Food Waste Biotransformation into Food Ingredients: A Brief Overview of Challenges and Opportunities
Abstract
:1. Introduction
2. Challenges and Opportunities to FLW Upcycling
3. FLW-Derived Food Additives and Ingredients
3.1. Organic Acids
3.2. Phenolic Compounds
3.3. Bioactive Peptides: Bacteriocins
3.4. Sweeteners and Prebiotics
4. Biotechnological and Societal Challenges
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Global Food Losses and Food Waste—Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food Waste within Food Supply Chains: Quantification and Potential for Change to 2050. Philos. Trans. R. Soc. B 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed]
- FAO. Tracking Progress on Food and Agriculture-Related SDG Indicators 2023; FAO: Rome, Italy, 2023. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- FAO. Food Outlook—Biannual Report on Global Food Markets—November 2018; FAO: Rome, Italy, 2018. [Google Scholar]
- Xiong, X.; Yu, I.K.M.; Tsang, D.C.W.; Bolan, N.S.; Sik Ok, Y.; Igalavithana, A.D.; Kirkham, M.B.; Kim, K.H.; Vikrant, K. Value-Added Chemicals from Food Supply Chain Wastes: State-of-the-Art Review and Future Prospects. Chem. Eng. J. 2019, 375, 121983. [Google Scholar] [CrossRef]
- Lam, C.M.; Yu, I.K.M.; Hsu, S.C.; Tsang, D.C.W. Life-Cycle Assessment on Food Waste Valorisation to Value-Added Products. J. Clean. Prod. 2018, 199, 840–848. [Google Scholar] [CrossRef]
- Mondello, G.; Salomone, R.; Ioppolo, G.; Saija, G.; Sparacia, S.; Lucchetti, M.C. Comparative LCA of Alternative Scenarios for Waste Treatment: The Case of Food Waste Production by the Mass-Retail Sector. Sustainability 2017, 9, 827. [Google Scholar] [CrossRef]
- Naresh Kumar, A.; Sarkar, O.; Chandrasekhar, K.; Raj, T.; Narisetty, V.; Mohan, S.V.; Pandey, A.; Varjani, S.; Kumar, S.; Sharma, P.; et al. Upgrading the Value of Anaerobic Fermentation via Renewable Chemicals Production: A Sustainable Integration for Circular Bioeconomy. Sci. Total Environ. 2022, 806, 150312. [Google Scholar] [CrossRef]
- Cristóbal, J.; Caldeira, C.; Corrado, S.; Sala, S. Techno-Economic and Profitability Analysis of Food Waste Biorefineries at European Level. Bioresour Technol. 2018, 259, 244–252. [Google Scholar] [CrossRef]
- Manhongo, T.T.; Chimphango, A.; Thornley, P.; Röder, M. Techno-Economic and Environmental Evaluation of Integrated Mango Waste Biorefineries. J. Clean. Prod. 2021, 325, 129335. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Figueroa-Torres, G.; Azapagic, A. The Extent of Food Waste Generation in the UK and Its Environmental Impacts. Sustain. Prod. Consum. 2021, 26, 532–547. [Google Scholar] [CrossRef]
- Food Waste Index Report 2024. Think Eat Save: Tracking Progress to Halve Global Food Waste. Nairobi. 2024. Available online: https://wedocs.unep.org/20.500.11822/45230 (accessed on 6 October 2024).
- Michelin, M.; Ruiz, H.A.; Silva, D.P.; Ruzene, D.S.; Teixeira, J.A.; Polizeli, M.L.T.M. Cellulose from Lignocellulosic Waste. In Polysaccharides: Bioactivity and Biotechnology; Ramawat, K., Mérillon, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 475–511. ISBN 9783319162980. [Google Scholar]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and Sustainable Pretreatment Methods for Cellulose Extraction from Lignocellulosic Biomass and Its Applications: A Review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Vermeulen, N.; Vogel, R.F. Carbohydrate, Peptide and Lipid Metabolism of Lactic Acid Bacteria in Sourdough. Food Microbiol. 2007, 24, 128–138. [Google Scholar] [CrossRef]
- Nguyen, C.M.; Kim, J.S.; Nguyen, T.N.; Kim, S.K.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Kim, J.C. Production of L- and D-Lactic Acid from Waste Curcuma Longa Biomass through Simultaneous Saccharification and Cofermentation. Bioresour. Technol. 2013, 146, 35–43. [Google Scholar] [CrossRef] [PubMed]
- The European Parliament and the Council of the European Union. Regulation (EC). No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives. Off. J. Eur. Union 2008, L354, 16–33. [Google Scholar]
- Abiega-Franyutti, P.; Freyre-Fonseca, V. Chronic Consumption of Food-Additives Lead to Changes via Microbiota Gut-Brain Axis. Toxicology 2021, 464, 153001. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Natural Food Additives: Quo Vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gundert-Remy, U.; Gürtler, R.; Husøy, T.; et al. Safety Assessment of Titanium Dioxide (E171) as a Food Additive. EFSA J. 2021, 19, e06585. [Google Scholar] [CrossRef]
- Son, E.; Kwon, K.H. European Ban on Potassium Bromate in Bread: Composition and Health Impact. Eur. Food Feed. Law Rev. 2023, 18, 358–364. [Google Scholar]
- Ncheuveu Nkwatoh, T.; Fon, T.P.; Navti, L.K. Potassium Bromate in Bread, Health Risks to Bread Consumers and Toxicity Symptoms amongst Bakers in Bamenda, North West Region of Cameroon. Heliyon 2023, 9, e13146. [Google Scholar] [CrossRef]
- Assembly Bill No. 418. An Act to Add Chapter 17 (Commencing with Section 109025) to Part 3 of Division 104 of the Health and Safety Code, Relating to Food. California, USA. 2023. Available online: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=202320240AB418 (accessed on 6 October 2024).
- Galanakis, C.M. The Future of Food. Foods 2024, 13, 506. [Google Scholar] [CrossRef]
- Fernandes, A.C.; Morais, C.; Franchini, B.; Pereira, B.; Pinho, O.; Cunha, L.M. Clean-Label Products: Factors Affecting Liking and Acceptability by Portuguese Older Adults. Appetite 2024, 197, 107307. [Google Scholar] [CrossRef]
- Renita, A.A.; Gajaria, T.K.; Sathish, S.; Kumar, J.A.; Lakshmi, D.S.; Kujawa, J.; Kujawski, W. Progress and Prospective of the Industrial Development and Applications of Eco-Friendly Colorants: An Insight into Environmental Impact and Sustainability Issues. Foods 2023, 12, 1521. [Google Scholar] [CrossRef]
- Roobab, U.; Khan, A.W.; Lorenzo, J.M.; Arshad, R.N.; Chen, B.R.; Zeng, X.A.; Bekhit, A.E.D.; Suleman, R.; Aadil, R.M. A Systematic Review of Clean-Label Alternatives to Synthetic Additives in Raw and Processed Meat with a Special Emphasis on High-Pressure Processing (2018–2021). Food Res. Int. 2021, 150, 110792. [Google Scholar] [CrossRef] [PubMed]
- Vigneshwar, S.S.; Swetha, A.; Gopinath, K.P.; Goutham, R.; Pal, R.; Arun, J.; SundarRajan, P.; Bhatnagar, A.; Lan Chi, N.T.; Pugazhendhi, A. Bioprocessing of Biowaste Derived from Food Supply Chain Side-Streams for Extraction of Value Added Bioproducts through Biorefinery Approach. Food Chem. Toxicol. 2022, 165, 113184. [Google Scholar] [CrossRef] [PubMed]
- Albizzati, P.F.; Tonini, D.; Astrup, T.F. High-Value Products from Food Waste: An Environmental and Socio-Economic Assessment. Sci. Total Environ. 2021, 755, 142466. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zeng, A.P.; Yuan, W. Succinic Acid Fermentation from Agricultural Wastes: The Producing Microorganisms and Their Engineering Strategies. Curr. Opin. Environ. Sci. Health 2022, 25, 100313. [Google Scholar] [CrossRef]
- Narisetty, V.; Okibe, M.C.; Amulya, K.; Jokodola, E.O.; Coulon, F.; Tyagi, V.K.; Lens, P.N.L.; Parameswaran, B.; Kumar, V. Technological Advancements in Valorization of Second Generation (2G) Feedstocks for Bio-Based Succinic Acid Production. Bioresour. Technol. 2022, 360, 127513. [Google Scholar] [CrossRef]
- Esteban, J.; Ladero, M. Food Waste as a Source of Value-Added Chemicals and Materials: A Biorefinery Perspective. Int. J. Food Sci. Technol. 2018, 53, 1095–1108. [Google Scholar] [CrossRef]
- Yafetto, L. Application of Solid-State Fermentation by Microbial Biotechnology for Bioprocessing of Agro-Industrial Wastes from 1970 to 2020: A Review and Bibliometric Analysis. Heliyon 2022, 8, e09173. [Google Scholar] [CrossRef]
- Bozell, J.J.; Petersen, G.R. Technology Development for the Production of Biobased Products from Biorefinery Carbohydrates—The US Department of Energy’s “Top 10” Revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Uçkun Kiran, E.; Trzcinski, A.P.; Liu, Y. Platform Chemical Production from Food Wastes Using a Biorefinery Concept. J. Chem. Technol. Biotechnol. 2015, 90, 1364–1379. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Harirchi, S.; Sar, T.; VS, V.; Rajendran, K.; Gómez-García, R.; Hellwig, C.; Binod, P.; Sindhu, R.; Madhavan, A.; et al. Myco-Biorefinery Approaches for Food Waste Valorization: Present Status and Future Prospects. Bioresour. Technol. 2022, 360, 127592. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Brar, S.K.; Verma, M.; Tyagi, R.D. Utilization of Different Agro-Industrial Wastes for Sustainable Bioproduction of Citric Acid by Aspergillus niger. Biochem. Eng. J. 2011, 54, 83–92. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Mimi Sakinah, A.M.; Zularisam, A.W.; Sirohi, R.; Khilji, I.A.; Ahmad, N.; Pandey, A. Advances in Solid-State Fermentation for Bioconversion of Agricultural Wastes to Value-Added Products: Opportunities and Challenges. Bioresour. Technol. 2022, 343, 126065. [Google Scholar] [CrossRef] [PubMed]
- Behera, B.C.; Mishra, R.; Mohapatra, S. Microbial Citric Acid: Production, Properties, Application, and Future Perspectives. Food Front. 2021, 2, 62–76. [Google Scholar] [CrossRef]
- Bühlmann, C.H.; Mickan, B.S.; Tait, S.; Batstone, D.J.; Mercer, G.D.; Bahri, P.A. Lactic Acid from Mixed Food Waste Fermentation Using an Adapted Inoculum: Influence of PH and Temperature Regulation on Yield and Product Spectrum. J. Clean. Prod. 2022, 373, 133716. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Lactic Acid Production from Lignocellulose-Derived Sugars Using Lactic Acid Bacteria: Overview and Limits. J. Biotechnol. 2011, 156, 286–301. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Tomasi, P.; Marincich, L.; Poli, F. Plant Secondary Metabolites: An Opportunity for Circular Economy. Molecules 2021, 26, 495. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M.; Reig, M. A Green Approach to Phenolic Compounds Recovery from Olive Mill and Winery Wastes. Sci. Total Environ. 2022, 835, 155552. [Google Scholar] [CrossRef]
- Pereira, A.; Añibarro-Ortega, M.; Kostić, M.; Nogueira, A.; Soković, M.; Pinela, J.; Barros, L. Upcycling Quince Peel into Bioactive Ingredients and Fiber Concentrates through Multicomponent Extraction Processes. Antioxidants 2023, 12, 260. [Google Scholar] [CrossRef]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive Phenolic Compounds: Production and Extraction by Solid-State Fermentation. A Review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef]
- Gulsunoglu-Konuskan, Z.; Kilic-Akyilmaz, M. Microbial Bioconversion of Phenolic Compounds in Agro-Industrial Wastes: A Review of Mechanisms and Effective Factors. J. Agric. Food Chem. 2022, 70, 6901–6910. [Google Scholar] [CrossRef]
- Madeira Junior, J.V.; Teixeira, C.B.; Macedo, G.A. Biotransformation and Bioconversion of Phenolic Compounds Obtainment: An Overview. Crit. Rev. Biotechnol. 2015, 35, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Robledo, A.; Aguilera-Carbó, A.; Rodriguez, R.; Martinez, J.L.; Garza, Y.; Aguilar, C.N. Ellagic Acid Production by Aspergillus niger in Solid State Fermentation of Pomegranate Residues. J. Ind. Microbiol. Biotechnol. 2008, 35, 507–513. [Google Scholar] [CrossRef]
- Dos, E.; Barbosa, S.; Perrone, D.; Lúcia, A.; Vendramini, A.; Gomes, S.; Leite, F. Vanillin Production by Phanerochaete chrysosporium Grown on Green Coconut Agroindustrial Husk in Solid State Fermentation. Bioresources 2008, 3, 1042–1050. [Google Scholar]
- Talekar, S.; Patti, A.F.; Vijayraghavan, R.; Arora, A. An Integrated Green Biorefinery Approach towards Simultaneous Recovery of Pectin and Polyphenols Coupled with Bioethanol Production from Waste Pomegranate Peels. Bioresour. Technol. 2018, 266, 322–334. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, T.; Wang, X.; Lü, X. Apple Pomace as a Potential Valuable Resource for Full-Components Utilization: A Review. J. Clean. Prod. 2021, 329, 129676. [Google Scholar] [CrossRef]
- Czajkowska–González, Y.A.; Alvarez–Parrilla, E.; del Rocío Martínez–Ruiz, N.; Vázquez–Flores, A.A.; Gaytán–Martínez, M.; de la Rosa, L.A. Addition of Phenolic Compounds to Bread: Antioxidant Benefits and Impact on Food Structure and Sensory Characteristics. Food Prod. Process. Nutr. 2021, 3, 25. [Google Scholar] [CrossRef]
- Santos, J.C.P.; Sousa, R.C.S.; Otoni, C.G.; Moraes, A.R.F.; Souza, V.G.L.; Medeiros, E.A.A.; Espitia, P.J.P.; Pires, A.C.S.; Coimbra, J.S.R.; Soares, N.F.F. Nisin and Other Antimicrobial Peptides: Production, Mechanisms of Action, and Application in Active Food Packaging. Innov. Food Sci. Emerg. Technol. 2018, 48, 179–194. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Leon, M.J.; Millan-Linares, M.C.; Montserrat-de la Paz, S. Antimicrobial Plant-Derived Peptides Obtained by Enzymatic Hydrolysis and Fermentation as Components to Improve Current Food Systems. Trends Food Sci. Technol. 2023, 135, 32–42. [Google Scholar] [CrossRef]
- Darbandi, A.; Asadi, A.; Mahdizade Ari, M.; Ohadi, E.; Talebi, M.; Halaj Zadeh, M.; Darb Emamie, A.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and Potential Use as Antimicrobials. J. Clin. Lab Anal. 2022, 36, e24093. [Google Scholar] [CrossRef]
- Arulrajah, B.; Muhialdin, B.J.; Qoms, M.S.; Zarei, M.; Hussin, A.S.M.; Hasan, H.; Saari, N. Production of Cationic Antifungal Peptides from Kenaf Seed Protein as Natural Bio Preservatives to Prolong the Shelf-Life of Tomato Puree. Int. J. Food Microbiol. 2021, 359, 109418. [Google Scholar] [CrossRef]
- Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gundert-Remy, U.; Kuhnle, G.G.; et al. Safety of Nisin (E 234) as a Food Additive in the Light of New Toxicological Data and the Proposed Extension of Use. EFSA J. 2017, 15, e05063. [Google Scholar] [CrossRef] [PubMed]
- Arias, A.; Feijoo, G.; Moreira, M.T. Process and Environmental Simulation in the Validation of the Biotechnological Production of Nisin from Waste. Biochem. Eng. J. 2021, 174, 108105. [Google Scholar] [CrossRef]
- Zhao, G.; Kempen, P.J.; Shetty, R.; Gu, L.; Zhao, S.; Ruhdal Jensen, P.; Solem, C. Harnessing Cross-Resistance—Sustainable Nisin Production from Low-Value Food Side Streams Using a Lactococcus lactis Mutant with Higher Nisin-Resistance Obtained after Prolonged Chlorhexidine Exposure. Bioresour. Technol. 2022, 348, 126776. [Google Scholar] [CrossRef]
- Tafreshi, S.; Yed, H.; Mirdamadi, S.; Khatami, S. Comparison of Different Nisin Separation and Concentration Methods: Industrial and Cost-Effective Perspectives. Probiotics Antimicrob. Proteins 2020, 12, 1226–1234. [Google Scholar] [CrossRef]
- Arias, A.; Barreiro, D.; Feijoo, G.; Moreira, M.T. Waste Biorefinery towards a Sustainable Biotechnological Production of Pediocin: Synergy between Process Simulation and Environmental Assessment. Environ. Technol. Innov. 2022, 26, 102306. [Google Scholar] [CrossRef]
- Khan, H.; Flint, S.; Yu, P.L. Enterocins in Food Preservation. Int. J. Food Microbiol. 2010, 141, 1–10. [Google Scholar] [CrossRef]
- Barbosa, A.A.T.; Mantovani, H.C.; Jain, S. Bacteriocins from Lactic Acid Bacteria and Their Potential in the Preservation of Fruit Products. Crit. Rev. Biotechnol. 2017, 37, 852–864. [Google Scholar] [CrossRef]
- Chauhan, K.; Rao, A. Clean-Label Alternatives for Food Preservation: An Emerging Trend. Heliyon 2024, 10, e35815. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, Y.; Li, Y.; Shen, J.; Dan, M.; Wang, D. Recent Advances in Biotransformation, Extraction and Green Production of D-Mannose. Curr. Res. Food Sci. 2022, 5, 49–56. [Google Scholar] [CrossRef]
- Qiu, M.; Zheng, J.; Yao, Y.; Liu, L.; Zhou, X.; Jiao, H.; Aarons, J.; Zhang, K.; Guan, Q.; Li, W. Directly Converting Cellulose into High Yield Sorbitol by Tuning the Electron Structure of Ru2P Anchored in Agricultural Straw Biochar. J. Clean. Prod. 2022, 362, 132364. [Google Scholar] [CrossRef]
- Zhang, H.; Yun, J.; Zabed, H.; Yang, M.; Zhang, G.; Qi, Y.; Guo, Q.; Qi, X. Production of Xylitol by Expressing Xylitol Dehydrogenase and Alcohol Dehydrogenase from Gluconobacter thailandicus and Co-Biotransformation of Whole Cells. Bioresour. Technol. 2018, 257, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Beerens, K.; Desmet, T.; Soetaert, W. Enzymes for the Biocatalytic Production of Rare Sugars. J. Ind. Microbiol. Biotechnol. 2012, 39, 823–834. [Google Scholar] [CrossRef]
- Kim, H.M.; Song, Y.; Wi, S.G.; Bae, H.J. Production of D-Tagatose and Bioethanol from Onion Waste by an Intergrating Bioprocess. J. Biotechnol. 2017, 260, 84–90. [Google Scholar] [CrossRef]
- Guerrero-Wyss, M.; Durán Agüero, S.; Angarita Dávila, L. D-Tagatose is a Promising Sweetener to Control Glycaemia: A New Functional Food. Biomed. Res. Int. 2018, 2018, 8718053. [Google Scholar] [CrossRef]
- Ruangrit, K.; Chaipoot, S.; Phongphisutthinant, R.; Duangjan, K.; Phinyo, K.; Jeerapan, I.; Pekkoh, J.; Srinuanpan, S. A Successful Biorefinery Approach of Macroalgal Biomass as a Promising Sustainable Source to Produce Bioactive Nutraceutical and Biodiesel. Biomass Convers. Biorefin. 2021, 13, 1089–1099. [Google Scholar] [CrossRef]
- Dong, C.D.; Tsai, M.L.; Nargotra, P.; Kour, B.; Chen, C.W.; Sun, P.P.; Sharma, V. Bioprocess Development for the Production of Xylooligosaccharide Prebiotics from Agro-Industrial Lignocellulosic Waste. Heliyon 2023, 9, e18316. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, M.; Lu, L.; Li, Y. Production of Non-Monosaccharide and High-Purity Galactooligosaccharides by Immobilized Enzyme Catalysis and Fermentation with Immobilized Yeast Cells. Process Biochem. 2008, 43, 896–899. [Google Scholar] [CrossRef]
- Manicardi, T.; Baioni e Silva, G.; Longati, A.A.; Paiva, T.D.; Souza, J.P.M.; Pádua, T.F.; Furlan, F.F.; Giordano, R.L.C.; Giordano, R.C.; Milessi, T.S. Xylooligosaccharides: A Bibliometric Analysis and Current Advances of This Bioactive Food Chemical as a Potential Product in Biorefineries’ Portfolios. Foods 2023, 12, 3007. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Álvarez-Rivera, G.; Valdés, A.; Ibáñez, E.; Cifuentes, A. Food By-Products and Food Wastes: Are They Safe Enough for Their Valorization? Trends Food Sci. Technol. 2021, 114, 133–147. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, A.; Yu, B.; Sun, X. Recent Advances in Non-Contact Food Decontamination Technologies for Removing Mycotoxins and Fungal Contaminants. Foods 2024, 13, 2244. [Google Scholar] [CrossRef]
- Gavahian, M.; Pallares, N.; Al Khawli, F.; Ferrer, E.; Barba, F.J. Recent Advances in the Application of Innovative Food Processing Technologies for Mycotoxins and Pesticide Reduction in Foods. Trends Food Sci. Technol. 2020, 106, 209–218. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinela, J.; Añibarro-Ortega, M.; Barros, L. Food Waste Biotransformation into Food Ingredients: A Brief Overview of Challenges and Opportunities. Foods 2024, 13, 3389. https://doi.org/10.3390/foods13213389
Pinela J, Añibarro-Ortega M, Barros L. Food Waste Biotransformation into Food Ingredients: A Brief Overview of Challenges and Opportunities. Foods. 2024; 13(21):3389. https://doi.org/10.3390/foods13213389
Chicago/Turabian StylePinela, José, Mikel Añibarro-Ortega, and Lillian Barros. 2024. "Food Waste Biotransformation into Food Ingredients: A Brief Overview of Challenges and Opportunities" Foods 13, no. 21: 3389. https://doi.org/10.3390/foods13213389
APA StylePinela, J., Añibarro-Ortega, M., & Barros, L. (2024). Food Waste Biotransformation into Food Ingredients: A Brief Overview of Challenges and Opportunities. Foods, 13(21), 3389. https://doi.org/10.3390/foods13213389