High-Energy Fluidic Microfluidizer Produced Whole Germinant Oat Milk: Effects on Physical Properties and Nutritional Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Germinated Oat
2.3. Nutrients Determination of Germinated Oats
2.4. Preparation of Whole Germinated Oat Milk
2.5. Physicochemical Determination of Whole Germinated Oat Milk
2.5.1. Rheological Properties and Physical Stability
2.5.2. Particle Size Distribution (PSD)
2.5.3. Microscopic Observation
2.5.4. Color
2.5.5. Nutrients
2.6. Statistical Analysis
3. Results and Discussion
3.1. Appearance of Germinated Oats and Nutrients Content
3.1.1. Appearance
3.1.2. Starch and Reducing Sugar
3.1.3. Protein Content
3.1.4. β-Glucan Content
3.1.5. γ-Aminobutyric Acid Content
3.1.6. Total Polyphenol Content
3.2. Effect of HEFM Treatment on Physicochemical Properties of WOM
3.2.1. Rheological Properties
3.2.2. Instability Index and Precipitate Weight Ratio
3.2.3. Particle Size Distribution
3.2.4. Microstructure of WOM
3.2.5. Color of WOM
3.2.6. Nutrients Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, R.; Mokhtari, S.; Jafari, S.M.; Sharma, S.M. Barley-based probiotic food mixture: Health effects and future prospects. Crit. Rev. Food Sci. Nutr. 2022, 62, 7961–7975. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.L.; Jia, Q.J.; Zhao, J.N.; Hou, D.Z.; Zhou, S.M. A comprehensive review on oat milk: From oat nutrients and phytochemicals to its processing technologies, product features, and potential applications. Food Funct. 2023, 14, 5858–5869. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Kang, Z.Y.; Zhao, S.; Meng, N.; Liu, M.; Tan, B. Effect of dynamic high-pressure microfluidizer on physicochemical and microstructural properties of whole-grain oat pulp. Foods 2023, 12, 2747. [Google Scholar] [CrossRef] [PubMed]
- Rico, D.; Penas, E.; Garcia, M.D.; Martinez-Villaluenga, C.; Rai, D.K.; Birsan, R.I.; Frias, J.; Martin-Diana, A.B. Sprouted barley flour as a nutritious and functional ingredient. Foods 2020, 9, 296. [Google Scholar] [CrossRef] [PubMed]
- Grewal, A.; Jood, S. Effect of processing treatments on nutritional and antinutritional contents of green gram. J. Food Biochem. 2006, 30, 535–546. [Google Scholar] [CrossRef]
- Deore, A.; Athmaselvi, K.A.; Venkatachalapathy, N. Effect of ultrasound and microwave pretreatment on sprouting, GABA, bioactive compounds, and other physicochemical properties of sorghum. Grain Oil Sci. Technol. 2023, 6, 91–99. [Google Scholar] [CrossRef]
- Natalia, A.-G.; Cristina, M.-V.; Frias, J.; Peas, E. Changes in protein profile, bioactive potential and enzymatic activities of gluten-free flours obtained from hulled and dehulled oat varieties as affected by germination conditions. LWT Food Sci. Technol. 2020, 134, 109955. [Google Scholar] [CrossRef]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef]
- Jagr, M.; Hofinger-Horvath, A.; Ergang, P.; Cepkova, P.H.; Schoenlechner, R.; Pichler, E.C.; Damico, S.; Grausgruber, H.; Vagnerova, K.; Dvoracek, V. Comprehensive study of the effect of oat grain germination on the content of avenanthramides. Food Chem. 2024, 437, 137807. [Google Scholar] [CrossRef]
- Tian, B.Q.; Xie, B.J.; Shi, J.; Wu, J.; Cai, Y.; Xu, T.; Xue, S.; Deng, Q.C. Physicochemical changes of oat seeds during germination. Food Chem. 2010, 119, 1195–1200. [Google Scholar] [CrossRef]
- Li, Y.T.; Chen, M.S.; Deng, L.Z.; Liang, Y.Z.; Liu, Y.K.; Liu, W.; Chen, J.; Liu, C.M. Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering. J. Food Eng. 2021, 291, 110228. [Google Scholar] [CrossRef]
- Guo, X.J.; McClements, D.J.; Chen, J.; He, X.H.; Liu, W.; Dai, T.T.; Liu, C.M. The nutritional and physicochemical properties of whole corn slurry prepared by a novel industry-scale microfluidizer system. LWT-Food Sci. Technol. 2021, 144, 111096. [Google Scholar] [CrossRef]
- Dai, T.T.; Shuai, X.X.; Chen, J.; Li, C.H.; Wang, J.L.; Liu, W.; Liu, C.M.; Wang, R.S. Whole peanut milk prepared by an industry-scale microfluidization system: Physical stability, microstructure, and flavor properties. LWT-Food Sci. Technol. 2022, 171, 114140. [Google Scholar] [CrossRef]
- Ke, Y.Y.; Chen, J.; Dai, T.T.; Xiao, M.; Chen, M.S.; Liang, R.H.; Liu, W.; Liu, C.M.; Du, L.Q.; Deng, L.Z. Industry-scale microfluidizer: A novel technology to improve physiochemical qualities and volatile flavor of whole mango juice. Food Bioprocess. Technol. 2022, 16, 1022–1032. [Google Scholar] [CrossRef]
- Khatri, D.; Chhetri, S.B.B. Reducing sugar, total phenolic content, and antioxidant potential of nepalese plants. Biomed. Res. Int. 2020, 2020, 7296859. [Google Scholar] [CrossRef]
- Setyawan, R.H.; Ardiansyah, A.; Solihat, N.N.; Elfirta, R.R.; Saskiawan, I.; Ningrum, R.S.; Widhyastuti, N.; Kasirah, K.; Saksono, B.; Sondari, D.; et al. Chemical structure characterization of edible mushroom-extracted beta-glucan and its bioactivity. Bio Carbohydr. Diet. Fib. 2024, 31, 100411. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiang, J.; Zhang, L.Z.; Zhu, X.F.; Evers, J.; van der Werf, W.; Duan, L.S. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. Funct. Foods 2014, 10, 283–291. [Google Scholar] [CrossRef]
- Zeng, Z.C.; Li, Y.T.; Yang, R.; Liu, C.M.; Hu, X.T.; Luo, S.J.; Gong, E.S.; Ye, J.P. The relationship between reducing sugars and phenolic retention of brown rice after enzymatic extrusion. J. Cereal Sci. 2017, 74, 244–249. [Google Scholar] [CrossRef]
- Ma, L.; Zou, L.Q.; McClements, D.J.; Liu, W. One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic. Food Hydrocoll. 2020, 100, 105381. [Google Scholar] [CrossRef]
- Kalita, D.; Sarma, B.; Srivastava, B. Influence of germination conditions on malting potential of low and normal amylose paddy and changes in enzymatic activity and physico chemical properties. Food Chem. 2017, 220, 67–75. [Google Scholar] [CrossRef]
- Saman, P.; Antonio Vazquez, J.; Pandiella, S.S. Controlled germination to enhance the functional properties of rice. Process Biochem. 2008, 43, 1377–1382. [Google Scholar] [CrossRef]
- Sharma, S.; Saxena, D.C.; Riar, C.S. Characteristics of β-glucan extracted from raw and germinated foxtail (Setaria italica) and kodo (Paspalum scrobiculatum) millets. Int. J. Biol. Macromol. 2018, 118, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Zhang, G.P.; Chen, J.X.; Wu, F.B. The changes of β-glucan content and β-glucanase activity in barley before and after malting and their relationships to malt qualities. Food Chem. 2004, 86, 223–228. [Google Scholar] [CrossRef]
- Yoshimura, M.; Toyoshi, T.; Sano, A.; Izumi, T.; Fujii, T.; Konishi, C.; Inai, S.; Matsukura, C.; Fukuda, N.; Ezura, H.; et al. Antihypertensive Effect of a γ-Aminobutyric Acid Rich Tomato Cultivar ‘DG03-9’ in Spontaneously Hypertensive Rats. J. Agric. Food Chem. 2010, 58, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, D.; Zanan, R.; John, S.; Khandagale, K.; Nadaf, A. γ-Aminobutyric Acid (GABA): Biosynthesis, role, commercial production, and applications. Stud. Nat. Prod. Chem. 2018, 57, 413–452. [Google Scholar] [CrossRef]
- Çelik, E.E.; Canli, M.; Kocadağlı, T.; Özkaynak Kanmaz, E.; Gökmen, V. Formation of Histamine, phenylethylamine and γ-Aminobutyric acid during sprouting and fermenting of selected wholegrains. Food Res. Int. 2023, 173, 113447. [Google Scholar] [CrossRef]
- Coda, R.; Rizzello, C.G.; Gobbetti, M. Use of sourdough fermentation and pseudo-cereals and leguminosus flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int. J. Food Microbiol. 2010, 137, 236–245. [Google Scholar] [CrossRef]
- Jesus Jimenez-Pulido, I.J.; Rico, D.; Martinez-Villaluenga, C.; Perez-Jimenez, J.; De Luis, D.; Martin-Diana, A.B. Sprouting and hydrolysis as biotechnological tools for development of nutraceutical ingredients from oat grain and hull. Foods 2022, 11, 2769. [Google Scholar] [CrossRef]
- Sharma, S.; Saxena, D.C.; Riar, C.S. Changes in the GABA and polyphenols contents of foxtail millet on germination and their relationship with in vitro antioxidant activity. Food Chem. 2018, 245, 863–870. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, K.; Lu, J.; Lu, A.N.; Guan, X.; Zhang, Y.; Li, S.; Song, H.D.; Cao, H.W.; Sun, Z.; et al. Enzymatic hydrolysis of oat core flour improves physiochemical and sensory behaviors for oat milk. J. Cereal Sci. 2024, 116, 103841. [Google Scholar] [CrossRef]
- Morales-Medina, R.; Dong, D.; Schalow, S.; Drusch, S. Impact of microfluidization on the microstructure and functional properties of pea hull fibre. Food Hydrocoll. 2020, 103, 105660. [Google Scholar] [CrossRef]
- Chen, B.F.; Cai, Y.J.; Liu, T.X.; Huang, L.H.; Deng, X.L.; Zhao, Q.Z.; Zhao, M.M. Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical-chemical treatments. Food Hydrocoll. 2019, 93, 167–175. [Google Scholar] [CrossRef]
- Bernat, N.; Chafer, M.; Rodriguez-Garcia, J.; Chiralt, A.; Gonzalez-Martinez, C. Effect of high pressure homogenisation and heat treatment on physical properties and stability of almond and hazelnut milks. LWT Food Sci. Technol. 2015, 62, 488–496. [Google Scholar] [CrossRef]
- Liu, C.M.; Liang, R.H.; Dai, T.T.; Ye, J.P.; Zeng, Z.C.; Luo, S.J.; Chen, J. Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch. Food Hydrocoll. 2016, 57, 55–61. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, M.M.; Sun, W.Z.; Zhao, G.L.; Ren, J.Y. Effects of microfluidization treatment and transglutaminase cross-linking on physicochemical, functional, and conformational properties of peanut protein isolate. J. Agric. Food Chem. 2011, 59, 8886–8894. [Google Scholar] [CrossRef]
- Kivela, R.; Pitkanen, L.; Laine, P.; Aseyev, V.; Sontag-Strohm, T. Influence of homogenisation on the solution properties of oat β-glucan. Food Hydrocoll. 2010, 24, 611–618. [Google Scholar] [CrossRef]
- Wang, T.; He, F.L.; Chen, G.B. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J. Funct. Foods 2014, 7, 101–111. [Google Scholar] [CrossRef]
- Ti, H.H.; Zhang, R.F.; Li, Q.; Wei, Z.C.; Zhang, M.W. Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity. Food Res. Int. 2015, 76, 813–820. [Google Scholar] [CrossRef]
- He, X.H.; Chen, J.; He, X.M.; Feng, Z.; Li, C.; Liu, W.; Dai, T.T.; Liu, C.M. Industry-scale microfluidization as a potential technique to improve solubility and modify structure of pea protein. Innov. Food Sci. Emerg. 2021, 67, 102582. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.; Chen, J.; Dai, T.; Ma, F.; Deng, L.; Ke, Y.; Wang, Y.; Guo, L.; Wang, C.; Zhan, C.; et al. High-Energy Fluidic Microfluidizer Produced Whole Germinant Oat Milk: Effects on Physical Properties and Nutritional Quality. Foods 2024, 13, 3708. https://doi.org/10.3390/foods13223708
Wei Q, Chen J, Dai T, Ma F, Deng L, Ke Y, Wang Y, Guo L, Wang C, Zhan C, et al. High-Energy Fluidic Microfluidizer Produced Whole Germinant Oat Milk: Effects on Physical Properties and Nutritional Quality. Foods. 2024; 13(22):3708. https://doi.org/10.3390/foods13223708
Chicago/Turabian StyleWei, Qimin, Jun Chen, Taotao Dai, Feiyue Ma, Lizhen Deng, Yingying Ke, Yihui Wang, Laichun Guo, Chunlong Wang, Chao Zhan, and et al. 2024. "High-Energy Fluidic Microfluidizer Produced Whole Germinant Oat Milk: Effects on Physical Properties and Nutritional Quality" Foods 13, no. 22: 3708. https://doi.org/10.3390/foods13223708
APA StyleWei, Q., Chen, J., Dai, T., Ma, F., Deng, L., Ke, Y., Wang, Y., Guo, L., Wang, C., Zhan, C., Ren, C., & Li, T. (2024). High-Energy Fluidic Microfluidizer Produced Whole Germinant Oat Milk: Effects on Physical Properties and Nutritional Quality. Foods, 13(22), 3708. https://doi.org/10.3390/foods13223708