Roles of Response Regulators in the Two-Component System in the Formation of Stress Tolerance, Motility and Biofilm in Salmonella Enteritidis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. High Temperature and Osmotically Stressed Assays
2.3. Acid and Alkaline Stress Assays
2.4. Oxidative Stress Assay
2.5. Motility Assay
2.6. Determination of Biofilm Formation Ability
2.7. Microscopic Examination
2.8. Congo Red and Coomassie Brilliant Blue Binding Assays
2.9. Statistical Analysis
3. Results
3.1. Role of RRs in TCS in High Temperatures and Osmotic Tolerance of S. Enteritidis
3.2. Role of RRs in TCS in Acid and Alkali Tolerance of S. Enteritidis
3.3. Roles of RRs in TCS in Oxidative Tolerance of S. Enteritidis
3.4. Roles of RRs in TCS in Motility of S. Enteritidis
3.5. Roles of RRs in TCS in Biofilm Formation of S. Enteritidis
3.6. Role of RRs in TCS in Macrocolony Biofilm Properties of S. Enteritidis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar]
- Sandra, H.; Brecht, D.; Willy, A.; Roger, C.; Tim, C.; Arie, H.; Frederick, A.; Herman, G.; Martyn, K.; Robin, L. Attribution of global foodborne disease to specific foods: Findings from a World Health Organization structured expert elicitation. PLoS ONE 2017, 12, e0183641. [Google Scholar]
- Yu, L.; Fan, J.; Lu, S.; Zhou, J.; Hu, H.; Mao, C.; Hua, X.; Jiang, Y.; Fu, Y.; Yu, Y.; et al. Prevalence, antimicrobial resistance, and genomic characterization of Salmonella strains isolated in Hangzhou, China: A two-year study. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 86. [Google Scholar] [CrossRef] [PubMed]
- Galán-Relaño, Á.; Valero Díaz, A.; Huerta Lorenzo, B.; Gómez-Gascón, L.; Mena Rodríguez, M.Á.; Carrasco Jiménez, E.; Pérez Rodríguez, F.; Astorga Márquez, R.J. Salmonella and salmonellosis: An update on public health implications and control strategies. Animals 2023, 13, 3666. [Google Scholar] [CrossRef]
- Giacometti, F.; Shirzad-Aski, H.; Ferreira, S. Antimicrobials and food-related stresses as selective factors for antibiotic resistance along the farm to fork continuum. Antibiotics 2021, 10, 671. [Google Scholar] [CrossRef]
- He, S.; Cui, Y.; Qin, X.; Zhang, F.; Shi, C.; Paoli, G.C.; Shi, X. Influence of ethanol adaptation on Salmonella enterica serovar Enteritidis survival in acidic environments and expression of acid tolerance-related genes. Food Microbiol. 2018, 72, 193–198. [Google Scholar] [CrossRef]
- Li, D.; He, S.; Dong, R.; Cui, Y.; Shi, X. Stress response mechanisms of Salmonella Enteritidis to sodium hypochlorite at the proteomic level. Foods 2022, 11, 2912. [Google Scholar] [CrossRef]
- Yang, Y.; Kadim, M.I.; Khoo, W.J.; Zheng, Q.; Setyawati, M.I.; Shin, Y.J.; Lee, S.C.; Yuk, H.G. Membrane lipid composition and stress/virulence related gene expression of Salmonella Enteritidis cells adapted to lactic acid and trisodium phosphate and their resistance to lethal heat and acid stress. Int. J. Food Microbiol. 2014, 191, 24–31. [Google Scholar] [CrossRef]
- Guillén, S.; Nadal, L.; Álvarez, I.; Mañas, P.; Cebrián, G. Impact of the resistance responses to stress conditions encountered in food and food processing environments on the virulence and growth fitness of non-typhoidal Salmonellae. Foods 2021, 10, 617. [Google Scholar] [CrossRef]
- Iliadis, I.; Daskalopoulou, A.; Simões, M.; Giaouris, E. Integrated combined effects of temperature, pH and sodium chloride concentration on biofilm formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions. Food Res. Int. 2018, 107, 10–18. [Google Scholar] [CrossRef]
- Alvarez, A.F.; Georgellis, D. Environmental adaptation and diversification of bacterial two-component systems. Curr. Opin. Microbiol. 2023, 76, 102399. [Google Scholar] [CrossRef] [PubMed]
- Zschiedrich, C.P.; Keidel, V.; Szurmant, H. Molecular mechanisms of two-component signal transduction. J. Mol. Biol. 2016, 428, 3752–3775. [Google Scholar] [CrossRef] [PubMed]
- Wahlgren, W.Y.; Claesson, E.; Tuure, I.; Trillo-Muyo, S.; Bódizs, S.; Ihalainen, J.A.; Takala, H.; Westenhoff, S. Structural mechanism of signal transduction in a phytochrome histidine kinase. Nat. Commun. 2022, 13, 7673. [Google Scholar] [CrossRef] [PubMed]
- Bhagirath, A.Y.; Li, Y.; Patidar, R.; Yerex, K.; Ma, X.; Kumar, A.; Duan, K. Two component regulatory systems and antibiotic resistance in gram-negative pathogens. Int. J. Mol. Sci. 2019, 20, 1781. [Google Scholar] [CrossRef] [PubMed]
- de Pina, L.C.; da Silva, F.S.H.; Galvão, T.C.; Pauer, H.; Ferreira, R.B.R.; Antunes, L.C.M. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit. Rev. Microbiol. 2021, 47, 397–434. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.N.; Anderson, M.T.; Bachman, M.A.; Mobley, H.L.T. The ArcAB two-component system: Function in metabolism, redox control, and infection. Microbiol. Mol. Biol. Rev. 2022, 86, e0011021. [Google Scholar] [CrossRef]
- Badal, D.; Jayarani, A.V.; Kollaran, M.A.; Kumar, A.; Singh, V. Pseudomonas aeruginosa biofilm formation on endotracheal tubes requires multiple two-component systems. J. Med. Microbiol. 2020, 69, 906–919. [Google Scholar] [CrossRef]
- Rodríguez-Santiago, J.; Cornejo-Juárez, P.; Silva-Sánchez, J.; Garza-Ramos, U. Polymyxin resistance in Enterobacterales: Overview and epidemiology in the Americas. Int. J. Antimicrob. Agents 2021, 58, 106426. [Google Scholar] [CrossRef]
- Ballén, V.; Cepas, V.; Ratia, C.; Gabasa, Y.; Soto, S.M. Clinical Escherichia coli: From biofilm formation to new antibiofilm strategies. Microorganisms 2022, 10, 1103. [Google Scholar] [CrossRef]
- Flores-Valdez, M.A.; Fernández-Mora, M.; Ares, M.Á.; Girón, J.A.; Calva, E.; De la Cruz, M.Á. OmpR phosphorylation regulates ompS1 expression by differentially controlling the use of promoters. Microbiology 2014, 160, 733–741. [Google Scholar] [CrossRef]
- Chen, L.; Liu, X.; Gao, C.; Guan, Y.; Lin, J.; Liu, X.; Pang, X. The essential role of OmpR in Acidithiobacillus caldus adapting to the high osmolarity and its regulation on the tetrathionate-metabolic pathway. Microorganisms 2022, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Huang, X.; Xu, X.; Zhang, Z.; He, S.; Zhu, J.; Liu, H.; Shi, X. Characterization of the role of two-component systems in antibiotic resistance formation in Salmonella enterica serovar Enteritidis. mSphere 2022, 7, e0038322. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Qin, X.J.; He, S.K.; Zhou, X.J.; Cui, Y.; Shi, C.L.; He, Y.P.; Shi, X.M. DsrA confers resistance to oxidative stress in Salmonella enterica serovar Typhimurium. Food Control 2021, 121, 0956–7135. [Google Scholar] [CrossRef]
- Gómez-Baltazar, A.; Vázquez-Garcidueñas, M.S.; Larsen, J.; Kuk-Soberanis, M.E.; Vázquez-Marrufo, G. Comparative stress response to food preservation conditions of ST19 and ST213 genotypes of Salmonella enterica serotype Typhimurium. Food Microbiol. 2019, 82, 303–315. [Google Scholar] [CrossRef]
- Chen, K.; Zhan, Z.; Li, L.; Li, J.; Zhou, Z.; Wang, N.; Sun, D.; Xu, C.; Chen, P.; Qu, X.; et al. BolA affects the biofilm formation ability, outer membrane permeability and virulence, thus is required for the adaptability of Salmonella enterica serotype Typhimurium to the harsh survival environment. Microbiol. Res. 2023, 274, 127423. [Google Scholar] [CrossRef]
- Schlisselberg, D.B.; Kler, E.; Kisluk, G.; Shachar, D.; Yaron, S. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants. Int. J. Antimicrob. Agents 2015, 46, 456–459. [Google Scholar] [CrossRef]
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 504–521. [Google Scholar] [CrossRef]
- Palonen, E.; Lindström, M.; Karttunen, R.; Somervuo, P.; Korkeala, H. Expression of signal transduction system encoding genes of Yersinia pseudotuberculosis IP32953 at 28°C and 3°C. PLoS ONE 2011, 6, e25063. [Google Scholar] [CrossRef]
- Diomandé, S.E.; Doublet, B.; Vasaï, F.; Guinebretière, M.H.; Broussolle, V.; Brillard, J. Expression of the genes encoding the CasK/R two-component system and the DesA desaturase during Bacillus cereus cold adaptation. FEMS Microbiol. Lett. 2016, 363, fnw174. [Google Scholar] [CrossRef]
- Dahlsten, E.; Zhang, Z.; Somervuo, P.; Minton, N.P.; Lindström, M.; Korkeala, H. The cold-induced two-component system CBO0366/CBO0365 regulates metabolic pathways with novel roles in group I Clostridium botulinum ATCC 3502 cold tolerance. Appl. Environ. Microbiol. 2014, 80, 306–319. [Google Scholar] [CrossRef]
- Chakraborty, S.; Li, M.; Chatterjee, C.; Sivaraman, J.; Leung, K.Y.; Mok, Y.K. Temperature and Mg2+ sensing by a novel PhoP-PhoQ two-component system for regulation of virulence in Edwardsiella tarda. J. Biol. Chem. 2010, 285, 38876–38888. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Feng, X.Q.; Vollmer, W.; Stoodley, P.; Chen, J. Deciphering the adaption of bacterial cell wall mechanical integrity and turgor to different chemical or mechanical environments. J. Colloid Interface Sci. 2023, 640, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.S.; Chen, H.W.; Zhang, R.Y.; Huang, C.Y.; Shen, C.F. The expression levels of outer membrane proteins STM1530 and OmpD, which are influenced by the CpxAR and BaeSR two-component systems, play important roles in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother. 2011, 55, 3829–3837. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Jin, F.; Glatter, T.; Sourjik, V. Osmosensing by the bacterial PhoQ/PhoP two-component system. Proc. Natl. Acad. Sci. USA 2017, 114, E10792–E10798. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, Y.; Huang, X.; He, M.; Zhu, J.; Zhang, Z.; Cui, Y.; He, S.; Shi, X. PhoPQ Regulates quinolone and cephalosporin resistance formation in Salmonella Enteritidis at the transcriptional level. mBio 2023, 14, e0339522. [Google Scholar] [CrossRef]
- Gao, X.; Han, J.; Zhu, L.; Nychas, G.E.; Mao, Y.; Yang, X.; Liu, Y.; Jiang, X.; Zhang, Y.; Dong, P. The effect of the PhoP/PhoQ system on the regulation of multi-stress adaptation induced by acid stress in Salmonella Typhimurium. Foods 2024, 13, 1533. [Google Scholar] [CrossRef]
- Kunkle, D.E.; Bina, X.R.; Bina, J.E. Vibrio cholerae OmpR contributes to virulence repression and fitness at alkaline pH. Infect. Immun. 2020, 88, e00141-20. [Google Scholar] [CrossRef]
- Pardo-Esté, C.; Castro-Severyn, J.; Krüger, G.I.; Cabezas, C.E.; Briones, A.C.; Aguirre, C.; Morales, N.; Baquedano, M.S.; Sulbaran, Y.N.; Hidalgo, A.A.; et al. The transcription factor ArcA modulates Salmonella’s metabolism in response to neutrophil hypochlorous acid-mediated stress. Front. Microbiol. 2019, 10, 2754. [Google Scholar] [CrossRef]
- Morales, E.H.; Calderón, I.L.; Collao, B.; Gil, F.; Porwollik, S.; McClelland, M.; Saavedra, C.P. Hypochlorous acid and hydrogen peroxide-induced negative regulation of Salmonella enterica serovar Typhimurium ompW by the response regulator ArcA. BMC Microbiol. 2012, 12, 63. [Google Scholar] [CrossRef]
- Goulart, C.L.; Barbosa, L.C.; Bisch, P.M.; von Krüger, W.M.A. Catalases and PhoB/PhoR system independently contribute to oxidative stress resistance in Vibrio cholerae O1. Microbiology 2016, 162, 1955–1962. [Google Scholar] [CrossRef]
- Liu, X.; Xu, D.; Wu, D.; Xu, M.; Wang, Y.; Wang, W.; Ran, T. BarA/UvrY differentially regulates prodigiosin biosynthesis and swarming motility in Serratia marcescens FS14. Res. Microbiol. 2023, 174, 104010. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, P.; Collao, B.; Álvarez, R.; Salinas, H.; Morales, E.H.; Calderón, I.L.; Saavedra, C.P.; Gil, F. Salmonella enterica serovar Typhimurium BaeSR two-component system positively regulates sodA in response to ciprofloxacin. Microbiology 2013, 159, 2049–2057. [Google Scholar] [CrossRef] [PubMed]
- Urano, H.; Umezawa, Y.; Yamamoto, K.; Ishihama, A.; Ogasawara, H. Cooperative regulation of the common target genes between H₂O₂-sensing YedVW and Cu²⁺-sensing CusSR in Escherichia coli. Microbiology 2015, 161, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hu, P.; Gao, L.; Yuan, X.; Hardwidge, P.R.; Li, T.; Li, P.; He, F.; Peng, Y.; Li, N. Deleting qseC downregulates virulence and promotes cross-protection in Pasteurella multocida. Vet. Res. 2021, 52, 140. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, M.; Qiao, P.; Li, Z.; Chen, G.; Guan, W.; Bai, Q.; Walcott, R.; Yang, Y.; Zhao, T. NtrC contributes to nitrogen utilization, stress tolerance, and virulence in Acidovorax citrulli. Microorganisms 2023, 11, 767. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, J.; Xia, T.; Liu, Y.; Fu, J.; Lo, Y.K.; Chang, C.; Yan, A.; Liu, X. Proteomic delineation of the ArcA regulon in Salmonella Typhimurium during anaerobiosis. Mol. Cell. Proteom. 2018, 17, 1937–1947. [Google Scholar] [CrossRef]
- Yan, J.; Li, Y.; Guo, X.; Wang, X.; Liu, F.; Li, A.; Cao, B. The effect of ArcA on the growth, motility, biofilm formation, and virulence of Plesiomonas shigelloides. BMC Microbiol. 2021, 21, 266. [Google Scholar] [CrossRef]
- Chen, J.; Mu, C.; Ye, T.; Sun, Y.; Luo, Q.; Wang, X. The UhpA mutant of Edwardsiella piscicida enhanced its motility and the colonization in the intestine of tilapia. Fish Shellfish Immunol. 2020, 104, 587–591. [Google Scholar] [CrossRef]
- Nieckarz, M.; Jaworska, K.; Raczkowska, A.; Brzostek, K. The regulatory circuit underlying downregulation of a type III secretion system in Yersinia enterocolitica by transcription factor OmpR. Int. J. Mol. Sci. 2022, 23, 4758. [Google Scholar] [CrossRef]
- Brannon, J.R.; Reasoner, S.A.; Bermudez, T.A.; Comer, S.L.; Wiebe, M.A.; Dunigan, T.L.; Beebout, C.J.; Ross, T.; Bamidele, A.; Hadjifrangiskou, M. Mapping niche-specific two-component system requirements in uropathogenic Escherichia coli. Microbiol. Spectr. 2024, 12, e0223623. [Google Scholar] [CrossRef]
- Pratt, J.T.; McDonough, E.; Camilli, A. PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae. J. Bacteriol. 2009, 191, 6632–6642. [Google Scholar] [CrossRef] [PubMed]
- Blus-Kadosh, I.; Zilka, A.; Yerushalmi, G.; Banin, E. The effect of pstS and phoB on quorum sensing and swarming motility in Pseudomonas aeruginosa. PLoS ONE 2013, 8, e74444. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Palaniyandi, S.; Herren, C.D.; Zhu, X.; Mukhopadhyay, S. Pleiotropic roles of uvrY on biofilm formation, motility and virulence in uropathogenic Escherichia coli CFT073. PLoS ONE 2013, 8, e55492. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Wu, J.; Gu, Y.; Li, Q.; Shao, Y.; Feng, H.; Song, X.; Tu, J.; Qi, K. The response regulator OmpR contributes to the pathogenicity of avian pathogenic Escherichia coli. Poult. Sci. 2022, 101, 101757. [Google Scholar] [CrossRef]
- Desai, S.K.; Winardhi, R.S.; Periasamy, S.; Dykas, M.M.; Jie, Y.; Kenney, L.J. The horizontally-acquired response regulator SsrB drives a Salmonella lifestyle switch by relieving biofilm silencing. Elife 2016, 5, e10747. [Google Scholar] [CrossRef]
- Tsai, M.H.; Liang, Y.H.; Chen, C.L.; Chiu, C.H. Characterization of Salmonella resistance to bile during biofilm formation. J. Microbiol. Immunol. Infect. 2020, 53, 518–524. [Google Scholar] [CrossRef]
- Xi, D.; Yang, S.; Liu, Q.; Li, Y.; Li, Y.; Yan, J.; Wang, X.; Ning, K.; Cao, B. The response regulator ArcA enhances biofilm formation in the vpsT manner under the anaerobic condition in Vibrio cholerae. Microb. Pathog. 2020, 144, 104197. [Google Scholar] [CrossRef]
- Cheng, A.T.; Zamorano-Sánchez, D.; Teschler, J.K.; Wu, D.; Yildiz, F.H. NtrC adds a new node to the complex regulatory network of biofilm formation and vps expression in Vibrio cholerae. J. Bacteriol. 2018, 200, e00025-18. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Zhou, Z.; Liu, C.; Zhan, Z.; Cui, Y.; He, S.; Shi, X. Roles of Response Regulators in the Two-Component System in the Formation of Stress Tolerance, Motility and Biofilm in Salmonella Enteritidis. Foods 2024, 13, 3709. https://doi.org/10.3390/foods13223709
Hu M, Zhou Z, Liu C, Zhan Z, Cui Y, He S, Shi X. Roles of Response Regulators in the Two-Component System in the Formation of Stress Tolerance, Motility and Biofilm in Salmonella Enteritidis. Foods. 2024; 13(22):3709. https://doi.org/10.3390/foods13223709
Chicago/Turabian StyleHu, Mengjun, Zhuoan Zhou, Chenqi Liu, Zeqiang Zhan, Yan Cui, Shoukui He, and Xianming Shi. 2024. "Roles of Response Regulators in the Two-Component System in the Formation of Stress Tolerance, Motility and Biofilm in Salmonella Enteritidis" Foods 13, no. 22: 3709. https://doi.org/10.3390/foods13223709
APA StyleHu, M., Zhou, Z., Liu, C., Zhan, Z., Cui, Y., He, S., & Shi, X. (2024). Roles of Response Regulators in the Two-Component System in the Formation of Stress Tolerance, Motility and Biofilm in Salmonella Enteritidis. Foods, 13(22), 3709. https://doi.org/10.3390/foods13223709