Overview of Phytochemical Composition of Brassica oleraceae var. capitata Cultivars
Abstract
:1. Introduction
2. Phytochemical Compounds
2.1. Glucosinolates
Cabbage Form | Cultivar | Total Glucosinolate Content | Reference | |
---|---|---|---|---|
Brassica oleraceae var. capitata f. alba | Marcello | Sprouts | 3.49 μmol/g f.w. | [51] |
Mature head | 1.42 μmol/g f.w. | |||
Perfecto | Sprouts | 4.78 μmol/g f.w. | ||
Mature head | 1.85 μmol/g f.w. | |||
Tolsma | Sprouts | 5.18 μmol/g f.w. | ||
Mature head | 2.30 μmol/g f.w. | |||
Ohgane | 4.9 μmol/g d.w. | [49] | ||
YR Gold | 157.6 μmol/g d.w. | |||
BOL-AWS-1999-153 | 23.37 μmol/g d.w. | [44] | ||
BOL-AWS-1999-156 | 23.76 μmol/g d.w. | |||
Late Flat Dutch | 21.33 μmol/g d.w. | |||
Podarok | 19.49 μmol/g d.w. | |||
Zuun Kharaa N 1 | 13.54 μmol/g d.w. | |||
Zuun Kharaa N 10 | 19.39 μmol/g d.w. | |||
Zuun Kharaa N 15 | 19.19 μmol/g d.w. | |||
Kashirka 202 | 21.62 μmol/g d.w. | |||
Succession Green Leaved | 21.33 μmol/g d.w. | |||
Sagyahwak | 20.72 μmol/g d.w. | |||
Yujanka 31 | 19.86 μmol/g d.w. | |||
Valcatiecskaya | 23.31 μmol/g d.w. | |||
Natsuzoka | 17.82 μmol/g d.w. | |||
UR Gogetsu | 17.66 μmol/g d.w. | |||
Gyeongphong 1 ho | 17.16 μmol/g d.w. | |||
Skvirskaya N32 | 16.81 μmol/g d.w. | |||
153 | 14.78 μmol/g d.w. | |||
Tashkent 110 | 14.71 μmol/g d.w. | |||
Golden Acre | 11.32 μmol/g d.w. | |||
Sudya | 10.75 μmol/g d.w. | |||
Sudiya-146 | 10.40 μmol/g d.w. | |||
TJK-PHJ-2014-6-8 | 8.90 μmol/g d.w. | |||
Brassica oleraceae var. capitata f. rubra | Pourovo cervene | 12.03 μmol/g d.w. | ||
Kirmizi | 18.18 μmol/g d.w. | |||
Rubin | 17.55 μmol/g d.w. | |||
Red Drumhead 2 | 14.41 μmol/g d.w. | |||
Integro | Sprouts | 3.42 μmol/g f.w. | [52] | |
Mature head | 1.45 μmol/g f.w. | |||
Redma | Sprouts | 4.53 μmol/g f.w. | ||
Mature head | 1.02 μmol/g f.w. | |||
Roodkop 2 | Sprouts | 2.92 μmol/g f.w. | ||
Mature head | 1.33 μmol/g f.w. | |||
Rubra | 46.8 μmol/g d.w. | [49] | ||
Brassica oleraceae var. capitata f. sabauda | Capriccio | Sprouts | 4.14 μmol/g f.w. | [51] |
Mature head | 1.90 μmol/g f.w. | |||
Daphne | Sprouts | 9.61 μmol/g f.w. | ||
Mature head | 1.34 μmol/g f.w. | |||
Emerald | Sprouts | 3.46 μmol/g f.w. | ||
Mature head | 1.44 μmol/g f.w. |
2.2. Phenolic Compounds
2.3. Vitamin C
2.4. Carotenoids
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Francis, A.; Lujan-Toro, B.; Warwick, S.; Macklin, J.; Martin, S. Update on the Brassicaceae Species Checklist. Biodivers. Data J. 2021, 9, e58773. [Google Scholar] [CrossRef] [PubMed]
- Björkman, M.; Klingen, I.; Birch, A.N.E.; Bones, A.M.; Bruce, T.J.A.; Johansen, T.J.; Meadow, R.; Mølmann, J.; Seljåsen, R.; Smart, L.E.; et al. Phytochemicals of Brassicaceae in Plant Protection and Human Health—Influences of Climate, Environment and Agronomic Practice. Phytochemistry 2011, 72, 538–556. [Google Scholar] [CrossRef] [PubMed]
- Uuh-Narvaez, J.J.; Segura-Campos, M.R. Cabbage (Brassica Oleracea var. Capitata): A Food with Functional Properties Aimed to Type 2 Diabetes Prevention and Management. J. Food Sci. 2021, 86, 4775–4798. [Google Scholar] [CrossRef] [PubMed]
- Alemán-Báez, J.; Qin, J.; Cai, C.; Zou, C.; Bucher, J.; Paulo, M.-J.; Voorrips, R.E.; Bonnema, G. Genetic Dissection of Morphological Variation in Rosette Leaves and Leafy Heads in Cabbage (Brassica Oleracea var. Capitata). Theor. Appl. Genet. 2022, 135, 3611–3628. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Pavlović, I.; Salopek-Sondi, B. White Cabbage (Brassica Oleracea var. Capitata f. Alba): Botanical, Phytochemical and Pharmacological Overview. Phytochem. Rev. 2017, 16, 117–135. [Google Scholar] [CrossRef]
- Thakur, A. Health Promoting Phytochemicals in Vegetables: A Mini Review. Int. J. Food Ferment. Technol. 2018, 8, 107–117. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Xiang, Y.; Xiang, L.; Liu, Y.; He, X.; Zhou, X.; Liu, X.; Huang, Z. Extracts of Tsai Tai (Brassica chinensis): Enhanced Antioxidant Activity and Anti-Aging Effects Both in Vitro and in Caenorhabditis Elegans. Food Funct. 2016, 7, 943–952. [Google Scholar] [CrossRef]
- Jaeger, R.; Cuny, E. Terpenoids with Special Pharmacological Significance: A Review. Nat. Prod. Commun. 2016, 11, 1934578X1601100. [Google Scholar] [CrossRef]
- Muluye, A.B.; Melese, E.; Adinew, G.M. Antimalarial Activity of 80% Methanolic Extract of Brassica nigra (L.) Koch. (Brassicaceae) Seeds against Plasmodium Berghei Infection in Mice. BMC Complement. Altern. Med. 2015, 15, 367. [Google Scholar] [CrossRef]
- Sharma, I.; Aaradhya, M.; Kodikonda, M.; Naik, P.R. Antihyperglycemic, Antihyperlipidemic and Antioxidant Activity of Phenolic Rich Extract of Brassica oleraceae Var Gongylodes on Streptozotocin Induced Wistar Rats. SpringerPlus 2015, 4, 212. [Google Scholar] [CrossRef]
- Sharma, B.R.; Kumar, V.; Gat, Y.; Kumar, N.; Parashar, A.; Pinakin, D.J. Microbial Maceration: A Sustainable Approach for Phytochemical Extraction. 3 Biotech 2018, 8, 401. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fu, J.; Yang, D. In Situ Stability of Anthocyanins in Lycium ruthenicum Murray. Molecules 2021, 26, 7073. [Google Scholar] [CrossRef]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front. Pharmacol. 2020, 10, 1614. [Google Scholar] [CrossRef] [PubMed]
- George, B.P.; Chandran, R.; Abrahamse, H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants 2021, 10, 1455. [Google Scholar] [CrossRef] [PubMed]
- Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.M.; Ouhtit, A. The Power of Phytochemicals Combination in Cancer Chemoprevention. J. Cancer 2020, 11, 4521–4533. [Google Scholar] [CrossRef] [PubMed]
- Zayed, A.; Sheashea, M.; Kassem, I.A.A.; Farag, M.A. Red and White Cabbages: An Updated Comparative Review of Bioactives, Extraction Methods, Processing Practices, and Health Benefits. Crit. Rev. Food Sci. Nutr. 2023, 63, 7025–7042. [Google Scholar] [CrossRef]
- Moreb, N.; Murphy, A.; Jaiswal, S.; Jaiswal, A.K. Cabbage. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2020; pp. 33–54. ISBN 978-0-12-812780-3. [Google Scholar]
- Biondi, F.; Balducci, F.; Capocasa, F.; Visciglio, M.; Mei, E.; Vagnoni, M.; Mezzetti, B.; Mazzoni, L. Environmental Conditions and Agronomical Factors Influencing the Levels of Phytochemicals in Brassica Vegetables Responsible for Nutritional and Sensorial Properties. Appl. Sci. 2021, 11, 1927. [Google Scholar] [CrossRef]
- Johnson, I.T. Glucosinolates: Bioavailability and Importance to Health. Int. J. Vitam. Nutr. Res. 2002, 72, 26–31. [Google Scholar] [CrossRef]
- Wermter, N.S.; Rohn, S.; Hanschen, F.S. Seasonal Variation of Glucosinolate Hydrolysis Products in Commercial White and Red Cabbages (Brassica Oleracea var. Capitata). Foods 2020, 9, 1682. [Google Scholar] [CrossRef]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The Chemical Diversity and Distribution of Glucosinolates and Isothiocyanates among Plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Clarke, D.B. Glucosinolates, Structures and Analysis in Food. Anal. Methods 2010, 2, 310. [Google Scholar] [CrossRef]
- Agerbirk, N.; De Vos, M.; Kim, J.H.; Jander, G. Indole Glucosinolate Breakdown and Its Biological Effects. Phytochem. Rev. 2009, 8, 101–120. [Google Scholar] [CrossRef]
- Williams, D.J.; Critchley, C.; Pun, S.; Chaliha, M.; O’Hare, T.J. Differing Mechanisms of Simple Nitrile Formation on Glucosinolate Degradation in Lepidium sativum and Nasturtium officinale Seeds. Phytochemistry 2009, 70, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Traka, M.H. Health Benefits of Glucosinolates. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 80, pp. 247–279. ISBN 978-0-08-100327-5. [Google Scholar]
- Luang-In, V.; Narbad, A.; Nueno-Palop, C.; Mithen, R.; Bennett, M.; Rossiter, J.T. The Metabolism of Methylsulfinylalkyl- and Methylthioalkyl-glucosinolates by a Selection of Human Gut Bacteria. Mol. Nutr. Food Res. 2014, 58, 875–883. [Google Scholar] [CrossRef]
- Li, F.; Hullar, M.A.J.; Beresford, S.A.A.; Lampe, J.W. Variation of Glucoraphanin Metabolism in Vivo and Ex Vivo by Human Gut Bacteria. Br. J. Nutr. 2011, 106, 408–416. [Google Scholar] [CrossRef]
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione Transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef]
- Payen, L.; Courtois, A.; Loewert, M.; Guillouzo, A.; Fardel, O. Reactive Oxygen Species-Related Induction of Multidrug Resistance-Associated Protein 2 Expression in Primary Hepatocytes Exposed to Sulforaphane. Biochem. Biophys. Res. Commun. 2001, 282, 257–263. [Google Scholar] [CrossRef]
- Zhang, Y.; Callaway, E.C. High Cellular Accumulation of Sulphoraphane, a Dietary Anticarcinogen, Is Followed by Rapid Transporter-Mediated Export as a Glutathione Conjugate. Biochem. J. 2002, 364, 301–307. [Google Scholar] [CrossRef]
- Brüsewitz, G.; Cameron, B.D.; Chasseaud, L.F.; Görler, K.; Hawkins, D.R.; Koch, H.; Mennicke, W.H. The Metabolism of Benzyl Isothiocyanate and Its Cysteine Conjugate. Biochem. J. 1977, 162, 99–107. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, L.; Gonzalez, V. Selected Isothiocyanates Rapidly Induce Growth Inhibition of Cancer Cells. Mol. Cancer Ther. 2003, 2, 1045–1052. [Google Scholar]
- Soundararajan, P.; Kim, J.S. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Molecules 2018, 23, 2983. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.K.; Gallicchio, L.; Lindsley, K.; Shiels, M.; Hammond, E.; Tao, X.; Chen, L.; Robinson, K.A.; Caulfield, L.E.; Herman, J.G.; et al. Cruciferous Vegetable Consumption and Lung Cancer Risk: A Systematic Review. Cancer Epidemiol. Biomark. Prev. 2009, 18, 184–195. [Google Scholar] [CrossRef]
- Liu, X.; Lv, K. Cruciferous Vegetables Intake Is Inversely Associated with Risk of Breast Cancer: A Meta-Analysis. Breast 2013, 22, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Mao, Q.; Lin, Y.; Zhou, F.; Xie, L. The Association of Cruciferous Vegetables Intake and Risk of Bladder Cancer: A Meta-Analysis. World J. Urol. 2013, 31, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Mao, Q.; Cao, M.; Xie, L. Cruciferous Vegetables Intake and Risk of Prostate Cancer: A Meta-analysis. Int. J. Urol. 2012, 19, 134–141. [Google Scholar] [CrossRef]
- Richman, E.L.; Carroll, P.R.; Chan, J.M. Vegetable and Fruit Intake after Diagnosis and Risk of Prostate Cancer Progression. Int. J. Cancer 2012, 131, 201–210. [Google Scholar] [CrossRef]
- Park, S.; Valan Arasu, M.; Lee, M.-K.; Chun, J.-H.; Seo, J.M.; Lee, S.-W.; Al-Dhabi, N.A.; Kim, S.-J. Quantification of Glucosinolates, Anthocyanins, Free Amino Acids, and Vitamin C in Inbred Lines of Cabbage (Brassica Oleracea L.). Food Chem. 2014, 145, 77–85. [Google Scholar] [CrossRef]
- Yue, Z.; Zhang, G.; Wang, J.; Wang, J.; Luo, S.; Zhang, B.; Li, Z.; Liu, Z. Comparative Study of the Quality Indices, Antioxidant Substances, and Mineral Elements in Different Forms of Cabbage. BMC Plant Biol. 2024, 24, 187. [Google Scholar] [CrossRef]
- Oloyede, O.O.; Wagstaff, C.; Methven, L. Influence of Cabbage (Brassica Oleracea) Accession and Growing Conditions on Myrosinase Activity, Glucosinolates and Their Hydrolysis Products. Foods 2021, 10, 2903. [Google Scholar] [CrossRef]
- Choi, S.-H.; Park, S.; Lim, Y.P.; Kim, S.-J.; Park, J.-T.; An, G. Metabolite Profiles of Glucosinolates in Cabbage Varieties (Brassica Oleracea var. Capitata) by Season, Color, and Tissue Position. Hortic. Environ. Biotechnol. 2014, 55, 237–247. [Google Scholar] [CrossRef]
- Park, S.; Arasu, M.V.; Lee, M.-K.; Chun, J.-H.; Seo, J.M.; Al-Dhabi, N.A.; Kim, S.-J. Analysis and Metabolite Profiling of Glucosinolates, Anthocyanins and Free Amino Acids in Inbred Lines of Green and Red Cabbage (Brassica Oleracea L.). LWT Food Sci. Technol. 2014, 58, 203–213. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Rhee, J.; Choi, C.S.; Jo, J.S.; Shin, Y.K.; Lee, J.G. Profiling of Individual Desulfo-Glucosinolate Content in Cabbage Head (Brassica Oleracea var. Capitata) Germplasm. Molecules 2020, 25, 1860. [Google Scholar] [CrossRef]
- Pocasap, P.; Weerapreeyakul, N. Sulforaphene and Sulforaphane in Commonly Consumed Cruciferous Plants Contributed to Antiproliferation in HCT116 Colon Cancer Cells. Asian Pac. J. Trop. Biomed. 2016, 6, 119–124. [Google Scholar] [CrossRef]
- Cartea, M.E.; Velasco, P. Glucosinolates in Brassica Foods: Bioavailability in Food and Significance for Human Health. Phytochem. Rev. 2008, 7, 213–229. [Google Scholar] [CrossRef]
- Staack, R.; Kingston, S.; Wallig, M.A.; Jeffery, E.H. A Comparison of the Individual and Collective Effects of Four Glucosinolate Breakdown Products from Brussels Sprouts on Induction of Detoxification Enzymes. Toxicol. Appl. Pharmacol. 1998, 149, 17–23. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Yang, Y.; Tao, H.; Mustafa, G.; Meng, F.; Sun, B.; Wang, J.; Zhao, Y.; Zhang, F.; et al. Biofortification of Health-Promoting Glucosinolates in Cruciferous Sprouts along the Whole Agro-Food Chain. Trends Food Sci. Technol. 2023, 140, 104164. [Google Scholar] [CrossRef]
- Robin, A.H.K.; Hossain, M.R.; Park, J.-I.; Kim, H.R.; Nou, I.-S. Glucosinolate Profiles in Cabbage Genotypes Influence the Preferential Feeding of Diamondback Moth (Plutella Xylostella). Front. Plant Sci. 2017, 8, 1244. [Google Scholar] [CrossRef]
- Cartea, M.E.; Velasco, P.; Obregón, S.; Padilla, G.; de Haro, A. Seasonal Variation in Glucosinolate Content in Brassica Oleraceae Crops Grown in Northwestern Spain. Phytochemistry 2008, 69, 403–410. [Google Scholar] [CrossRef]
- Schmidt, G.; Vagen, I.M.; Hagen, S.F.; Guren, G.; Borge, G.I.A. Health- and Sensory-Related Phytochemicals and Agronomic Characteristics of 26 Head Cabbage Cultivars. ACS Food Sci. Technol. 2024, 4, 2341–2354. [Google Scholar] [CrossRef]
- Hanschen, F.S.; Schreiner, M. Isothiocyanates, Nitriles, and Epithionitriles from Glucosinolates Are Affected by Genotype and Developmental Stage in Brassica Oleracea Varieties. Front. Plant Sci. 2017, 8, 1095. [Google Scholar] [CrossRef]
- Al Mamari, H. Phenolic Compounds: Classification, Chemistry, and Updated Techniques of Analysis and Synthesis. In Biochemistry; Badria, F.A., Ed.; IntechOpen: London, UK, 2022; Volume 26, ISBN 978-1-83969-346-5. [Google Scholar]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules 2010, 16, 251–280. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-871747-8. [Google Scholar]
- Mishra, A.; Kumar, S.; Pandey, A.K. Scientific Validation of the Medicinal Efficacy of Tinospora Cordifolia. Sci. World J. 2013, 2013, 292934. [Google Scholar] [CrossRef]
- Tsao, R.; Deng, Z. Separation Procedures for Naturally Occurring Antioxidant Phytochemicals. J. Chromatogr. B 2004, 812, 85–99. [Google Scholar] [CrossRef]
- Chirinos, R.; Campos, D.; Costa, N.; Arbizu, C.; Pedreschi, R.; Larondelle, Y. Phenolic Profiles of Andean Mashua (Tropaeolum Tuberosum Ruíz & Pavón) Tubers: Identification by HPLC-DAD and Evaluation of Their Antioxidant Activity. Food Chem. 2008, 106, 1285–1298. [Google Scholar] [CrossRef]
- Jung, U.J.; Lee, M.-K.; Park, Y.B.; Jeon, S.-M.; Choi, M.-S. Antihyperglycemic and Antioxidant Properties of Caffeic Acid in Db/Db Mice. J. Pharmacol. Exp. Ther. 2006, 318, 476–483. [Google Scholar] [CrossRef]
- Semiz, A.; Celik-Turgut, G.; Karakurt, S.; Akca, H.; Arslan, S.; Adali, O.; Sen, A. In Vivo Examination of the Effects of Hydroxycinnamic Acid on Xenobiotic Metabolizing and Antioxidant Enzymes. Arch. Biol. Sci. 2017, 69, 103–110. [Google Scholar] [CrossRef]
- Voća, S.; Šic Žlabur, J.; Dobričević, N.; Benko, B.; Pliestić, S.; Filipović, M.; Galić, A. Bioactive Compounds, Pigment Content and Antioxidant Capacity of Selected Cabbage Cultivars. J. Cent. Eur. Agric. 2018, 19, 593–606. [Google Scholar] [CrossRef]
- Charron, C.S.; Clevidence, B.A.; Britz, S.J.; Novotny, J.A. Effect of Dose Size on Bioavailability of Acylated and Nonacylated Anthocyanins from Red Cabbage (Brassica Oleracea L. var. Capitata). J. Agric. Food Chem. 2007, 55, 5354–5362. [Google Scholar] [CrossRef]
- Leja, M.; Kamińska, I.; Kołton, A. Phenolic Compounds as the Major Antioxidants in Red Cabbage. Folia Hortic. 2010, 22, 19–24. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.; Zhang, L.; Liu, X. Phytochemicals and Antioxidant Activity in Four Varieties of Head Cabbages Commonly Consumed in China. Food Prod. Process. Nutr. 2019, 1, 3. [Google Scholar] [CrossRef]
- Singh, J.; Upadhyay, A.K.; Prasad, K.; Bahadur, A.; Rai, M. Variability of Carotenes, Vitamin C, E and Phenolics in Brassica Vegetables. J. Food Compos. Anal. 2007, 20, 106–112. [Google Scholar] [CrossRef]
- Jakobek, L.; Tomac, I.; Matić, P.; Sabo, M.; Đugum, J.; Šubarić, D. Bioactive Polyphenolic Compounds from White Cabbage Cultivars. Croat. J. Food Sci. Technol. 2018, 10, 164–172. [Google Scholar] [CrossRef]
- Lončarić, A.; Marček, T.; Šubarić, D.; Jozinović, A.; Babić, J.; Miličević, B.; Sinković, K.; Šubarić, D.; Ačkar, Đ. Comparative Evaluation of Bioactive Compounds and Volatile Profile of White Cabbages. Molecules 2020, 25, 3696. [Google Scholar] [CrossRef]
- Podsedek, A.; Sosnowska, D.; Redzynia, M.; Anders, B. Antioxidant Capacity and Content of Brassica Oleracea Dietary Antioxidants. Int. J. Food Sci. Technol. 2006, 41, 49–58. [Google Scholar] [CrossRef]
- Park, S.; Arasu, M.V.; Jiang, N.; Choi, S.-H.; Lim, Y.P.; Park, J.-T.; Al-Dhabi, N.A.; Kim, S.-J. Metabolite Profiling of Phenolics, Anthocyanins and Flavonols in Cabbage (Brassica Oleracea var. Capitata). Ind. Crops Prod. 2014, 60, 8–14. [Google Scholar] [CrossRef]
- Fernández-León, A.M.; Lozano, M.; González, D.; Ayuso, M.C.; Fernández-León, M.F. Bioactive Compounds Content and Total Antioxidant Activity of Two Savoy Cabbages. Czech J. Food Sci. 2014, 32, 549–554. [Google Scholar] [CrossRef]
- Martínez, S.; Olmos, I.; Carballo, J.; Franco, I. Quality Parameters of Brassica spp. Grown in Northwest Spain. Int. J. Food Sci. Technol. 2010, 45, 776–783. [Google Scholar] [CrossRef]
- Koss-Mikołajczyk, I.; Kusznierewicz, B.; Wiczkowski, W.; Płatosz, N.; Bartoszek, A. Phytochemical Composition and Biological Activities of Differently Pigmented Cabbage (Brassica Oleracea var. Capitata) and Cauliflower (Brassica Oleracea var. Botrytis) Varieties. J. Sci. Food Agric. 2019, 99, 5499–5507. [Google Scholar] [CrossRef]
- Kim, D.-O.; Padilla-Zakour, O.I.; Griffiths, P.D. Flavonoids and Antioxidant Capacity of Various Cabbage Genotypes at Juvenile Stage. J. Food Sci. 2004, 69, C685–C689. [Google Scholar] [CrossRef]
- Ghareaghajlou, N.; Hallaj-Nezhadi, S.; Ghasempour, Z. Red Cabbage Anthocyanins: Stability, Extraction, Biological Activities and Applications in Food Systems. Food Chem. 2021, 365, 130482. [Google Scholar] [CrossRef]
- Ahmadiani, N.; Sigurdson, G.T.; Robbins, R.J.; Collins, T.M.; Giusti, M.M. Solid Phase Fractionation Techniques for Segregation of Red Cabbage Anthocyanins with Different Colorimetric and Stability Properties. Food Res. Int. 2019, 120, 688–696. [Google Scholar] [CrossRef]
- Ahmadiani, N.; Robbins, R.J.; Collins, T.M.; Giusti, M.M. Anthocyanins Contents, Profiles, and Color Characteristics of Red Cabbage Extracts from Different Cultivars and Maturity Stages. J. Agric. Food Chem. 2014, 62, 7524–7531. [Google Scholar] [CrossRef]
- Zhang, N.; Jing, P. Anthocyanins in Brassicaceae: Composition, Stability, Bioavailability, and Potential Health Benefits. Crit. Rev. Food Sci. Nutr. 2022, 62, 2205–2220. [Google Scholar] [CrossRef]
- McDougall, G.J.; Fyffe, S.; Dobson, P.; Stewart, D. Anthocyanins from Red Cabbage—Stability to Simulated Gastrointestinal Digestion. Phytochemistry 2007, 68, 1285–1294. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Szawara-Nowak, D.; Topolska, J. Red Cabbage Anthocyanins: Profile, Isolation, Identification, and Antioxidant Activity. Food Res. Int. 2013, 51, 303–309. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, K.C. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci Rep. 2020, 10, 2611. [Google Scholar] [CrossRef]
- Granger, M.; Eck, P. Dietary Vitamin C in Human Health. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2018; Volume 83, pp. 281–310. ISBN 978-0-12-811803-0. [Google Scholar]
- Mazurek, A.; Włodarczyk-Stasiak, M. A New Method for the Determination of Total Content of Vitamin C, Ascorbic and Dehydroascorbic Acid, in Food Products with the Voltammetric Technique with the Use of Tris(2-Carboxyethyl)Phosphine as a Reducing Reagent. Molecules 2023, 28, 812. [Google Scholar] [CrossRef]
- Johnston, C.S.; Steinberg, F.M.; Rucker, R.B. Ascorbic Acid. In Handbook of Vitamins; Zempleni, J., Rucker, R.B., McCormick, D.B., Suttie, J.W., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 489–520. [Google Scholar]
- Catani, M.V.; Savini, I.; Rossi, A.; Melino, G.; Avigliano, L. Biological Role of Vitamin C in Keratinocytes. Nutr. Rev. 2005, 63, 81–90. [Google Scholar] [CrossRef]
- Singh, J.; Upadhyay, A.K.; Bahadur, A.; Singh, B.; Singh, K.P.; Rai, M. Antioxidant Phytochemicals in Cabbage (Brassica Oleracea L. var. Capitata). Sci. Hortic. 2006, 108, 233–237. [Google Scholar] [CrossRef]
- Domínguez-Perles, R.; Mena, P.; García-Viguera, C.; Moreno, D.A. Brassica Foods as a Dietary Source of Vitamin C: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1076–1091. [Google Scholar] [CrossRef] [PubMed]
- Peñas, E.; Frias, J.; Martínez-Villaluenga, C.; Vidal-Valverde, C. Bioactive Compounds, Myrosinase Activity, and Antioxidant Capacity of White Cabbages Grown in Different Locations of Spain. J. Agric. Food Chem. 2011, 59, 3772–3779. [Google Scholar] [CrossRef] [PubMed]
- Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Young, A.; Lowe, G. Carotenoids—Antioxidant Properties. Antioxidants 2018, 7, 28. [Google Scholar] [CrossRef] [PubMed]
Cabbage Form | Cultivar | Total Phenolic Content | Reference |
---|---|---|---|
Brassica oleraceae var. capitata f. alba | Bravo F1 | 45.45 ± 0.26 mg GAE/100 g f.w. | [61] |
466.7 ± 35.6 mg GAE/kg f.w. | [66] | ||
401.62 ± 11.10 mg GAE/kg f.w. | [67] | ||
Bronco F1 | 24.76 ± 0.46 mg GAE/100 g f.w. | [61] | |
Slava | 60.46 ± 0.41 mg GAE/100 g f.w. | ||
Farao F1 | 24.83 ± 0.7 mg GAE/100 g f.w. | ||
Cepinski | 564.9 ± 67.1 mg GAE/kg f.w. | [66] | |
496.0 ± 25.88 mg GAE/kg f.w. | [67] | ||
Varazdinski | 598.2 ± 74.7 mg GAE/kg f.w. | [66] | |
494.80 ± 7.43 mg GAE/kg f.w. | [67] | ||
Ogulinski | 538.3 ± 46.7 mg GAE/kg f.w. | [66] | |
480.95 ± 1.40 mg GAE/kg f.w. | [67] | ||
Gungaless | 15.4 mg GAE/100 g f.w. | [65] | |
Pusa Mukta | 12.6 mg GAE/100 g f.w. | ||
Kirch-10 | 18.1 mg GAE/100 g f.w. | ||
Resist Crown | 27.1 mg GAE/100 g f.w. | ||
Golden Acre | 13.1 mg GAE/100 g f.w. | ||
Quisto | 31.0 mg GAE/100 g f.w. | ||
Rare Ball | 18.2 mg GAE/100 g f.w. | ||
Mini Ball | 16.4 mg GAE/100 g f.w. | ||
Hani Rari Gol | 15.1 mg GAE/100 g f.w. | ||
Fieldman | 18.7 mg GAE/100 g f.w. | ||
Green Cornell | 34.4 mg GAE/100 g f.w. | ||
Green Yogendra | 15.7 mg GAE/100 g f.w. | ||
Green Challenger | 13.7 mg GAE/100 g f.w. | ||
BC-76 | 12.9 mg GAE/100 g f.w. | ||
Lennox F1 | 31.4–47.6 mg chlorogenic acid/100 g f.w. | [63] | |
Brassica oleraceae var. capitata f. rubra | Langedijker | 248.8–273.2 mg chlorogenic acid/100 g f.w. | |
Tukana | 20.81 ± 0.79 mg GAE/100 g f.w. | [68] | |
Vestri | 23.32 ± 0.47 mg GAE/100 g f.w. | ||
Almanag | 29.70 ± 0.66 mg GAE/100 g f.w. | ||
Kissendrup | 171.36 ± 13.77 mg GAE/100 g f.w. | ||
201.5–288.3 mg chlorogenic acid/100 g f.w. | [63] | ||
Koda | 134.73 mg GAE/100 g f.w. | [68] | |
114.1–209.6 mg chlorogenic acid/100 g f.w. | [63] | ||
Haco | 177.1–215.5 mg chlorogenic acid/100 g f.w. | ||
Brassica oleraceae var. capitata f. sabauda | Langedijker | 54.31 mg GAE/100 g f.w. | [68] |
60F/100 | 47.62 mg GAE/100 g f.w. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Statilko, O.; Tsiaka, T.; Sinanoglou, V.J.; Strati, I.F. Overview of Phytochemical Composition of Brassica oleraceae var. capitata Cultivars. Foods 2024, 13, 3395. https://doi.org/10.3390/foods13213395
Statilko O, Tsiaka T, Sinanoglou VJ, Strati IF. Overview of Phytochemical Composition of Brassica oleraceae var. capitata Cultivars. Foods. 2024; 13(21):3395. https://doi.org/10.3390/foods13213395
Chicago/Turabian StyleStatilko, Olga, Thalia Tsiaka, Vassilia J. Sinanoglou, and Irini F. Strati. 2024. "Overview of Phytochemical Composition of Brassica oleraceae var. capitata Cultivars" Foods 13, no. 21: 3395. https://doi.org/10.3390/foods13213395
APA StyleStatilko, O., Tsiaka, T., Sinanoglou, V. J., & Strati, I. F. (2024). Overview of Phytochemical Composition of Brassica oleraceae var. capitata Cultivars. Foods, 13(21), 3395. https://doi.org/10.3390/foods13213395