Grape Pomace for Feed Enrichment to Improve the Quality of Animal-Based Foods
Abstract
:1. Introduction
2. Animal-Source Food and Impact on Human Health
3. Grape Pomace: Overview of Chemical Composition
4. Grape Pomace As a Functional Ingredient in Animal Diet
4.1. Ruminants (Meat and Dairy)
4.2. Non-Ruminants (Meat and Dairy)
4.2.1. Poultry (Meat and Eggs)
4.2.2. Miscellaneous (Pigs, Rabbits)
4.3. Fish
5. Chemometrics Approach
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
References
- Kala, S.; Sogan, N.; Jawle, C.; Bista, S.; Hazara, D.K.; Roy, K.; Nautiyal, A.; Sengar, A.S.; Singh, M.K.; Agarwal, A.; et al. Valorization of Grape Pomace-Derived Bio-Pesticide via Yeast Capsules- Nano Carriers with Entomotoxic Potential. Waste Biomass Valorization 2024, 15, 5349–5367. [Google Scholar] [CrossRef]
- European Commission. 2020 Circular Economy Action Plan—European Commission. Available online: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (accessed on 16 September 2024).
- de Gorter, H.; Drabik, D.; Just, D.R.; Reynolds, C.; Sethi, G. Analyzing the Economics of Food Loss and Waste Reductions in a Food Supply Chain. Food Policy 2021, 98, 101953. [Google Scholar] [CrossRef]
- Ferreira, R.; Lourenço, S.; Lopes, A.; Andrade, C.; Câmara, J.S.; Castilho, P.; Perestrelo, R. Evaluation of Fatty Acids Profile as a Useful Tool towards Valorization of By-Products of Agri-Food Industry. Foods 2021, 10, 2867. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Database of Food and Agricultural Organization, Rome, Italy. 2024. Available online: https://www.fao.org/faostat (accessed on 23 October 2024).
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Jin, Q.; O’Keefe, S.F.; Stewart, A.C.; Neilson, A.P.; Kim, Y.T.; Huang, H. Techno-Economic Analysis of a Grape Pomace Biorefinery: Production of Seed Oil, Polyphenols, and Biochar. Food Bioprod. Process. 2021, 127, 139–151. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C.; Subramanian, P. Extraction of Bioactive Compounds. In Industrial Application of Functional Foods, Ingredients and Nutraceuticals Extraction, Processing and Formulation of Bioactive Compounds; Anandharamakrishnan, C., Subramanian, P., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 45–87. [Google Scholar]
- Caponio, G.R.; Minervini, F.; Tamma, G.; Gambacorta, G.; De Angelis, M. Promising Application of Grape Pomace and Its Agri-Food Valorization: Source of Bioactive Molecules with Beneficial Effects. Sustainability 2023, 15, 9075. [Google Scholar] [CrossRef]
- Pintać, D.; Majkić, T.; Torović, L.; Orčić, D.; Beara, I.; Simin, N.; Mimica–Dukić, N.; Lesjak, M. Solvent Selection for Efficient Extraction of Bioactive Compounds from Grape Pomace. Ind. Crops Prod. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- Sodhi, G.K.; Kaur, G.; George, N.; Walia, H.K.; Sillu, D.; Rath, S.K.; Saxena, S.; Rios-Solis, L.; Dwibedi, V. Waste to Wealth: Microbial-Based Valorization of Grape Pomace for Nutraceutical, Cosmetic, and Therapeutic Applications to Promote Circular Economy. Process Saf. Environ. Prot. 2024, 188, 1464–1478. [Google Scholar] [CrossRef]
- Castro, M.L.; Ferreira, J.P.; Pintado, M.; Ramos, O.L.; Borges, S.; Baptista-Silva, S. Grape By-Products in Sustainable Cosmetics: Nanoencapsulation and Market Trends. Appl. Sci. 2023, 13, 9168. [Google Scholar] [CrossRef]
- Perra, M.; Bacchetta, G.; Muntoni, A.; De Gioannis, G.; Castangia, I.; Rajha, H.N.; Manca, M.L.; Manconi, M. An Outlook on Modern and Sustainable Approaches to the Management of Grape Pomace by Integrating Green Processes, Biotechnologies and Advanced Biomedical Approaches. J. Funct. Foods 2022, 98, 105276. [Google Scholar] [CrossRef]
- Nath, P.C.; Ojha, A.; Debnath, S.; Sharma, M.; Nayak, P.K.; Sridhar, K.; Inbaraj, B.S. Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy. Animals 2023, 13, 1366. [Google Scholar] [CrossRef] [PubMed]
- Messner, R.; Johnson, H.; Richards, C. From Surplus-to-Waste: A Study of Systemic Overproduction, Surplus and Food Waste in Horticultural Supply Chains. J. Clean. Prod. 2021, 278, 123952. [Google Scholar] [CrossRef]
- European Commission. Agri-Food Data Portal. 2024. Available online: https://agridata.ec.europa.eu/extensions/DataPortal/home.html (accessed on 16 September 2024).
- Prache, S.; Adamiec, C.; Astruc, T.; Baéza-Campone, E.; Bouillot, P.E.; Clinquart, A.; Feidt, C.; Fourat, E.; Gautron, J.; Girard, A.; et al. Review: Quality of Animal-Source Foods. Animal 2022, 16, 100376. [Google Scholar] [CrossRef] [PubMed]
- Rigaudière, J.P.; Jouve, C.; Capel, F.; Patrac, V.; Miguel, B.; Tournadre, A.; Demaison, L. An Experimental Model of Western Diet in Female Wistar Rats Leads to Cardiac Hypoxia Related to a Stimulated Contractility. J. Physiol. Biochem. 2024, 80, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations Fats and Fatty Acids in Human Nutrition. 2010. Available online: https://www.fao.org/fileadmin/user_upload/nutrition/docs/requirements/fatsandfattacidsreport.pdf (accessed on 4 November 2024).
- Reddy, P.R.K.; Hyder, I. Ruminant Digestion. In Textbook of Veterinary Physiology; Springer: Singapore, 2023; pp. 353–366. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Almanza-Oliveros, A.; Bautista-Hernández, I.; Castro-López, C.; Aguilar-Zárate, P.; Meza-Carranco, Z.; Rojas, R.; Michel, M.R.; Martínez-Ávila, G.C.G. Grape Pomace—Advances in Its Bioactivity, Health Benefits, and Food Applications. Foods 2024, 13, 580. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of Grape Pomace: An Approach That Is Increasingly Reaching Its Maturity—A Review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Chowdhary, P.; Gupta, A.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Current Trends and Possibilities for Exploitation of Grape Pomace as a Potential Source for Value Addition. Environ. Pollut. 2021, 278, 116796. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Sousa, E.C.; Uchôa-Thomaz, A.M.A.; Carioca, J.O.B.; de Morais, S.M.; de Lima, A.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P.; et al. Chemical Composition and Bioactive Compounds of Grape Pomace (Vitis Vinifera L.), Benitaka Variety, Grown in the Semiarid Region of Northeast Brazil. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef]
- Machado, A.R.; Voss, G.B.; Machado, M.; Paiva, J.A.P.; Nunes, J.; Pintado, M. Chemical Characterization of the Cultivar ‘Vinhão’ (Vitis vinifera L.) Grape Pomace towards Its Circular Valorisation and Its Health Benefits. Meas. Food 2024, 15, 100175. [Google Scholar] [CrossRef]
- Jin, Q.; O’Hair, J.; Stewart, A.C.; O’Keefe, S.F.; Neilson, A.P.; Kim, Y.T.; McGuire, M.; Lee, A.; Wilder, G.; Huang, H. Compositional Characterization of Different Industrial White and Red Grape Pomaces in Virginia and the Potential Valorization of the Major Components. Foods 2019, 8, 667. [Google Scholar] [CrossRef]
- Mohamed Ahmed, I.A.; Özcan, M.M.; Al Juhaimi, F.; Babiker, E.F.E.; Ghafoor, K.; Banjanin, T.; Osman, M.A.; Gassem, M.A.; Alqah, H.A.S. Chemical Composition, Bioactive Compounds, Mineral Contents, and Fatty Acid Composition of Pomace Powder of Different Grape Varieties. J. Food Process Preserv. 2020, 44, e14539. [Google Scholar] [CrossRef]
- Pérez Cid, B.; Muinelo Martínez, M.; Vázquez Vázquez, F.A.; Río Segade, S. Content and Bioavailability of Trace Elements and Nutrients in Grape Pomace. J. Sci. Food Agric. 2019, 99, 6713–6721. [Google Scholar] [CrossRef]
- Siller-Sánchez, A.; Luna-Sánchez, K.A.; Bautista-Hernández, I.; Chávez-González, M.L. Use of Grape Pomace from the Wine Industry for the Extraction of Valuable Compounds with Potential Use in the Food Industry. Curr. Food Sci. Technol. Rep. 2024, 2, 7–16. [Google Scholar] [CrossRef]
- Abreu, T.; Sousa, P.; Gonçalves, J.; Hontman, N.; Teixeira, J.; Câmara, J.S.; Perestrelo, R. Grape Pomace as a Renewable Natural Biosource of Value-Added Compounds with Potential Food Industrial Applications. Beverages 2024, 10, 45. [Google Scholar] [CrossRef]
- Ferri, M.; Lima, V.; Zappi, A.; Fernando, A.L.; Melucci, D.; Tassoni, A. Phytochemicals Recovery from Grape Pomace: Extraction Improvement and Chemometric Study. Foods 2023, 12, 959. [Google Scholar] [CrossRef]
- Mangiapelo, L.; Blasi, F.; Ianni, F.; Suvieri, C.; Sardella, R.; Volpi, C.; Cossignani, L. Optimization of a Simple Analytical Workflow to Characterize the Phenolic Fraction from Grape Pomace. Food Bioprocess Technol. 2024, 17, 1942–1957. [Google Scholar] [CrossRef]
- Arshad, M.S.; Sohaib, M.; Ahmad, R.S.; Nadeem, M.T.; Imran, A.; Arshad, M.U.; Kwon, J.H.; Amjad, Z. Ruminant Meat Flavor Influenced by Different Factors with Special Reference to Fatty Acids. Lipids Health Dis. 2018, 17, 223. [Google Scholar] [CrossRef] [PubMed]
- Arend, F.A.; Murdoch, G.K.; Doumit, M.E.; Chibisa, G.E. Inclusion of Grape Pomace in Finishing Cattle Diets: Carcass Traits, Meat Quality and Fatty Acid Composition. Animals 2022, 12, 2597. [Google Scholar] [CrossRef] [PubMed]
- Tayengwa, T.; Chikwanha, O.C.; Neethling, J.; Dugan, M.E.R.; Mutsvangwa, T.; Mapiye, C. Polyunsaturated Fatty Acid, Volatile and Sensory Profiles of Beef from Steers Fed Citrus Pulp or Grape Pomace. Food Res. Int. 2021, 139, 109923. [Google Scholar] [CrossRef] [PubMed]
- Krusinski, L.; Maciel, I.C.F.; van Vliet, S.; Ahsin, M.; Lu, G.; Rowntree, J.E.; Fenton, J.I. Measuring the Phytochemical Richness of Meat: Effects of Grass/Grain Finishing Systems and Grapeseed Extract Supplementation on the Fatty Acid and Phytochemical Content of Beef. Foods 2023, 12, 3547. [Google Scholar] [CrossRef] [PubMed]
- Flores, D.R.M.; da Fonseca, P.A.F.; Schmitt, J.; Tonetto, C.J.; Junior, A.G.R.; Hammerschmitt, R.K.; Facco, D.B.; Brunetto, G.; Nörnberg, J.L. Lambs Fed with Increasing Levels of Grape Pomace Silage: Effects on Productive Performance, Carcass Characteristics, and Blood Parameters. Livest. Sci. 2020, 240, 104169. [Google Scholar] [CrossRef]
- Bennato, F.; Martino, C.; Ianni, A.; Giannone, C.; Martino, G. Dietary Grape Pomace Supplementation in Lambs Affects the Meat Fatty Acid Composition, Volatile Profiles and Oxidative Stability. Foods 2023, 12, 1257. [Google Scholar] [CrossRef]
- Maciel, M.B.; Prado De Vargas, D. Performance and Meat Quality of Lambs Fed with Grape Pomace Silage. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, T.; Li, S.; Gou, N.; Degen, A.A.; Long, R.; Wang, H.; Shang, Z. Effects of Supplementing Sweet Sorghum with Grapeseeds on Carcass Parameters, and Meat Quality, Amino Acid, and Fatty Acid Composition of Lambs. Anim. Biosci. 2023, 36, 461–470. [Google Scholar] [CrossRef]
- Vieira, C.; Guerra-Rivas, C.; Martínez, B.; Rubio, B.; Manso, T. Effects of Grape Pomace Supplementation on the Diet of Lactating Ewes as Compared to Vitamin E on the Meat Shelf Life of Suckling Lambs. Meat Sci. 2022, 184, 108666. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Florio, M.; Grotta, L.; Pomilio, F.; Saletti, M.A.; Martino, G. Nutritional Properties of Milk from Dairy Ewes Fed with a Diet Containing Grape Pomace. Foods 2022, 11, 1878. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Grotta, L.; Martino, G. Evaluation of Chemical-Nutritional Characteristics of Whey and Ricotta Obtained by Ewes Fed Red Grape Pomace Dietary Supplementation. Food Sci. Anim. Resour. 2022, 42, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Bennato, F.; Ianni, A.; Oliva, E.; Franceschini, N.; Grotta, L.; Sergi, M.; Martino, G. Characterization of Phenolic Profile in Milk Obtained by Ewes Fed Grape Pomace: Reflection on Antioxidant and Anti-Inflammatory Status. Biomolecules 2023, 13, 1026. [Google Scholar] [CrossRef] [PubMed]
- Renna, M.; Martínez Marín, A.L.; Lussiana, C.; Colonna, L.; Mimosi, A.; Cornale, P. Caprine Milk Fatty Acid Responses to Dietary Dried Grape Pomace. Ital. J. Anim. Sci. 2023, 22, 1186–1194. [Google Scholar] [CrossRef]
- Antunović, Z.; Novoselec, J.; Klir Šalavardić, Ž.; Steiner, Z.; Drenjančević, M.; Pavić, V.; Đidara, M.; Ronta, M.; Jakobek Barron, L.; Mioč, B. The Effect of Grape Seed Cake as a Dietary Supplement Rich in Polyphenols on the Quantity and Quality of Milk, Metabolic Profile of Blood, and Antioxidative Status of Lactating Dairy Goats. Agriculture 2024, 14, 479. [Google Scholar] [CrossRef]
- Islam, M.R.; Garcia, S.C.; Islam, M.A.; Bashar, M.K.; Roy, A.; Roy, B.K.; Sarker, N.R.; Clark, C.E.F. Ruminant Production from Napier Grass (Pennisetum Purpureum Schum): A Review. Animals 2024, 14, 467. [Google Scholar] [CrossRef]
- Al-Sowayan, N.S.; Abdullah Almarzougi, R. Vitamin E Reduces Oxidative Stress in Brains of Male Albino Male Rats Undergoing Immobilization. Saudi J. Biol. Sci. 2024, 31, 103900. [Google Scholar] [CrossRef]
- Correddu, F.; Caratzu, M.F.; Lunesu, M.F.; Carta, S.; Pulina, G.; Nudda, A. Grape, Pomegranate, Olive, and Tomato By-Products Fed to Dairy Ruminants Improve Milk Fatty Acid Profile without Depressing Milk Production. Foods 2023, 12, 865. [Google Scholar] [CrossRef]
- Ianni, A.; Martino, G. Dietary Grape Pomace Supplementation in Dairy Cows: Effect on Nutritional Quality of Milk and Its Derived Dairy Products. Foods 2020, 9, 168. [Google Scholar] [CrossRef]
- Jurčaga, L.; Bobko, M.; Haščík, P.; Bobková, A.; Demianová, A.; Belej, Ľ.; Kročko, M. Effect of dietary red grape pomace on lipid oxidation in meat of broiler chickens. J. Microbiol. Biotechnol. Food Sci. 2021, 10, 1–3. [Google Scholar] [CrossRef]
- Haščík, P.; Čech, M.; Kačániová, M.; Herc, P.; Jurčaga, L.; Bučko, O. Effect of Dietary Alibernet Red Grape Pomace Application into Ross 308 Broiler Chickens Diet on Amino and Fatty Acids Profile of Breast and Thigh Meat. Biologia 2023, 78, 2167–2177. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Giamouri, E.; Myrtsi, E.D.; Evergetis, E.; Filippi, K.; Papapostolou, H.; Koulocheri, S.D.; Zoidis, E.; Pappas, A.C.; Koutinas, A.; et al. Antioxidant Status of Broiler Chickens Fed Diets Supplemented with Vinification By-Products: A Valorization Approach. Antioxidants 2021, 10, 1250. [Google Scholar] [CrossRef] [PubMed]
- Bonos, E.; Skoufos, I.; Petrotos, K.; Giavasis, I.; Mitsagga, C.; Fotou, K.; Vasilopoulou, K.; Giannenas, I.; Gouva, E.; Tsinas, A.; et al. Innovative Use of Olive, Winery and Cheese Waste By-Products as Functional Ingredients in Broiler Nutrition. Vet. Sci. 2022, 9, 290. [Google Scholar] [CrossRef] [PubMed]
- Thema, K.K.; Mlambo, V.; Egbu, C.F.; Mnisi, C.M. Use of Red Grape Pomace and Aloe Vera Gel as Nutraceuticals to Ameliorate Stocking Density-Induced Stress in Commercial Male Broilers. Trop. Anim. Health Prod. 2024, 56, 107. [Google Scholar] [CrossRef] [PubMed]
- Bennato, F.; Di Luca, A.; Martino, C.; Ianni, A.; Marone, E.; Grotta, L.; Ramazzotti, S.; Cichelli, A.; Martino, G. Influence of Grape Pomace Intake on Nutritional Value, Lipid Oxidation and Volatile Profile of Poultry Meat. Foods 2020, 9, 508. [Google Scholar] [CrossRef] [PubMed]
- Drotárová, S.; Vyšlan, J.; Gálik, B.; Šimko, M.; Jurácek, M.; Hanušovský, O.; Kalúzová, M.; Mixtajová, E.; Brek, P.; Rolinec, M. Effect of Grape Pomace Feeding on Fattening Parameters and Fatty Acids Profile in Geese. Acta Fytotech. Zootech. 2022, 25, 65–90. [Google Scholar] [CrossRef]
- Sur, A.; Zengin, M.; Bacaksız, O.K.; Gökçe, Z.; Yılmaz, Ö.; Gürses, M.; Esen, V.K.; Azman, M.A.; Esen, S. Performance, Blood Biochemistry, Carcass Fatty Acids, Antioxidant Status, and HSP70 Gene Expressions in Japanese Quails Reared under High Stocking Density: The Effects of Grape Seed Powder and Meal. Trop. Anim. Health Prod. 2023, 55, 53. [Google Scholar] [CrossRef]
- Romero, C.; Arija, I.; Viveros, A.; Chamorro, S. Productive Performance, Egg Quality and Yolk Lipid Oxidation in Laying Hens Fed Diets Including Grape Pomace or Grape Extract. Animals 2022, 12, 1076. [Google Scholar] [CrossRef]
- Tufarelli, V.; Baghban-Kanani, P.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Viktoronova, F.M.; Seidavi, A.; Laudadio, V. Effect of Dietary Flaxseed Meal Supplemented with Dried Tomato and Grape Pomace on Performance Traits and Antioxidant Status of Laying Hens. Anim. Biotechnol. 2022, 33, 1525–1532. [Google Scholar] [CrossRef]
- Selim, S.; Abdel-Megeid, N.S.; Alhotan, R.A.; Ebrahim, A.; Hussein, E. Grape Pomace: Agrifood By-Product with Potential to Enhance Performance, Yolk Quality, Antioxidant Capacity, and Eggshell Ultrastructure in Laying Hens. Vet. Sci. 2023, 10, 461. [Google Scholar] [CrossRef]
- Herranz, B.; Romero, C.; Sánchez-Román, I.; López-Torres, M.; Viveros, A.; Arija, I.; Dolores Álvarez, M.; De Pascual-Teresa, S.; Chamorro, S. Enriching Eggs with Bioactive Compounds through the Inclusion of Grape By-Product in Laying Hens Diet: Effect on Internal and External Egg Quality Parameters. Foods 2024, 13, 1553. [Google Scholar] [CrossRef]
- Ospina-Romero, M.A.; Medrano-Vázquez, L.S.; Pinelli-Saavedra, A.; Sánchez-Villalba, E.; Valenzuela-Melendres, M.; Martínez-Téllez, M.Á.; Barrera-Silva, M.Á.; González-Ríos, H. Productive Performance, Physiological Variables, and Carcass Quality of Finishing Pigs Supplemented with Ferulic Acid and Grape Pomace under Heat Stress Conditions. Animals 2023, 13, 2396. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Li, D.; Zhao, X.; Xiao, Z.; Sun, J.; Yuan, T.; Wang, Y.; Zuo, X.; Yang, G.; Yu, T. Dietary Grape Pomace Extract Supplementation Improved Meat Quality, Antioxidant Capacity, and Immune Performance in Finishing Pigs. Front. Microbiol. 2023, 14, 1116022. [Google Scholar] [CrossRef] [PubMed]
- Magklaras, G.; Skoufos, I.; Bonos, E.; Tsinas, A.; Zacharis, C.; Giavasis, I.; Petrotos, K.; Fotou, K.; Nikolaou, K.; Vasilopoulou, K.; et al. Innovative Use of Olive, Winery and Cheese Waste By-Products as Novel Ingredients in Weaned Pigs Nutrition. Vet. Sci. 2023, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, C.D.S.; Rosado Júnior, A.G.; Mateus, A.L.S.S.; Fonseca, P.A.F.D.; Falk, R.B.; Thiel, S.R.; Leães, Y.S.V.; Ebling, F.D.R.; Wagner, R.; Nörnberg, J.L. Meat Quality of Pigs Fed Grape Pomace in Different Production Systems. An. Acad. Bras. Ciências 2024, 96, e20220610. [Google Scholar] [CrossRef]
- Bouzaida, M.D.; Resconi, V.C.; Gimeno, D.; Romero, J.V.; Calanche, J.B.; Barahona, M.; Olleta, J.L.; María, G.A. Effect of Dietary Grape Pomace on Fattening Rabbit Performance, Fatty Acid Composition, and Shelf Life of Meat. Antioxidants 2021, 10, 795. [Google Scholar] [CrossRef]
- Birolo, M.; Xiccato, G.; Bordignon, F.; Dabbou, S.; Zuffellato, A.; Trocino, A. Growth Performance, Digestive Efficiency, and Meat Quality of Two Commercial Crossbred Rabbits Fed Diets Differing in Energy and Protein Levels. Animals 2022, 12, 2427. [Google Scholar] [CrossRef]
- Abdel-Rahman, S.M.; Magied, H.A.A.; Habib, H.H.; El-Komy, H.M.; Mobarz, S.M.; Ahmed, M.A. Issued by The Egyptian Society of Animal Production (ESAP) Physiological and Productive Responses of Pregnant Rabbits to Dietary Hydrolysable Tannins And Grape Seeds Extract supplementation. EJAP 2024, 61, 1–12. [Google Scholar] [CrossRef]
- Wang, W.; Hu, H.; Zijlstra, R.T.; Zheng, J.; Gänzle, M.G. Metagenomic Reconstructions of Gut Microbial Metabolism in Weanling Pigs. Microbiome 2019, 7, 48. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Szendro, Z. The Role of Rabbit Meat as Functional Food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef]
- Mcsweeney, C.S.; Palmer, B.; Mcneill, D.M.; Krause, D.O. Microbial Interactions with Tannins: Nutritional Consequences for Ruminants. Anim. Feed. Sci. Technol. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- FAO. LARC/24/INF/14. FAO Regional Conference for Latin America and the Caribbean. Thirty-Eighth Session Georgetown, Guyana, 11–13 March and 18–21 March 2024. Advancing Fisheries and Aquaculture towards Sustainability under the Blue Transformation Approach. 2024. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/9e6928cb-d414-4487-8b59-2547ebc58962/content (accessed on 3 September 2024).
- Mohammadi, Y.; Bahrami Kamangar, B.; Zarei, M.A. Effects of Diets Containing Grape Seed Proanthocyanidin Extract on the Growth and Oxidative Capacity of Common Carp (Cyprinus carpio). Aquaculture 2021, 540, 736689. [Google Scholar] [CrossRef]
- Mahmoodi, B.; Aberoumand, A.; Ziaei-nejad, S.; Seyyedi, S. Effects of Diets Containing Grape Pomace on the Growth, Nutrition Indices, and the Quality Traits of Common Carp (Cyprinus carpio). Food Sci. Nutr. 2023, 11, 6660–6669. [Google Scholar] [CrossRef] [PubMed]
- Barbacariu, C.A.; Dîrvariu, L.; Șerban, D.A.; Rîmbu, C.M.; Horhogea, C.E.; Dumitru, G.; Todirașcu-Ciornea, E.; Lungoci, C.; Burducea, M. Evaluating the Use of Grape Pomace in Cyprinus Carpio Nutrition: Effects on Growth, Biochemistry, Meat Quality, Microbiota, and Oxidative Status. Fishes 2024, 9, 219. [Google Scholar] [CrossRef]
- Tarricone, S.; Iaffaldano, N.; Colonna, M.A.; Giannico, F.; Selvaggi, M.; Caputi Jambrenghi, A.; Cariglia, M.; Ragni, M. Effects of Dietary Red Grape Extract on the Quality Traits in Juvenile European Sea Bass (Dicentrarchus labrax L.). Animals 2023, 13, 254. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Antequera, F.P.; Molina-Roque, L.; de las Heras, V.; Mancera, J.M.; Martos-Sitcha, J.A.; Moyano, F.J. Feed Supplementation with Winery By-Products Improves the Physiological Status of Juvenile Liza Aurata during a Short-Term Feeding Trial and Hypoxic Challenge. Aquac. Rep. 2023, 31, 101667. [Google Scholar] [CrossRef]
- Martínez-Antequera, F.P.; Simó-Mirabet, P.; de las Heras, V.; Román, M.; Mancera, J.M.; Martos-Sitcha, J.A.; Moyano, F.J. Grape Pomace in Diets for European Sea Bass: Influence on Oxidative Status, Intestinal Microbiota, and Fillet Quality. Aquac. Int. 2024. [Google Scholar] [CrossRef]
- Bullon, N.; Seyfoddin, A.; Hamid, N.; Manivannan, M.; Alfaro, A.C. Effects of Insect Meal and Grape Marc in the Nutritional Profile, Growth, and Digestibility of Juvenile New Zealand Farmed Abalone. Aquac. Int. 2024, 32, 1507–1536. [Google Scholar] [CrossRef]
- Ye, H.; Yang, J.; Xiao, G.; Zhao, Y.; Li, Z.; Bai, W.; Zeng, X.; Dong, H. A Comprehensive Overview of Emerging Techniques and Chemometrics for Authenticity and Traceability of Animal-Derived Food. Food Chem. 2023, 402, 134216. [Google Scholar] [CrossRef]
Ruminants | Animals Details | Grape and GP Details | GP Characterization (Details on Phenols) | Products | Main Evaluation Items | Remarks | Reference |
---|---|---|---|---|---|---|---|
Meat | |||||||
Jersey × Holstein (n = 24) | HGP 58% DM Ensiled GP | HGP (on DM): TPC 3.19% Free phenols 0.43% TTC 2.77% NT 0.42% | Strip loins (LL) Top-round SM muscles | Carcass data Retail color Lipid oxidation On steaks: FA analysis Tenderness | ↑ L* and b* values: HGP LL steaks HGP LL and SM steaks: ↑ total PUFAs, C18:2n-6, C18:2 c9t11, CLAs ↓ lipid oxidation (MDA) | [38] | |
Angus (n = 24) 7 months aged | 150 g/kg DM DGP | TPC 177.3 g GAE/kg DM TTC 104.2 g GAE/kg DM CT 33.3% LE | LT and LL muscles | Intramuscular FA analysis Volatile compound analysis of fresh raw meat Sensory analysis | ↑ n-6 PUFAs (C18:2n-6, C20:4n-6) ↑ n-3 PUFAs (C18:3n-3) ↑ CLAs ↓ C18:1n-9, total aldehydes, ketones, and alcohols | [39] | |
Red Angus (n = 72) 14–20 months aged | 5% DM GSE Dried grape pulp | Gross composition | Steaks | Proximate analysis FA analysis Vitamin E Mineral analysis Phenolic profile | ↑ n-6 PUFAs ↑ zinc concentration ↑ vitamin E concentration | [40] | |
Lambs/ewes | Texel lambs (n = 24, castrated males) 10–12 months aged | 25, 37.5, and 50 kg/100 kg of diet - Bordeaux variety | Gross composition On DM: TPC 8.95–15.06 mg GAE/g TTC 0.69–1.52 mg/g | LT and LL muscles (12th and 13th ribs) Blood Liver | Carcass characteristics Blood parameters Liver parameters | ↓ carcass cover fat ↑ TPC | [41] |
Lambs (n = 30) 25–30 days aged | 10% GP DM - Red variety | TPC 73.36 mg GAE/g TAC 496.12 μmol TEAC/g | LD muscle | Meat color Drip loss Cooking loss Chemical composition FA profile Lipid oxidation Volatile compounds | ↑ % stearic, vaccenic, rumenic acids ↑ nonanal and 1-octen-3-ol ↓ hexanal | [42] | |
Texel lambs (n = 24, non-castrated) 100 days aged | 150, 300, and 500 g/Kg DM silage - Merlot variety | TPC 42.3 vs. 18.3 g/kg TTC 22.8 g vs. 1.8 g/kg CT 14.1 vs. 1.8 g/kg | LT and LL muscles | Performance and gross margin Carcass and meat quality FA profile | ↓ daily weight gain ↑ gross margin ↑ PUFAs, n-6 PUFAs ↑ n6/n3 ratio ↑ 18:2 n-6 (LT and LL muscle) ↓ 16:0 (LT and LL muscle) | [43] | |
Han lambs (n = 28, males) 3–4 months aged | 6% DM - Grape seeds from China | TTC 24.2 g/kg DM | LT muscle | Meat quality FA analysis AA analysis | ↑ meat redness ↓ methionine in meat ↓ SFAs ↑ EPA and DHA ↓ TI | [44] | |
Churra ewes (n = 48) 3 and 5 years aged + their suckling lambs | 5, 10% DM - Red grape variety | Gross composition Extractable polyphenols 42.8 g/kg CT 54.6 g/kg Anthocyanins 4.10 g/kg | LT and LL muscles | Microbiological analysis Color measurement Shelf life analysis | ↓ metmyoglobin % ↓ lipid oxidation (TBARS) ↑ sensory perception | [45] | |
Milk/dairy products | |||||||
Lambs/ewes | Crossbreed dairy ewes (n = 46) | 10% red GP (flour) - Montepulciano d’Abruzzo variety | TPC 2.24 mg GAE/g TAC 502.59 µmol TEAC/g | Milk | Chemical analysis TPC ABTS assay FA profile Protein content AA profile | ↑ MUFAs ↑ DIC18 ↓ MCSFAs ↓ DIC14 | [46] |
Assaf ewes (n= 46) | 10% GP - Red grape variety | - | WBR and WPR cheese-making Ricotta, after 1 (T1) and 5 (T5) days of ripening at 4 °C | Chemical analysis Color measurement TPC ABTS assay FA profile Whey protein Volatile compounds | WBR: ↓ L* and a* values ricotta T1: ↑ TPC ↓ nonanal ↑ octanoic acid ricotta T2: ↓ hexanal | [47] | |
Crossbred ewes (n = 46) | 10% GP Red grape variety | Phenol profile | Milk | Phenolic profile Antioxidant status Inflammatory status Milk gelatinase activity Zymographic analysis Metalloproteinases Molecular docking | ↓ phenolic acids and flavones ↑ flavanols and flavonols ↓ MMP-9 activity | [48] | |
Goats | Camosciata delle Alpi (n = 22) | 150 g/d dried GP - Red Barbera grape variety | TPC 27.0 mg GAE/g DM CT 10.3 mg LE/g DM | Milk | Yield Composition FA profile | ↓ rumenic acid | [49] |
French Alpine (n = 24) 5 years aged | GSC5: 5% (75 g/d) GSC10: 10% (150 g/d) - Cabernet franc variety | On kg DM: TPC 418.22–812.6 mg Anthocyanins 155.80–240.46 mg | Milk | Hematological parameters Blood enzyme activities Antioxidant status | GSC10: ↑ SOD and GR activity ↓ glucose ↓ somatic cell count | [50] |
Non-Ruminants | Animal Details | Grape and GP Details | GP Characterization (Details on Phenols) | Products | Main Evaluation Items | Remarks | Reference |
---|---|---|---|---|---|---|---|
Broiler chickens | Ross-308 (n = 50, mixed sex) 42 days aged | 1, 2, 3% Alibernet variety | Gross composition | Breast meat Thigh meat | MDA analysis on the 1st, 3rd, and 5th day of storage | Any significant difference No negative effects | [55] |
Ross-308 (n = 80; mixed sex) | 1, 2, 3 100/kg FM - red GP Alibernet variety | Gross composition | Breast meat Thigh meat | AA profile FA profile | Breast muscle: ↑ MUFAs (C18:1n-9) Thigh muscle: Significant differences in some AAs | [56] | |
Aviagen Ross-308 (n = 240) 1 day aged | GGP 25 g/kg PE 1 g/kg - Native Greek Assyriko variety | On 25 g GGP DW: TPC 193.2 mg GAE TFC 50.3 mg QE TTC 319.5 mg EE Phenol/FA profile | Breast muscle Blood | Chemical analysis Antioxidant enzyme activities Oxidative stability | PE-fed: ↓ NOX2 and SOD ↑ TAC (FRAP assay) ↓ MDA values | [57] | |
Ross-308 (n = 216, male) 1 day aged | Silage-5% Silage-10% | Gross composition | Chemical analysis Color analysis Oxidative stability FA profile | Silage-10% ↓ MDA ↑ thigh meat oxidative stability | [58] | ||
Ross-308 (n = 750, male) 2 weeks aged | 30 g/kg - Red GP powder + AVG | AVG, phenolic compounds (1%) | Growth performance Blood examination Carcass characteristics and internal organs | ↑ weight gain, feed conversion ratio, finisher weight | [59] | ||
Ross-508 (n = 112, male) | 2.5, 5, 7% DGP Red grape (Vitis vinifera L.) | Gross composition TPC 15.87 mg GAE/g FA profile | Breast meat | Physicochemical analysis FA profile Lipid oxidation Volatile compounds | 5 and 7% DGP: ↑ PUFAs (linoleic acid) ↓ SFAs ↓ lipid oxidation ↓ volatile aldehydes | [60] | |
Geese | Czech goose breed (n = 20) 28 days aged | 1% - White wine variety (Pinot Gris) | TPC 27.38 mg GAE/g TPA 13.27 mg CAE/g TFC 0.12 mg QE/g TAC 9.17 mg TE/g | Abdominal fat | Fattening parameters FA profile | ↑ liver weight ↑ MUFAs (oleic acid) ↓ PUFAs ↓ SFAs | [61] |
Quail chicks | Japanese (n = 288, male) 15 days aged | 3% GSP or GSM | Gross composition Phenol profile FA profile | Thigh muscle Breast muscle | Performance Blood biochemistry FA profile Antioxidant status HSP70 gene expression | 3% GSM: ↓ HSP70 levels Diet containing 3% GSP or GSM was not effective in overcoming oxidative stress | [62] |
Layer chickens | Hy-Line W36 (n = 75) 50 weeks aged | GP: 30 or 60 g/kg GE: 0.5 or 1.0 g/kg - Spanish red grapes (Cencibel variety) | GP-TPC 4.91–7.42 g GAE/kg GE-TPC 2.65–2.86 g GAE/kg | Egg Egg after 4 months of storage | Hen performance Egg quality Chemical analyses (TPC, FA profile, oxidation assessment) | For 60 g/kg GP: ↓ SFAs, MUFAs (yolks) ↑ PUFAs (stored eggs) ↓ MDA values | [63] |
Hy-Line W36 White Leghorn (n = 576) 57 weeks aged | 0 or 5% DGP - Iranian red/white grapes | Gross composition | Egg | Egg quality Antioxidant status Yolk weight, color, cholesterol | ↓ feed intake ↓ egg mass ↑ egg yolk color and trait (5% DGP) | [64] | |
Lohman Brown Lite (n = 200) 35 weeks aged | 30, 60, 90 g/kg - Egypt red grapes (Vitis vinifera L.) | On DW: TPC 28.63 mg GAE/g TFC 8.42 mg CE/g | Egg | Egg quality Oxidation stability FA profile Serum biochemistry | ↑ egg production ↑ egg weight ↑ antioxidant capacity | [65] | |
ISA White and ISA Brown (n = 30, each) | 50 g/kg | 2.10 g GAE/100 g DW Phenolic profile | Egg | Egg quality Chemical analysis (vitamins A and E, phenolic compounds) | ↑ yolk color score ↑ gallic acid | [66] | |
Pigs | Yorkshire × Duroc male (n = 40) | 2.5% GPM | TPC 20.81 mg GAE/g TFC 11.30 mg CE/g HT 3.34 mg GAE/g CT 0.8 mg CE/g TAC 104.7μM TE/g DPPH 114.8 μM TE/g Phenol profile | Meat | Blood metabolites Hormonal levels Hematological parameters Biochemical parameters | ↓ marbling ↑ loin area ↑ liver weight | [67] |
Fellow (Guanzhong Black Pig × Landrace) (n = 24, male) | 6% | - | Meat (LT) | Meat quality AA and FA contents Inflammatory cytokines Antioxidant indices Microbiota | ↓ water loss, IL-1β, DAO, ROS, MDA values ↑ IgA, IgG, IgM, CAT, TAC, SOD, IFN-γ | [68] | |
Crossbreed weaned (1/4 Large White × 1/4 Landrace × 1/2 Duroc) (n = 45) 34 days aged | 5% or 10% | Gross composition | Meat | Chemical/color analysis Oxidative stability Microbiological analysis FA profile | ↑ oxidative stability ↑ n-6/n-3 ↑ ileum and cecum microflora populations | [69] | |
50% Large White × 50% Landrace (n = 24, each group, mixed sex) | 20% - Brazil red grapes (Vitis vinifera, Bordeaux variety) | TPC 12.92 mg GAE/g Anthocyanins 38.34 mg/g malvidine-3-glycoside | Meat (LT) | Chemical analysis FA profile Cholesterol (meat) Lipid oxidation Color analysis Texture profile Sensory analyses | ↑ quality of the meat | [70] | |
Rabbits | New Zealand white (n = 36) 35 days aged | 20% - Spain grapes (Grenache variety) | Gross composition Phenol profile FA profile On 100 g DW: TPC 491 mg GAE DPPH 13,032 μmol TE FRAP 3657 μmol TE | Meat (LD) | FA profile Phenol profile TPC, TAC (DPPH assay), (FRAP assay pH MDA value | ↑ linolenic acid ↓ α-linolenic acid ↑ n-6/n-3 ratio ↓ SFAs ↑ PUFA/SFA ratio ↑AI and TI | [71] |
Crossbreed (n = 270, mixed sex) 30 days aged | 0.2 or 0.4% GPE | - | Meat (LL) Hind leg | Growth performance Nutrient digestibility Meat quality | ↑ DM digestibility ↑ fiber fractions ↑ gross energy | [72] | |
New Zealand White (n = 36, female) 8 months aged | HT 1.5 g/kg GSE 0.5 g/kg HT + GSE (0.5 g/kg) | Gross composition | Milk (kindling) | Blood analysis Does/litter performance TAC | ↑ TAC ↑ GPX activities ↓ MDA values | [73] |
Animal Details | Grape and GP Details | GP Characterization (Details on Phenols) | Products | Main Evaluation Items | Remarks | Reference |
---|---|---|---|---|---|---|
Common carp (Cyprinus carpio) (n = 180) | 200, 400, 600, 800, and 1500 mg/kg - GSPE: containing 95% proanthocyanidins | 95% proanthocyanidins | Serum Fillet | Growth performance Biochemical parameters Liver enzyme activity Fillet proximate composition | ↑ WG, SGR ↑ SOD, GPX ↓ serum glucose, cholesterol, triglyceride | [78] |
Carp (Cyprinus carpio) (n = 200) | 5, 10, or 15% (w/w) - Grapes (Vitis vinifera L.) Pellet | - | Fillet | Growth and survival indices Chemical composition Physicochemical parameters | At 15%: ↑ growth indices ↑ weight of fish ↑ survival rate | [79] |
Carp (Cyprinus carpio) (n = 180) | 5 or 10% | Chemical composition TPC 83.07 mg/g DW TFC 13.53 mg/g DW TAC (DPPH % inhibition) 81.87% | Meat Blood Microbiota | Growth indices Proximate composition Blood parameters Biochemical parameters Microbiological exam | At 10%: ↓ SOD ↑ CAT ↑ GSH (muscle tissue) ↓ MDA ↑ MPV | [80] |
juvenile sea bass (Dicentrarchus labrax) (n = 180) | Red grape polyphenol extract (GPE): 100 (GPE 100) or 200 mg/kg (GPE 200) - Red grape Nero di Troia variety | Proanthocyanidins (101.8%) and catechins plus epicatechin (10.37%) | Fillet | Growth parameters pH Color Textural parameters Chemical analysis FA analysis | Both GPE diets: ↓ red (a*) index ↓ yellow (b*) index ↓ fillet hardness ↓ total lipid content ↑ PUFA content ↓ MDA values | [81] |
Juvenile golden gray mullet (Liza aurata) | GP or WL (liquid form) 100 g/kg | Proximate composition | Skin mucus Blood Tissues | Growth performance Biochemical parameters Immunological parameters Microbiota Oxidative status | ↑ growth performance ↑ feed efficiency - GP: ↑ immune status | [82] |
Juvenile seabass (Dicentrarchus labrax) (n = 120) | 0.4% - Red wine Spanish GP | - | Fillet | Growth performance Biometric parameters Gut microbiota Biochemical and immunological parameters Oxidative status Fillet quality during storage | Potential to prevent the oxidation in the absence of other preservatives | [83] |
Commercial abalone (Halioris iris) | FG or FIG (30 g/100 g diet) | - | Tissues Feces | Growth parameters Proximate analyses (animal soft tissues and fecal samples) | With FIG: ↓ L-histidine, glycine, L-methionine, L-phenylalanine levels ↑palmitic, palmitoleic, stearic, oleic, α-linolenic, arachidonic acids | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blasi, F.; Trovarelli, V.; Mangiapelo, L.; Ianni, F.; Cossignani, L. Grape Pomace for Feed Enrichment to Improve the Quality of Animal-Based Foods. Foods 2024, 13, 3541. https://doi.org/10.3390/foods13223541
Blasi F, Trovarelli V, Mangiapelo L, Ianni F, Cossignani L. Grape Pomace for Feed Enrichment to Improve the Quality of Animal-Based Foods. Foods. 2024; 13(22):3541. https://doi.org/10.3390/foods13223541
Chicago/Turabian StyleBlasi, Francesca, Valentina Trovarelli, Luciano Mangiapelo, Federica Ianni, and Lina Cossignani. 2024. "Grape Pomace for Feed Enrichment to Improve the Quality of Animal-Based Foods" Foods 13, no. 22: 3541. https://doi.org/10.3390/foods13223541
APA StyleBlasi, F., Trovarelli, V., Mangiapelo, L., Ianni, F., & Cossignani, L. (2024). Grape Pomace for Feed Enrichment to Improve the Quality of Animal-Based Foods. Foods, 13(22), 3541. https://doi.org/10.3390/foods13223541