Effect of pH-Shift Treatment on IgE-Binding Capacity and Conformational Structures of Peanut Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. pH-Shift Treatment of PP
2.3. Structural Characterization
2.3.1. Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.3.2. Particle Size and Zeta Potential
2.3.3. Circular Dichroism (CD)
2.3.4. Fluorescence Spectroscopy
2.3.5. UV Spectroscopy
2.3.6. Surface Hydrophobicity
2.4. ELISA
2.5. LC–MS/MS
2.6. Molecular Dynamics Simulation
2.7. Digestibility Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Structural Characterization
3.1.1. SDS-PAGE
3.1.2. Particle Size and Zeta Potential
3.1.3. Fluorescence Spectroscopy
3.1.4. UV
3.1.5. CD
3.1.6. Surface Hydrophobicity
3.2. ELISA
3.3. Protein and Peptide Profiles
3.4. Molecular Dynamics Simulation
3.5. Digestibility Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.H.; Li, C.Z.; Zhu, Y.L.; Cui, H.Y.; Lin, L. Stability of a novel glycosylated peanut protein isolate delivery system loaded with gallic acid. Food Chem. 2024, 437, 137790. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.; Zhang, Y.; Song, M.; Zhou, X.; Tang, Y.; Wu, Z.; Chen, H. Allergenicity of peanut allergens and its dependence on the structure. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1058–1081. [Google Scholar] [CrossRef] [PubMed]
- Kirsten, B.; Ellen, M.; Li, X.-M.; Ludmilla, B.; Gary, B.A.; Burks, A.W.; Sampson, H.A. Effects of cooking methods on peanut allergenicity. J. Allergy Clin. Immunol. 2001, 107, 1077–1081. [Google Scholar] [CrossRef]
- Toomer, O.T. Nutritional chemistry of the peanut (Arachis hypogaea). Crit. Rev. Food Sci. Nutr. 2018, 58, 3042–3053. [Google Scholar] [CrossRef]
- Lieberman, J.A.; Gupta, R.S.; Knibb, R.C.; Haselkorn, T.; Tilles, S.; Mack, D.P.; Pouessel, G. The global burden of illness of peanut allergy: A comprehensive literature review. Allergy 2021, 76, 1367–1384. [Google Scholar] [CrossRef]
- Bavaro, S.L.; Monaci, L. Peanut allergy and strategies for allergenicity reduction. Austin J. Allergy 2016, 3, 1022. [Google Scholar]
- Cabanillas, B.; Maleki, S.J.; Rodriguez, J.; Burbano, C.; Muzquiz, M.; Jimenez, M.A.; Pedrosa, M.M.; Cuadrado, C.; Crespo, J.F. Heat and pressure treatments effects on peanut allergenicity. Food Chem. 2012, 132, 360–366. [Google Scholar] [CrossRef]
- Tscheppe, A.; Palmberger, D.; van Rijt, L.; Kalic, T.; Mayr, V.; Palladino, C.; Kitzmuller, C.; Hemmer, W.; Hafner, C.; Bublin, M.; et al. Development of a novel Ara h 2 hypoallergen with no IgE binding or anaphylactogenic activity. J. Allergy Clin. Immunol. 2020, 145, 229–238. [Google Scholar] [CrossRef]
- Wen, C.T.; Zhang, J.X.; Qin, W.; Gu, J.Y.; Zhang, H.H.; Duan, Y.Q.; Ma, H.L. Structure and functional properties of soy protein isolate-lentinan conjugates obtained in Maillard reaction by slit divergent ultrasonic assisted wet heating and the stability of oil-in-water emulsions. Food Chem. 2020, 331, 127374. [Google Scholar] [CrossRef]
- Wang, R.; Li, L.; Feng, W.; Wang, T. Fabrication of hydrophilic composites by bridging the secondary structures between rice proteins and pea proteins toward enhanced nutritional properties. Food Funct. 2020, 11, 7446–7455. [Google Scholar] [CrossRef]
- Tang, C.-H. Nano-architectural assembly of soy proteins: A promising strategy to fabricate nutraceutical nanovehicles. Adv. Colloid Interfac. Sci. 2021, 291, 102402. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, M.; Li, J.; Wang, J.; Zhang, H.; Wang, J.; Xia, N.; Wang, Z.; Rayan, A.M. Advancing the pH-driven encapsulation technique of curcumin: Molecular interaction shifts due to structural and charge variations. Food Hydrocolloid. 2024, 152, 109952. [Google Scholar] [CrossRef]
- Mao, Y.; Huang, W.; Jia, R.; Bian, Y.; Pan, M.-H.; Ye, X. Correlation between Protein Features and the Properties of pH-Driven-Assembled Nanoparticles: Control of Particle Size. J. Agric. Food Chem. 2023, 71, 5686–5699. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhao, J.; Cao, X.; Ye, Y.; Wu, Z.; Yue, J.; Yang, L.; Jin, R.; Sun, H. Low pH-shifting treatment would improve functional properties of black turtle bean (Phaseolus vulgaris L.) protein isolate with immunoreactivity reduction. Food Chem. 2020, 330, 127217. [Google Scholar] [CrossRef]
- Gao, K.; He, S.; Chen, H.; Wang, J.; Li, X.; Sun, H.; Zhang, Y. Insight of pH-shifting as an effective pretreatment to reduce the antigenicity of lectin from red kidney bean (Phaseolus vulgaris L.) combining with autoclaving treatments: The structure investigation. Food Chem. 2024, 434, 137429. [Google Scholar] [CrossRef]
- Geng, Q.; Zhang, Y.; McClements, D.J.; Zhou, W.; Dai, T.; Wu, Z.; Chen, H. Investigation of peanut allergen-procyanidin non-covalent interactions: Impact on protein structure and in vitro allergenicity. Int. J. Biol. Macromol. 2024, 258, 128340. [Google Scholar] [CrossRef]
- Li, J.; Wu, M.; Wang, Y.; Li, K.; Du, J.; Bai, Y. Effect of pH-shifting treatment on structural and heat induced gel properties of peanut protein isolate. Food Chem. 2020, 325, 126921. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, M.; Xu, J.; Li, X.; Yang, A.; Tong, P.; Wu, Z.; Chen, H. IgE Recognition and Structural Analysis of Disulfide Bond Rearrangement and Chemical Modifications in Allergen Aggregations in Roasted Peanuts. J. Agric. Food Chem. 2023, 71, 9110–9119. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, S. Structural and functional properties of self-assembled peanut protein nanoparticles prepared by ultrasonic treatment: Effects of ultrasound intensity and protein concentration. Food Chem. 2023, 413, 135626. [Google Scholar] [CrossRef]
- Zhang, J.X.; Wen, C.T.; Duan, Y.Q.; Zhang, H.H.; Ma, H.L. Structure and functional properties of watermelon seed protein-glucose conjugates prepared by different methods. LWT-Food Sci. Technol. 2022, 155, 113004. [Google Scholar] [CrossRef]
- Teng, Y.X.; Zhang, T.; Dai, H.M.; Wang, Y.B.; Xu, J.T.; Zeng, X.A.; Li, B.; Zhu, X.W. Inducing the structural interplay of binary pulse protein complex to stimulate the solubilization of chickpea (Cicer arietinum L.) protein isolate. Food Chem. 2023, 407, 135136. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; McClements, D.J.; Dai, T.T.; Feng, Z.; Li, T.; Liu, C.M.; Chen, J. Enhancing the dispersibility of commercial pea protein ingredients using stirred media milling: Potential mechanisms of action. Food Hydrocolloid. 2023, 145, 109130. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Zhang, T.; McClements, D.J.; Liu, X.; Wu, X.; Liu, F. Enzymatic and Nonenzymatic Conjugates of Lactoferrin and (−)-Epigallocatechin Gallate: Formation, Structure, Functionality, and Allergenicity. J. Agric. Food Chem. 2021, 69, 6291–6302. [Google Scholar] [CrossRef] [PubMed]
- Rost, J.; Muralidharan, S.; Lee, N.A. A label-free shotgun proteomics analysis of macadamia nut. Food Res. Int. 2020, 129, 108838. [Google Scholar] [CrossRef]
- Li, D.; Zhu, L.; Wu, G.; Zhang, H. The interaction mechanisms, biological activities and digestive properties between Tartary buckwheat protein and phenolic extract under pH-driven methods. Food Chem. 2023, 419, 135758. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Li, K.; Li, X.; Yang, A.; Tong, P.; Chen, H. Allergenicity assessment on thermally processed peanut influenced by extraction and assessment methods. Food Chem. 2019, 281, 130–139. [Google Scholar] [CrossRef]
- Huang, L.R.; Ding, X.N.; Li, Y.L.; Ma, H.L. The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid. Food Chem. 2019, 279, 114–119. [Google Scholar] [CrossRef]
- Wang, L.; Wen, J.; Wang, L.; Jiang, L.; Zhang, Y.; Sui, X. Characterization of the extreme pH-induced molten globule state of soy protein isolate and its influence on functional properties. Food Hydrocolloid. 2023, 144, 109040. [Google Scholar] [CrossRef]
- Gao, J.; Li, X.; Chen, F.; Piekoszewski, W.; Yang, Y.; Wang, B.; Liu, L.; Guan, H.; Shi, Y.; Zhang, N. The effect of extreme acid-induced soybean glycinin molten globules state on foaming ability. Food Hydrocolloid. 2020, 105, 105819. [Google Scholar] [CrossRef]
- Burks, A.W.; Shin, D.; Cockrell, G.; Stanley, J.S.; Helm, R.M.; Bannon, G.A. Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity. Eur. J. Biochem. 1997, 245, 334–339. [Google Scholar] [CrossRef]
- Mishra, A.; Jain, A.; Arora, N. Mapping B-cell epitopes of major and minor peanut allergens and identifying residues contributing to IgE binding. J. Sci. Food Agr. 2016, 96, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Rougé, P.; Culerrier, R.; Sabatier, V.; Granier, C.; Rancé, F.; Barre, A. Mapping and conformational analysis of IgE-binding epitopic regions on the molecular surface of the major Ara h 3 legumin allergen of peanut (Arachis hypogaea). Mol. Immunol. 2009, 46, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Stanley, J.S.; King, N.; Burks, W.; Huang, S.K.; Sampson, H.; Cockrell, G.; Helm, R.M.; West, C.M.; Bannon, G.A. Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch. Biochem. Biophys. 1997, 342, 244–253. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, Z.; Chang, X.; Tang, Y.; Yuan, J.; Li, X.; Yang, A.; Tong, P.; Chen, H. The effect of roasting on peanut allergens’ digestibility, allergenicity, and structure. Food Biosci. 2021, 44, 101454. [Google Scholar] [CrossRef]
- Koppelman, S.J.; Hefle, S.L.; Taylor, S.L.; de Jong, G.A.H. Digestion of peanut allergens Ara h 1, Ara h 2, Ara h 3, and Ara h 6: A comparative in vitro study and partial characterization of digestion-resistant peptides. Mol. Nutr. Food Res. 2010, 54, 1711–1721. [Google Scholar] [CrossRef]
- Hazebrouck, S.; Guillon, B.; Drumare, M.F.; Paty, E.; Wal, J.M.; Bernard, H. Trypsin resistance of the major peanut allergen Ara h 6 and allergenicity of the digestion products are abolished after selective disruption of disulfide bonds. Mol. Nutr. Food Res. 2012, 56, 548–557. [Google Scholar] [CrossRef]
Secondary Structure | NPP | pH1.0-Shift | pH2.5-Shift | pH4.0-Shift | pH9.0-Shift | pH10.5-Shift | pH12.0-Shift |
---|---|---|---|---|---|---|---|
α-helix | 32.10% ± 2.26 a | 26.95% ± 1.76 b | 27.06% ± 1.29 b | 25.10% ± 2.95 b | 28.55% ± 2.19 b | 29.76% ± 0.57 ab | 25.9% ± 2.32 b |
β-sheet | 17.13% ± 2.40 b | 21.83% ± 0.45 a | 22.57% ± 2.31 a | 22.8% ± 2.40 a | 20.9% ± 2.36 a | 18.76% ± 0.46 b | 21.53% ± 2.36 a |
β-turn | 15.73% ± 0.41 c | 18.33% ± 0.35 a | 17.10% ± 0.17 b | 16.37% ± 0.32 c | 16.57% ± 0.25 c | 16.43% ± 0.05 c | 16.16% ± 0.61 c |
Random coil | 36.73% ± 0.61 a | 31.23% ± 2.09 b | 36.93% ± 2.29 a | 35.66% ± 0.80 a | 34.9% ± 0.55 a | 35.03% ± 0.06 a | 36.27% ± 1.41 a |
Allergen | Accession | Neutral PP | pH1.0-Shift PP | pH12.0-Shift PP | |||
---|---|---|---|---|---|---|---|
Coverage (%) | Peptides | Coverage (%) | Peptides | Coverage (%) | Peptides | ||
Ara h 1 | P43238 | 61 | 47 | 55 | 43 | 56 | 42 |
Ara h 2 | Q6PSU2 | 49 | 9 | 49 | 9 | 34 | 6 |
Ara h 3 | O82580 | 40 | 20 | 37 | 17 | 34 | 16 |
Ara h 6 | Q647G9 | 43 | 5 | 58 | 7 | 28 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Q.; Zhou, W.; Zhang, Y.; Wu, Z.; Chen, H. Effect of pH-Shift Treatment on IgE-Binding Capacity and Conformational Structures of Peanut Protein. Foods 2024, 13, 3467. https://doi.org/10.3390/foods13213467
Geng Q, Zhou W, Zhang Y, Wu Z, Chen H. Effect of pH-Shift Treatment on IgE-Binding Capacity and Conformational Structures of Peanut Protein. Foods. 2024; 13(21):3467. https://doi.org/10.3390/foods13213467
Chicago/Turabian StyleGeng, Qin, Wenlong Zhou, Ying Zhang, Zhihua Wu, and Hongbing Chen. 2024. "Effect of pH-Shift Treatment on IgE-Binding Capacity and Conformational Structures of Peanut Protein" Foods 13, no. 21: 3467. https://doi.org/10.3390/foods13213467
APA StyleGeng, Q., Zhou, W., Zhang, Y., Wu, Z., & Chen, H. (2024). Effect of pH-Shift Treatment on IgE-Binding Capacity and Conformational Structures of Peanut Protein. Foods, 13(21), 3467. https://doi.org/10.3390/foods13213467