.1 |
Methyl hexanoate | 920 | 921 a | 0.6 |
α-Pinene | 932 | 932 a | 9.2 |
Camphene | 947 | 946 a | 0.1 |
Benzaldehyde | 955 | 952 a | 1.1 |
Hexanoic acid | 970 | 967 a | 0.1 |
β-Pinene | 976 | 974 a | 0.4 |
6-methyl-5-Hepten-2-one | 984 | 981 a | 0.4 |
Myrcene | 989 | 988 a | 0.9 |
Butyl butanoate | 994 | 993 a | 0.2 |
Ethyl hexanoate | 998 | 997 a | 5.9 |
(3Z)-Hexenyl acetate | 1005 | 1004 a | 2.3 |
Hexyl acetate | 1011 | 1007 a | 0.6 |
p-Cymene | 1023 | 1020 a | 0.3 |
Limonene | 1027 | 1024 a | 25.2 |
1,8-Cineole | 1030 | 1026 a | 0.2 |
γ-Terpinene | 1057 | 1054 a | 0.3 |
Methyl octanoate | 1123 | 1123 a | 0.1 |
(3Z)-Hexenyl butanoate | 1185 | 1184 a | 1.2 |
Hexyl butanoate | 1191 | 1191 a | 1.4 |
Ethyl octanoate | 1196 | 1196 a | 0.1 |
α-Copaene | 1376 | 1374 | 0.9 |
(3Z)-Hexenyl hexanoate | 1380 | 1378 a | 0.7 |
Geranyl acetate | 1383 | 1379 a | 0.2 |
Hexyl hexanoate | 1385 | 1382 a | 0.4 |
iso-Italicene | 1403 | 1401 a | 0.1 |
Acora-3,7(14)-diene | 1408 | 1407 a | 0.2 |
α-Cedrene | 1412 | 1410 a | 0.6 |
(E)-Caryophyllene | 1420 | 1417 a | 1.1 |
β-Santalene | 1460 | 1457 a | 0.2 |
α-Acoradiene | 1464 | 1464 a | 0.4 |
10-epi-β-Acoradiene | 1479 | 1474 a | 0.4 |
Ar-Curcumene | 1482 | 1479 a | 0.9 |
α-Zingiberene | 1495 | 1493 a | 0.1 |
(Z)-α-Bisabolene | 1502 | 1503 a | 0.2 |
β-Bisabolene | 1508 | 1506 a | 2.7 |
α-Bulnesene | 1512 | 1509 a | 0.7 |
β-Curcumene | 1515 | 1514 a | 1.8 |
δ-Cadinene | 1524 | 1522 a | 0.9 |
(E)-γ-Bisabolene | 1532 | 1529 a | 0.9 |
(E)-Nerolidol | 1563 | 1561 a | 0.4 |
Caryophyllene oxide | 1583 | 1582 a | 0.2 |
Cedrol | 1601 | 1600 a | 0.1 |
10-epi-γ-Eudesmol | 1625 | 1622 a | 0.7 |
α-Acorenol | 1630 | 1632 a | 1.1 |
Gossonorol | 1637 | 1636 a | 0.2 |
epi-α-Cadinol | 1641 | 1638 a | 0.6 |
Hinesol | 1644 | 1640 a | 0.3 |
α-Muurolol | 1646 | 1644 a | 0.6 |
α-Cadinol | 1654 | 1652 a | 0.5 |
14-hydroxy-(Z)-Caryophyllene | 1664 | 1666 a | 0.7 |
epi-β-Bisabolol | 1670 | 1670 a | 9.8 |
epi-α-Bisabolol | 1683 | 1683 a | 0.8 |
α-Bisabolol | 1685 | 1685 a | 1.8 |
(2E,6Z)-Farnesal | 1714 | 1713 a | 0.3 |
(2Z,6E)-Farnesol | 1721 | 1722 a | 0.4 |
(2E-6E)-Farnesal | 1741 | 1740 a | 0.4 |
Monoterpene hydrocarbons | 36.4 | ||
Oxygenated monoterpenes | 0.4 | ||
Sesquiterpene hydrocarbons | 12.1 | ||
Oxygenated sesquiterpenes | 18.9 | ||
Benzenoids/Phenylpropanoids | 1.1 | ||
Fatty acid derivatives | 29.8 | ||
Total (%) | 98.7 |
Classes of Compounds (%) | Esti | Euni | Mdub | Pgua | Pgui |
---|---|---|---|---|---|
Monoterpene hydrocarbons (MH) | 28.5 | 17.5 | 79.6 | 3.9 | 36.4 |
Oxygenated monoterpenes (OM) | 25.5 | 0.7 | 11.5 | - | 0.4 |
Sesquiterpene hydrocarbons (SH) | 13.1 | 41.3 | 5.2 | 7.4 | 12.1 |
Oxygenated sesquiterpenes (OS) | 20.9 | 39.8 | - | 43.8 | 18.9 |
Fatty acid derivatives (FA) | 10.8 | 0.1 | 0.7 | 41.6 | 29.8 |
Benzenoids/Phenylpropanoids (B/P) | - | - | - | - | 1.1 |
Total (%) | 98.8 | 99.4 | 97.0 | 96.7 | 98.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barroso, A.S.; Massing, L.T.; Suemitsu, C.; Mourão, R.H.V.; Figueiredo, P.L.B.; Maia, J.G.S. Volatile Constituents of Some Myrtaceous Edible and Medicinal Fruits from the Brazilian Amazon. Foods 2024, 13, 1490. https://doi.org/10.3390/foods13101490
Barroso AS, Massing LT, Suemitsu C, Mourão RHV, Figueiredo PLB, Maia JGS. Volatile Constituents of Some Myrtaceous Edible and Medicinal Fruits from the Brazilian Amazon. Foods. 2024; 13(10):1490. https://doi.org/10.3390/foods13101490
Chicago/Turabian StyleBarroso, Adenilson S., Lais T. Massing, Chieno Suemitsu, Rosa Helena V. Mourão, Pablo Luis B. Figueiredo, and José Guilherme S. Maia. 2024. "Volatile Constituents of Some Myrtaceous Edible and Medicinal Fruits from the Brazilian Amazon" Foods 13, no. 10: 1490. https://doi.org/10.3390/foods13101490
APA StyleBarroso, A. S., Massing, L. T., Suemitsu, C., Mourão, R. H. V., Figueiredo, P. L. B., & Maia, J. G. S. (2024). Volatile Constituents of Some Myrtaceous Edible and Medicinal Fruits from the Brazilian Amazon. Foods, 13(10), 1490. https://doi.org/10.3390/foods13101490