Volatile Organic Compounds as Early Detection Indicators of Wheat Infected by Sitophilus oryzae
Abstract
:1. Introduction
2. Material and Methods
2.1. Insect Rearing
2.2. Sample Preparation
2.3. Volatile Collection
2.4. GC-MS Analysis
2.5. Data Processing
3. Results
3.1. Analysis of Volatile Components in Rice Weevil-Infested Wheat over Different Stages
3.2. Principal Component Analysis (PCA)
3.3. Partial Least Squares Discriminant Analysis (PLS-DA)
3.4. Hierarchical Clustering Analysis of Characteristic Volatile Substances
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, J.A.; Vendl, T.; Aulicky, R.; Stejskal, V. Frass produced by the primary pest Rhyzopertha dominica supports the population growth of the secondary stored product pests Oryzaephilus surinamensis, Tribolium castaneum, and T. confusum. Bull Entomol. Res. 2023, 111, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Abass, A.B.; Ndunguru, G.; Mamiro, P.; Alenkhe, B.; Mlingi, N.; Bekunda, M. Post-harvest food losses in maize-based farming system of semi-arid savannah area of Tanzania. J. Stored Prod. Res. 2014, 57, 49–57. [Google Scholar] [CrossRef]
- Rosentrater, K.A. Storage of Cereal Grains and Their Products, 5th ed.; Woodhead Publishing: Cambridge, UK, 2022; pp. 607–646. [Google Scholar]
- Suleiman, R.; Rosentrater, K.A.; Bern, C.J. Evaluation of maize weevils Sitophilus zeamais Motschulsky infestation on seven varieties of maize. J. Stored Prod. Res. 2015, 64, 97–102. [Google Scholar] [CrossRef]
- Bian, Q.; Ambrose, R.P.K.; Subramanyam, B. Effects of insect-infested kernels on bulk flow properties of wheat. J. Stored Prod. Res. 2015, 63, 51–56. [Google Scholar] [CrossRef]
- Laopongsit, W.; Srzednicki, G. Early detection of insect infestation in stored grain based on head space analysis of volatile compounds. Julius Kühn Archiv 2010, 425, 999–1003. [Google Scholar]
- Mankin, R.; Hagstrum, D.; Guo, M.; Panagiotis, E.; Anastasia, N. Automated applications of acoustics for stored product insect detection, monitoring, and management. Insects 2021, 12, 259. [Google Scholar] [CrossRef]
- Tian, Q.; Wu, Q.; Li, T.; Zhang, M.L.; Zhang, D.D.; Qian, R.R.; Zhang, Y.R. Analysis of potential volatile organic compounds in Sitophilus zeamais (Coleoptera: Curculionidae)-infested wheat based on lipid oxidation-a reference to early and rapid detection method. J. Econ. Entomol. 2024, 117, 1164–1175. [Google Scholar] [CrossRef]
- Sheetal, B.K.; Kotwaliwale, N.; Debabandya, M.; Giri, S.K. Techniques for insect detection in stored food grains: An overview. Food Control 2018, 94, 167–176. [Google Scholar]
- Senthilkumar, T.; Jayas, D.S.; White, N.D.G.; Freund, M.S.; Shafai, C.; Thomson, D.J. Characterization of volatile organic compounds released by granivorous insects in stored wheat. J. Stored Prod. Res. 2012, 48, 91–96. [Google Scholar] [CrossRef]
- Srivastava, S.; Mishra, G.; Mishra, H. Fuzzy controller based E-nose classification of Sitophilus Oryzae infestation in stored rice grain. Food Chem. 2019, 283, 604–610. [Google Scholar] [CrossRef]
- Tanaka, F.; Shikata, M.; Ii, T.; Matsuo, T. Rapid analysis of volatile biomarkers:application of real-time mass spectrometry for the detection of insect infestation in brown rice. J. Jpn. Soc. Food Sci. 2021, 68, 319–327. [Google Scholar] [CrossRef]
- Huang, Z.W.; Lv, J.H.; Guo, Y.F.; Gu, C.C. Research progress on volatile compounds in stored grain environment and their relationship with stored grain insects. J. Environ. Entomol. 2022, 44, 74–83. [Google Scholar]
- Zhang, Y.R.; Shao, S.; Yu, Y.W.; Zhou, X.Q.; Fu, J. Effect of growth and reproduction of boring pests on volatile components of wheat. J. Henan Univ. Technol. (Nat. Sci. Eds.) 2019, 40, 85–94. [Google Scholar]
- Widjaja, R.; Craske, J.D.; Wootton, M. Changes in volatiles components of paddy, brown and white fragrant rice during storage. J. Sci. Food Agric. 1996, 71, 218–224. [Google Scholar] [CrossRef]
- Bai, Z.Z.; Yang, M.H.; Zhao, X. Comparison of two methods for the collection of volatiles from three legumes. Grassl. Turf. 2021, 41, 84–91. [Google Scholar]
- Cheng, B.; Fu, X.X.; Xie, P.; Sun, D.P.; Cui, T.H. Collection methods for volatile organic compounds of plant. J. Jilin For. Sci. Technol. 2009, 38, 32–35. [Google Scholar]
- Guo, Y.Y.; Li, H.R.; Cai, Y.S.; Wang, Y. Research on age identification of Sitophilus oryzae in grain. Grain Sci. Technol. Econ. 2021, 46, 113–117. [Google Scholar]
- Couto, C.C.; Chávez, D.W.H.; Oliveira, E.M.M.; Silva, O.F.; Casal, S. SPME-GC-MS untargeted metabolomics approach to identify potential volatile compounds as markers for fraud detection in roasted and ground coffee. Food Chem. 2024, 446, 138862. [Google Scholar] [CrossRef]
- Shan, C.Y.; Cao, Y.; Jiang, B.; Li, T.T.; Hao, J.R.; Liu, X.Q.; Zhang, T. A comparative analysis of volatile compounds in brown rice and brown rice infected by rusty grain beetle (Cryptolestes ferrugineus (stephens)). Food Sci. Technol. 2020, 45, 275–284. [Google Scholar]
- Kskin, S.; Yalcin, E.; Ozkaya, H. Effects of storage and granary weevil infestation on gel electrophoresis and protein solubility properties of hard and soft wheat flours. J. Econ. Entomol. 2018, 111, 1454–1460. [Google Scholar] [CrossRef]
- Howard, R.W. Cuticular hydrocarbons of adult Pteromalus cerealellae (Hymenoptera: Pteromalidae) and two larval hosts, Angoumois Grain Moth (Lepidoptera: Gelechiidae) and Cowpea weevil (Coleptera: Bruchidae). Ann. Entomol. Soc. Am. 2001, 94, 152–158. [Google Scholar] [CrossRef]
- Gorb, E.V.; Gorb, S.N. Anti-adhesive effects of plant wax coverage on insect attachment. J. Exp. Bot. 2017, 68, 5323–5337. [Google Scholar] [CrossRef] [PubMed]
- Prasantha, B.D.R.; Reichmuth, C.; Adler, C.; Felgentreu, D. Lipid adsorption of diatomaceous earths and increased water permeability in the epicuticle layer of the cowpea weevil Callosobruchus maculatus (F.) and the bean weevil Acanthoscelides obtectus (Say) (Chrysomelidae). J. Stored Prod. Res. 2015, 64, 36–41. [Google Scholar] [CrossRef]
- Samin, F.; Esben, T.; Peter, C.; Jan, H.C. Chemical composition analysis of carbohydrate fragmentation products. J. Anal. Appl. Pyrol. 2021, 156, 105112. [Google Scholar]
- Li, S.; Liu, Y.; Wang, C.L. The health benefits and application of squalene. Food Res. Dev. 2016, 37, 206–209. [Google Scholar]
- Naziri, E.; Tsimidou, M.Z. Formulated squalene for food related applications. Recent. Pat. Food Nutr. Agric. 2013, 5, 83–104. [Google Scholar] [CrossRef]
- Feng, S.L.; Xu, X.Y.; Tao, S.Y.; Chen, T.; Zhou, L.J.; Huang, Y.; Yang, H.Y.; Yuan, M.; Ding, C.B. Comprehensive evaluation of chemical composition and health-promoting effects with chemometrics analysis of plant derived edible oils. Food Chem. X 2022, 14, 100341. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, L.P.; Yu, W.J.; Li, Y.F. Investigating the influence of selected texture-improved pretreatment techniques on storage stability of wholegrain brown rice: Involvement of processing-induced mineral changes with lipid degradation. Food Res. Int. 2017, 99, 510–521. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, L.Y.; Wang, W.J.; Liu, J.L.; Shang, B.; Duan, X.L.; Sun, H. Lipidomics reveals the changes in non-starch and starch lipids of rice (Oryza sativa L.) during storage. J. Food Compos. Anal. 2021, 105, 104205. [Google Scholar] [CrossRef]
- Huang, S.S.; Zhang, S.; Duan, X.L.; Sun, H. lipids in rice: Distribution, composition, functions and detection methods. Food Sci. 2023, 44, 324–330. [Google Scholar]
- Son, Y.J.; Lee, K.; Gu, S.Y.; Park, J.Y.; Choi, S.; Kim, H. Quality changes in perilla seed powder related to storage duration and temperature. J. Food Sci. Technol. 2020, 57, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Blanchard, C.; Helliwell, S.; Robards, K. Fatty acid composition of three rice varieties following storage. J. Cereal Sci. 2003, 37, 327–335. [Google Scholar] [CrossRef]
- Pazarlioğlu, N.K.; Telefoncu, A. Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochem. 2005, 40, 1807–1814. [Google Scholar] [CrossRef]
- Amor, L.; Eiroa, M.; Kennes, C.; Veiga, M.C. Phenol biodegradation and its effect on the nitrification process. Water Res. 2005, 39, 2915–2920. [Google Scholar] [CrossRef]
- Li, X.Y.; Cui, Y.H.; Feng, Y.J.; Xie, Z.M.; Gu, J.D. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res. 2005, 39, 1972–1981. [Google Scholar] [CrossRef]
- Gong, C.B.; Ou, X.X.; Liu, S.; Jin, Y.L.; Huang, H.R.; Tang, Q.; Lam, M.H.W.; Chow, C.F.; Tang, Q. A molecular imprinting-based multifunctional chemosensor for phthalate esters. Dye Pigment 2017, 137, 499–506. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Zheng, X.W.; Gu, P.; Wang, N.; Lai, Z.N.; He, J.; Zheng, Z. Distribution and risk assessment of phthalates in water and sediment of the Pearl River Delta. Environ. Sci. Pollut. Res. 2020, 27, 12550–12565. [Google Scholar]
- Tao, H.; Wang, Y.J.; Liang, H.H.; Zhang, X.H.; Liu, X.P.; Li, J.L. Pollution characteristics of phthalate acid esters in agricultural soil of Yinchuan, northwest China, and health risk assessment. Environ. Geochem. Health 2020, 42, 4313–4326. [Google Scholar] [CrossRef]
- Gan, Z.; Zhou, Q.; Zheng, C.; Wang, J. Challenges and applications of volatile organic compounds monitoring technology in plant disease diagnosis. Biosens. Bioelectron. 2023, 237, 115540. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Jiang, H.; Xu, H.; Shang, S.; Wang, D.; Bai, Y.; Zeng, F. Volatile Organic Compounds as Early Detection Indicators of Wheat Infected by Sitophilus oryzae. Foods 2024, 13, 3390. https://doi.org/10.3390/foods13213390
Liu X, Jiang H, Xu H, Shang S, Wang D, Bai Y, Zeng F. Volatile Organic Compounds as Early Detection Indicators of Wheat Infected by Sitophilus oryzae. Foods. 2024; 13(21):3390. https://doi.org/10.3390/foods13213390
Chicago/Turabian StyleLiu, Xinjie, Haixin Jiang, Haoqi Xu, Sijia Shang, Dianxuan Wang, Yueliang Bai, and Fangfang Zeng. 2024. "Volatile Organic Compounds as Early Detection Indicators of Wheat Infected by Sitophilus oryzae" Foods 13, no. 21: 3390. https://doi.org/10.3390/foods13213390
APA StyleLiu, X., Jiang, H., Xu, H., Shang, S., Wang, D., Bai, Y., & Zeng, F. (2024). Volatile Organic Compounds as Early Detection Indicators of Wheat Infected by Sitophilus oryzae. Foods, 13(21), 3390. https://doi.org/10.3390/foods13213390