Advances in Grape Seed Oil Extraction Techniques and Their Applications in Food Products: A Comprehensive Review and Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bibliometric Approach
3.2. Narrative Review
3.2.1. Byproduct of Winemaking
3.2.2. Process of Drying and Grinding of Grape Seeds
3.2.3. Grape Seed Oil Extraction Process
3.2.4. Yield and Composition of Grape Seed Oil
3.2.5. Antioxidant, Antimicrobial, Sensory, and Physicochemical Properties
3.2.6. Innovation of Its Application in the Food Industry
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OIV International Organization of Vine and Wine. Available online: https://www.oiv.int/what-we-do/global-report?oiv (accessed on 21 March 2024).
- Aleixandre, J.L.; Aleixandre-Tudó, J.L.; Bolaños-Pizarro, M.; Aleixandre-Benavent, R. Viticulture and Oenology Scientific Research: The Old World versus the New World Wine-Producing Countries. Int. J. Inf. Manag. 2016, 36, 389–396. [Google Scholar] [CrossRef]
- Korz, S.; Sadzik, S.; More, C.; Buchmann, C.; Richling, E.; Munoz, K. Effect of Grape Pomace Varieties and Soil Characteristics on the Leaching Potential of Total Carbon, Nitrogen and Polyphenols. Soil Syst. 2023, 7, 49. [Google Scholar] [CrossRef]
- Chowdhary, P.; Gupta, A.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Current Trends and Possibilities for Exploitation of Grape Pomace as a Potential Source for Value Addition. Environ. Pollut. 2021, 278, 116796. [Google Scholar] [CrossRef] [PubMed]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel Application and Industrial Exploitation of Winery By-Products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of Polyphenol-Rich Grape by-Products in Monogastric Nutrition. A Review. Anim. Feed. Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef]
- Hidalgo, J.T. Tratado de Enología—Tomo I, 3rd ed.; Hernández Úbeda, I., Ed.; Mundi-Prensa: Madrid, Spain, 2018; pp. 1–924. ISBN 978-9942-8787-1-7. [Google Scholar]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology, 3rd ed.; Wiley: Paris, France, 2021; pp. 1–1183. ISBN 9781119584681. [Google Scholar]
- Da Mata, I.R.; Dal Bosco, S.M.; Garavaglia, J. Different Biological Activities (Antimicrobial, Antitumoral, and Antioxidant Activities) of Grape Seed Oil; INC, Academic Press: Porto Alegre, Brazil, 2022; pp. 215–227. ISBN 9780128241356. [Google Scholar]
- Martin, M.E.; Grao-Cruces, E.; Millan-Linares, M.C.; Montserrat-De la Paz, S. Grape (Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods 2020, 9, 1360. [Google Scholar] [CrossRef]
- Gitea, M.A.; Bungau, S.G.; Gitea, D.; Pasca, B.M.; Purza, A.L.; Radu, A.F. Evaluation of the Phytochemistry–Therapeutic Activity Relationship for Grape Seeds Oil. Life 2023, 13, 178. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Di Stefano, V.; Di Lena, G.; Lombardi-Boccia, G.; Santini, A. Bioactive Phytochemicals from Grape Seed Oil Processing By-Products. In Reference Series in Phytochemistry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 289–308. [Google Scholar] [CrossRef]
- Sevindik, O.; Kelebek, H.; Rombolà, A.D.; Selli, S. Grape Seed Oil Volatiles and Odour Activity Values: A Comparison with Turkish and Italian Cultivars and Extraction Methods. J. Food Sci. Technol. 2022, 59, 1968–1981. [Google Scholar] [CrossRef]
- Shinagawa, F.B.; de Santana, F.C.; Araujo, E.; Purgatto, E.; Mancini-Filho, J. Chemical Composition of Cold Pressed Brazilian Grape Seed Oil. Food Sci. Technol. 2018, 38, 164–171. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Nerantzis, E.T.; Tataridis, P. Integrated Enology- Utilization of Winery by-Products into High Added Value Products. J. Sci. Technol. 2006, 1, 79–89. [Google Scholar]
- Jin, B.; Kelly, J.M. Wine Industry Residues. In Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; Springer: Países Bajos, The Netherlands, 2009; Volume 1, pp. 1–466. ISBN 9781402099410. [Google Scholar]
- Fiori, L.; Lavelli, V.; Duba, K.S.; Sri Harsha, P.S.C.; Mohamed, H.B.; Guella, G. Supercritical CO2 Extraction of Oil from Seeds of Six Grape Cultivars: Modeling of Mass Transfer Kinetics and Evaluation of Lipid Profiles and Tocol Contents. J. Supercrit. Fluids 2014, 94, 71–80. [Google Scholar] [CrossRef]
- Duba, K.S.; Fiori, L. Supercritical CO2 Extraction of Grape Seed Oil: Effect of Process Parameters on the Extraction Kinetics. J. Supercrit. Fluids 2015, 98, 33–43. [Google Scholar] [CrossRef]
- Fernández, C.M.; Ramos, M.J.; Pérez, Á.; Rodríguez, J.F. Production of Biodiesel from Winery Waste: Extraction, Refining and Transesterification of Grape Seed Oil. Bioresour. Technol. 2010, 101, 7019–7024. [Google Scholar] [CrossRef]
- de Campos, L.M.A.S.; Leimann, F.V.; Pedrosa, R.C.; Ferreira, S.R.S. Free Radical Scavenging of Grape Pomace Extracts from Cabernet Sauvingnon (Vitis vinifera). Bioresour. Technol. 2008, 99, 8413–8420. [Google Scholar] [CrossRef]
- Burg, P.; Masán, V.; Rutkowski, K.; Burgová, J.; Lampíř, L.; Višacki, V. Seed Oil Content and Selected Qualitative Parameters of Oils from Grape Seeds. Potravin. Slovak. J. Food Sci. 2017, 11, 629–633. [Google Scholar] [CrossRef]
- De Souza, R.d.C.; Souza Machado, B.A.; Barreto, G.d.A.; Lessa Leal, I.; Jeancarlo, P.; Anjos, J.P.D.; Umsza-Guez, M.A. Effect of Experimental Parameters on the Extraction of Grape Seed Oil Obtained by Low Pressure and Supercritical Fluid Extraction. Molecules 2020, 25, 1634. [Google Scholar] [CrossRef]
- Li, H.; Fu, X.; Deng, G.; David, A.; Huang, L. Extraction of Oil from Grape Seeds (Vitis vinifera L.) Using Recyclable CO2-Expanded Ethanol. Chem. Eng. Process.—Process Intensif. 2020, 157, 108147. [Google Scholar] [CrossRef]
- Harbeoui, H.; Bettaieb Rebey, I.; Ouerghemmi, I.; Aidi Wannes, W.; Zemni, H.; Zoghlami, N.; Khan, N.A.; Ksouri, R.; Tounsi, M.S. Biochemical Characterization and Antioxidant Activity of Grape (Vitis vinifera L.) Seed Oils from Nine Tunisian Varieties. J. Food Biochem. 2018, 42, e12595. [Google Scholar] [CrossRef]
- Mohamed, H.B.; Duba, K.S.; Fiori, L.; Abdelgawed, H.; Tlili, I.; Tounekti, T.; Zrig, A. Bioactive Compounds and Antioxidant Activities of Different Grape (Vitis vinifera L.) Seed Oils Extracted by Supercritical CO2 and Organic Solvent. LWT 2016, 74, 557–562. [Google Scholar] [CrossRef]
- Di Stefano, V.; Bongiorno, D.; Buzzanca, C.; Indelicato, S.; Santini, A.; Lucarini, M.; Fabbrizio, A.; Mauro, M.; Vazzana, M.; Arizza, V.; et al. Fatty Acids and Triacylglycerols Profiles from Sicilian (Cold Pressed vs. Soxhlet) Grape Seed Oils. Sustainability 2021, 13, 13038. [Google Scholar] [CrossRef]
- Ćurko, N.; Lukić, K.; Tušek, A.J.; Balbino, S.; Vukušić Pavičić, T.; Tomašević, M.; Redovniković, I.R.; Ganić, K.K. Effect of Cold Pressing and Supercritical CO2 Extraction Assisted with Pulsed Electric Fields Pretreatment on Grape Seed Oil Yield, Composition and Antioxidant Characteristics. LWT—Food Sci. Technol. 2023, 184, 114974. [Google Scholar] [CrossRef]
- Bjelica, M.; Vujasinović, V.; Rabrenović, B.; Dimić, S. Some Chemical Characteristics and Oxidative Stability of Cold Pressed Grape Seed Oils Obtained from Different Winery Waste. Eur. J. Lipid Sci. Technol. 2019, 121, 1800416. [Google Scholar] [CrossRef]
- Kapcsándi, V.; Hanczné Lakatos, E.; Sik, B.; Linka, L.Á.; Székelyhidi, R. Characterization of Fatty Acid, Antioxidant, and Polyphenol Content of Grape Seed Oil from Different Vitis vinifera L. Varieties. OCL 2021, 28, 30. [Google Scholar] [CrossRef]
- Da Porto, C.; Porretto, E.; Decorti, D. Comparison of Ultrasound-Assisted Extraction with Conventional Extraction Methods of Oil and Polyphenols from Grape (Vitis vinifera L.) Seeds. Ultrason. Sonochem 2013, 20, 1076–1080. [Google Scholar] [CrossRef]
- Jokić, S.; Bijuk, M.; Aladić, K.; Bilić, M.; Molnar, M. Optimisation of Supercritical CO2 Extraction of Grape Seed Oil Using Response Surface Methodology. Int. J. Food Sci. Technol. 2016, 51, 403–410. [Google Scholar] [CrossRef]
- Milanović, J.; Malićanin, M.; Rakić, V.; Jevremović, N.; Karabegović, I.; Danilović, B. Valorization of Winery Waste: Prokupac Grape Seed as a Source of Nutritionally Valuable Oil. Agronomy 2021, 11, 1864. [Google Scholar] [CrossRef]
- de Menezes, M.L.; Johann, G.; Diório, A.; Curvelo Pereira, N.; da Silva, E.A. Phenomenological Determination of Mass Transfer Parameters of Oil Extraction from Grape Biomass Waste. J. Clean. Prod. 2018, 176, 130–139. [Google Scholar] [CrossRef]
- Bouriga, N.; Rjiba Bahri, W.; Mili, S.; Massoudi, S.; Quignard, J.P.; Trabelsi, M. Variations in Nutritional Quality and Fatty Acids Composition of Sardine (Sardina Pilchardus) during Canning Process in Grape Seed and Olive Oils. J. Food Sci. Technol. 2022, 59, 4844–4852. [Google Scholar] [CrossRef]
- Lachman, J.; Hejtmánková, A.; Táborský, J.; Kotíková, Z.; Pivec, V.; Střalková, R.; Vollmannová, A.; Bojňanská, T.; Dědina, M. Evaluation of Oil Content and Fatty Acid Composition in the Seed of Grapevine Varieties. LWT—Food Sci. Technol. 2015, 63, 620–625. [Google Scholar] [CrossRef]
- Sun, L.; Wang, H.; Wei, J.; Xue, Y.; Lan, S.; Li, X.; Yu, D.; Wang, J. Extracting Oil from Grape Seed Using a Combined Wet Enzymatic Process and Pressing. Innov. Food Sci. Emerg. Technol. 2022, 77, 102941. [Google Scholar] [CrossRef]
- Navas, P.B. Composición Química Del Aceite Virgen Obtenido Por Extracción Mecánica de Algunas Variedades de Uva (Vitis vinifera L.) Con Énfasis En Los Componentes Minoritarios. Arch. Latinoam. Nutr. 2009, 59, 214–219. [Google Scholar] [PubMed]
- Rombaut, N.; Savoire, R.; Thomasset, B.; Castello, J.; Van Hecke, E.; Lanoisellé, J.L. Optimization of Oil Yield and Oil Total Phenolic Content during Grape Seed Cold Screw Pressing. Ind. Crops Prod. 2015, 63, 26–33. [Google Scholar] [CrossRef]
- Vujasinović, V.B.; Bjelica, M.M.; Čorbo, S.C.; Dimić, S.B.; Rabrenović, B.B. Characterization of the Chemical and Nutritive Quality of Coldpressed Grape Seed Oils Produced in the Republic of Serbia from Different Red and White Grape Varieties. Grasas Y Aceites 2021, 72, e411. [Google Scholar] [CrossRef]
- Demirtas, I.; Pelvan, E.; Ozdemir, I.S.; Alasalvar, C.; Ertas, E. Lipid Characteristics and Phenolics of Native Grape Seed Oils Grown in Turkey. Eur. J. Lipid Sci. Technol. 2013, 115, 641–647. [Google Scholar] [CrossRef]
- Dalposso, P.V.; de Aguiar, C.M.; Torquato, A.S.; Tiuman, T.S.; Martin, C.A.; Zara, R.F.; Cottica, S.M. Optimization of Antioxidant Extraction and Characterization of Oil Obtained by Pressing Cold from Vitis labrusca Seeds. Food Sci. Technol. 2022, 42, e47420. [Google Scholar] [CrossRef]
- Zhao, B.; Gong, H.; Li, H.; Zhang, Y.; Lan, T.; Chen, Z. Characterization of Chinese Grape Seed Oil by Physicochemical Properties, Fatty Acid Composition, Triacylglycrol Profiles, and Sterols and Squalene Composition. Int. J. Food Eng. 2019, 15, 20190031. [Google Scholar] [CrossRef]
- dos Santos Freitas, L.; Jacques, R.A.; Richter, M.F.; da Silva, A.L.; Caramão, E.B. Pressurized Liquid Extraction of Vitamin E from Brazilian Grape Seed Oil. J. Chromatogr. A 2008, 1200, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Argon, Z.U.; Celenk, V.U.; Gumus, Z.P. Cold Pressed Grape (Vitis vinifera) Seed Oil. In Cold Pressed Oils: Green Technology, Bioactive Compounds, Functionality, and Applications; Fawzy, R.M., Ed.; Academic Press, Elsevier Inc.: Konya, Turkey, 2020; pp. 39–52. ISBN 9780128181881. [Google Scholar]
- Karaman, S.; Karasu, S.; Tornuk, F.; Toker, O.S.; Geçgel, Ü.; Sagdic, O.; Ozcan, N.; Gül, O. Recovery Potential of Cold Press Byproducts Obtained from the Edible Oil Industry: Physicochemical, Bioactive, and Antimicrobial Properties. J. Agric. Food Chem. 2015, 63, 2305–2313. [Google Scholar] [CrossRef]
- Lampi, A.M.; Heinonen, M. Berry Seed and Grapeseed Oils. Gourmet and Health-Promoting Specialty Oils; Moreau, R.A., Ed.; AOCS Press: Helsinki, Finland, 2009; pp. 215–235. [Google Scholar] [CrossRef]
- Stratakos, A.C.; Koidis, A. Methods for Extracting Essential Oils. In Essential Oils in Food Preservation, Flavor and Safety; Victor R. Preedy, Elsevier Inc.: London, UK, 2016; pp. 31–38. ISBN 9780124166417. [Google Scholar]
- de Menezes, M.L.; Johann, G.; Diório, A.; Schuelter Boeing, J.; Visentainer, J.V.; Raimundini Aranha, A.C.; Curvelo Pereira, N. Comparison of the Chemical Composition of Grape Seed Oil Extracted by Different Methods and Conditions. J. Chem. Technol. Biotechnol. 2023, 98, 1103–1113. [Google Scholar] [CrossRef]
- Surco-Laos, F.; Garcia, J.A.; Bendezú, M.R.; Alvarado, A.T.; Laos-Anchante, D.; Valle-Campos, M.; Panay-Centeno, J.F.; Palomino-Jhong, J.J.; Yarasca-Carlos, P.E.; Muñoz, A.M.; et al. Characterization of Polyunsaturated Fatty Acids and Antioxidant Activity of Vitis vinifera L. (Grape) Seeds from the Ica Valley, Peru. J. Pharm. Pharmacogn. Res. 2023, 11, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Sanagi, M.M.; See, H.H.; Ibrahim, W.A.W.; Naim, A.A. Determination of Carotene, Tocopherols and Tocotrienols in Residue Oil from Palm Pressed Fiber Using Pressurized Liquid Extraction-Normal Phase Liquid Chromatography. Anal. Chim. Acta 2005, 538, 71–76. [Google Scholar] [CrossRef]
- Casimir, C.A. Food Lipids: Chemistry, Nutrition, and Biotechnology, 4th ed.; Taylor & Francis Group, Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 1–1029. ISBN 9781498744850. [Google Scholar]
- Ameur, A.; Bensid, A.; Ozogul, F.; Ucar, Y.; Durmus, M.; Kulawik, P.; Boudjenah-Haroun, S. Application of Oil-in-Water Nanoemulsions Based on Grape and Cinnamon Essential Oils for Shelf-Life Extension of Chilled Flathead Mullet Fillets. J. Sci. Food Agric. 2022, 102, 105–112. [Google Scholar] [CrossRef]
- Bail, S.; Stuebiger, G.; Krist, S.; Unterweger, H.; Gerhard, B. Characterization of Various Grape Seed Oils by Volatile Compounds, Triacylglycerol Composition, Total Phenols and Antioxidant Capacity. Food Chem. 2008, 108, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Konuskan, D.B.; Kamiloglu, O.; Demirkeser, O. Fatty Acid Composition, Total Phenolic Content and Antioxidant Activity of Grape Seed Oils Obtained by Cold- Pressed and Solvent Extraction. Indian. J. Pharm. Educ. Res. 2019, 53, 144–150. [Google Scholar] [CrossRef]
- Carmona-Jiménez, Y.; Igartuburu, J.M.; Guillén-Sánchez, D.A.; García-Moreno, M.V. Fatty Acid and Tocopherol Composition of Pomace and Seed Oil from Five Grape Varieties Southern Spain. Molecules 2022, 27, 6980. [Google Scholar] [CrossRef]
- Poljšak, N.; Kočevar Glavač, N. Vegetable Butters and Oils as Therapeutically and Cosmetically Active Ingredients for Dermal Use: A Review of Clinical Studies. Front. Pharmacol. 2022, 13, 868461. [Google Scholar] [CrossRef]
- Yalcin, H.; Kavuncuoglu, H.; Ekici, L.; Sagdic, O. Determination of Fatty Acid Composition, Volatile Components, Physico-Chemical and Bioactive Properties of Grape (Vitis vinifera) Seed and Seed Oil. J. Food Process Preserv. 2017, 41, e12854. [Google Scholar] [CrossRef]
- Shaukat, U.A.; Anwar, F.; Tahir Akhtar, M.; Qadir, R.; Zahoor, S.; Saba, I.; Shabir, G.; Siddique, F.; Moongngarm, A. Variations in Physico-Chemical and Antioxidant Attributes of Grape Seed Oil as Function of Extraction Techniques. Sains Malays. 2022, 51, 2087–2096. [Google Scholar] [CrossRef]
- Bui, N.H.; Nguyen, B.V.; Nguyen, T.N.L.; Tran, T.T.T.; Mai, H.C. Physicochemical Properties of Seed Oil of the Cardinal Grape (Vitis vinifera L.) Originated in Vietnam. Food Res. 2022, 6, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Barriga-Sánchez, M.; Rosales-Hartshorn, M. Effects of Subcritical Water Extraction and Cultivar Geographical Location on the Phenolic Compounds and Antioxidant Capacity of Quebranta (Vitis vinifera) Grape Seeds from the Peruvian Pisco Industry by-Product. Food Sci. Technol. 2022, 42, e107321. [Google Scholar] [CrossRef]
- Gray, J.I. Measurement of Lipid Oxidation: A Review. J. Am. Oil Chem. Soc. 1978, 55, 539–546. [Google Scholar] [CrossRef]
- Barriga-Sánchez, M.; Campos Martinez, M.; Cáceres Yparraguirre, H.; Rosales-Hartshorn, M. Characterization of Black Borgoña (Vitis labrusca) and Quebranta (Vitis vinifera) Grapes Pomace, Seeds and Oil Extract. Food Sci. Technol. 2022, 42, e71822. [Google Scholar] [CrossRef]
- Böger, B.R.; Salviato, A.; Valezi, D.F.; Di Mauro, E.; Georgetti, S.R.; Kurozawa, L.E. Optimization of Ultrasound-Assisted Extraction of Grape-Seed Oil to Enhance Process Yield and Minimize Free Radical Formation. J. Sci. Food Agric. 2018, 98, 5019–5026. [Google Scholar] [CrossRef]
- Sabir, A.; Unver, A.; Kara, Z. The Fatty Acid and Tocopherol Constituents of the Seed Oil Extracted from 21 Grape Varieties (Vitis spp.). J. Sci. Food Agric. 2012, 92, 1982–1987. [Google Scholar] [CrossRef]
- Đorđevski, N.; Stojković, D.; Živković, J.; Pljevljakušić, D.; Ristanović, E.; Nikolić, B.; Ćirić, A. Tamjanika, a Balkan Native Variety of Vitis vinifera L.: Chemical Characterization, Antibacterial, and Anti-Dermatomycosis Potential of Seed Oil. Food Sci. Nutr. 2022, 10, 1312–1319. [Google Scholar] [CrossRef]
- Mollica, A.; Scioli, G.; Della Valle, A.; Cichelli, A.; Novellino, E.; Bauer, M.; Kamysz, W.; Llorent-Martínez, E.J.; De Córdova, M.L.F.; Castillo-López, R.; et al. Phenolic Analysis and in Vitro Biological Activity of Red Wine, Pomace and Grape Seeds Oil Derived from Vitis vinifera L. Cv. Montepulciano d’Abruzzo. Antioxidants 2021, 10, 1704. [Google Scholar] [CrossRef]
- Orsavova, J.; Misurcova, L.; Vavra Ambrozova, J.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef] [PubMed]
- Elhardallou, S.B.; Elawad, A.M.; Khairi, N.A.; Gobouri, A.A.; Dhahawi, H.O. A Review on Omega-3 and Omega-6 Essential Fatty Acids: Uses, Benefits and Their Availability in Pumpkins (Cucurbita maxima) Seed and Desert Dates (Balanites aegyptiaca) Seed Kernel Oils. Pak. J. Biol. Sci. 2014, 17, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Abedi, E.; Sahari, M.A. Long-Chain Polyunsaturated Fatty Acid Sources and Evaluation of Their Nutritional and Functional Properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.A.; Hodgson, J.M. Fatty Acids: Omega-6 Polyunsaturated. In Encyclopedia of Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2013; Volumes 1–4, pp. 232–238. [Google Scholar]
- Simopoulos, A.P. Human Requirement for N-3 Polyunsaturated Fatty Acids. Poult. Sci. 2000, 79, 961–970. [Google Scholar] [CrossRef]
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed—A Potential Functional Food Source. J. Food Sci. Technol. 2015, 52, 1857. [Google Scholar] [CrossRef]
- Russo, G.L. Dietary n − 6 and n − 3 Polyunsaturated Fatty Acids: From Biochemistry to Clinical Implications in Cardiovascular Prevention. Biochem. Pharmacol. 2009, 77, 937–946. [Google Scholar] [CrossRef]
- Teh, S.S.; Birch, J. Physicochemical and Quality Characteristics of Cold-Pressed Hemp, Flax and Canola Seed Oils. J. Food Compos. Anal. 2013, 30, 26–31. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Dietary Sources, Metabolism, and Significance—A Review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, B.; Bhadwal, P.; Sharma, P.; Agnihotri, N. Therapeutic Foods. In Therapeutic Foods; Jaclyn Truesdell, Elsevier: Chandigarh, India, 2018; Volume 8, pp. 51–98. ISBN 9780128115176. [Google Scholar]
- Pardo, J.E.; Fernández, E.; Rubio, M.; Alvarruiz, A.; Alonso, G.L. Characterization of Grape Seed Oil from Different Grape Varieties (Vitis vinifera). Eur. J. Lipid Sci. Technol. 2009, 111, 188–193. [Google Scholar] [CrossRef]
- Bada, J.C.; León-Camacho, M.; Copovi, P.; Alonso, L. Characterization of Grape Seed Oil from Wines with Protected Denomination of Origin (PDO) from Spain. Grasas Y Aceites 2015, 66, e085. [Google Scholar] [CrossRef]
- Crews, C.; Hough, P.; Brereton, P.; Godward, J.; Lees, M.; Guiet, S.; Winkelmann, W. Quantitation of the Main Constituents of Some Authentic Sesame Seed Oils of Different Origin. J. Agric. Food Chem. 2006, 54, 6266–6270. [Google Scholar] [CrossRef] [PubMed]
- Shakhbanov, K.S.; Abdulagatov, I.M.; Aliev, A.M. Supercritical Carbon Dioxide Extraction of Parthenocissus Wild Grape Seed Fatty Oil. Russ. J. Phys. Chem. B 2022, 16, 1213–1217. [Google Scholar] [CrossRef]
- Wen, X.; Zhu, M.; Hu, R.; Zhao, J.; Chen, Z.; Li, J.; Ni, Y. Characterisation of Seed Oils from Different Grape Cultivars Grown in China. J. Food Sci. Technol. 2016, 53, 3129–3136. [Google Scholar] [CrossRef] [PubMed]
- Dalmolin, I.; Mazutti, M.A.; Batista, E.A.C.; Meireles, M.A.A.; Oliveira, J.V. Chemical Characterization and Phase Behaviour of Grape Seed Oil in Compressed Carbon Dioxide and Ethanol as Co-Solvent. J. Chem. Thermodyn. 2010, 42, 797–801. [Google Scholar] [CrossRef]
- Shahidi, F.; De Camargo, A.C. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Cruz, R.; Pereira, J.A.; Ramalhosa, E. Seed Oils of Ten Traditional Portuguese Grape Varieties with Interesting Chemical and Antioxidant Properties. Food Res. Int. 2013, 50, 161–166. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Alegre, L. The Function of Tocopherols and Tocotrienols in Plants. CRC Crit. Rev. Plant Sci. 2002, 21, 31–57. [Google Scholar] [CrossRef]
- Gómez-Mejía, E.; Vicente-Zurdo, D.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Screening the Extraction Process of Phenolic Compounds from Pressed Grape Seed Residue: Towards an Integrated and Sustainable Management of Viticultural Waste. LWT 2022, 169, 113988. [Google Scholar] [CrossRef]
- Maier, T.; Schieber, A.; Kammerer, D.R.; Carle, R. Residues of Grape (Vitis vinifera L.) Seed Oil Production as a Valuable Source of Phenolic Antioxidants. Food Chem. 2009, 112, 551–559. [Google Scholar] [CrossRef]
- Harbeoui, H.; Dakhlaoui, S.; Wannes, W.A.; Bourgou, S.; Hammami, M.; Akhtar Khan, N.; Saidani Tounsi, M. Does Unsaponifiable Fraction of Grape Seed Oil Attenuate Nitric Oxide Production, Oxidant and Cytotoxicity Activities. J. Food Biochem. 2019, 43, e12940. [Google Scholar] [CrossRef]
- Lutterodt, H.; Slavin, M.; Whent, M.; Turner, E.; Yu, L. Fatty Acid Composition, Oxidative Stability, Antioxidant and Antiproliferative Properties of Selected Cold-Pressed Grape Seed Oils and Flours. Food Chem. 2011, 128, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Dabetic, N.M.; Todorovic, V.M.; Djuricic, I.D.; Antic Stankovic, J.A.; Basic, Z.N.; Vujovic, D.S.; Sobajic, S.S. Grape Seed Oil Characterization: A Novel Approach for Oil Quality Assessment. Eur. J. Lipid Sci. Technol. 2020, 122, 1–10. [Google Scholar] [CrossRef]
- Krinsky, N.I.; Johnson, E.J. Carotenoid Actions and Their Relation to Health and Disease. Mol. Asp. Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Flores, M.; Avendaño, V.; Bravo, J.; Valdés, C.; Forero-Doria, O.; Quitral, V.; Vilcanqui, Y.; Ortiz-Viedma, J. Edible Oil Parameters during Deterioration Processes. Int. J. Food Sci. 2021, 2021, 7105170. [Google Scholar] [CrossRef]
- Dolat Khah, M.; Ghanbarzadeh, B.; Roufegarinejad Nezhad, L.; Ostadrahimi, A. Effects of Virgin Olive Oil and Grape Seed Oil on Physicochemical and Antimicrobial Properties of Pectin-Gelatin Blend Emulsified Films. Int. J. Biol. Macromol. 2021, 171, 262–274. [Google Scholar] [CrossRef]
- Mauro, M.; Pinto, P.; Settanni, L.; Puccio, V.; Vazzana, M.; Hornsby, B.L.; Fabbrizio, A.; Di Stefano, V.; Barone, G.; Arizza, V. Chitosan Film Functionalized with Grape Seed Oil-Preliminary Evaluation of Antimicrobial Activity. Sustainability 2022, 14, 5410. [Google Scholar] [CrossRef]
- Abd, D.; Kader, A.; Fitua, A.-S.; Aziz Bahir, M.; Razzaq, A.; Muhanad, M.; Jehad, T. Antibacterial Effects of Vitamin E: In Vitro Study. AL-Nahrain Univ./J. Biotechnol. Res. Cent. 2013, 7, 17–23. [Google Scholar] [CrossRef]
- Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.J. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int. J. Mol. Sci. 2018, 19, 1114. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Antibacterial Plant Compounds, Extracts and Essential Oils: An Updated Review on Their Effects and Putative Mechanisms of Action. Phytomedicine 2021, 90, 153626. [Google Scholar] [CrossRef]
- Harper, R.A.; Saleh, M.M.; Carpenter, G.; Abbate, V.; Proctor, G.; Harvey, R.D.; Gambogi, R.J.; Geonnotti, A.; Hider, R.; Jones, S.A. Soft, Adhesive (+) Alpha Tocopherol Phosphate Planar Bilayers That Control Oral Biofilm Growth through a Substantive Antimicrobial Effect. Nanomedicine 2018, 14, 2307–2316. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, M.; Bhandari, B.; Xu, J.; Yang, C. Effects of Nanoemulsion-Based Active Coatings with Composite Mixture of Star Anise Essential Oil, Polylysine, and Nisin on the Quality and Shelf Life of Ready-to-Eat Yao Meat Products. Food Control 2020, 107, 106771. [Google Scholar] [CrossRef]
- Wang, W.; Yang, H.; Johnson, D.; Gensler, C.; Decker, E.; Zhang, G. Chemistry and Biology of ω-3 PUFA Peroxidation-Derived Compounds. Prostaglandins Other Lipid Mediat. 2017, 132, 84–91. [Google Scholar] [CrossRef]
- Ramis-Ramos, G. ANTIOXIDANTS|Synthetic Antioxidants. Encycl. Food Sci. Nutr. 2003, 1, 265–275. [Google Scholar] [CrossRef]
- Mozuraityte, R.; Kristinova, V.; Rustad, T. Oxidation of Food Components. Encycl. Food Health 2016, 3, 186–190. [Google Scholar] [CrossRef]
- Codex Alimentarius. Standard for Named Vegetable Oils-Codex Stan 210-1999. Codex Alimentarius. 1999. Available online: https://www.fao.org/fao-who-codexalimentarius (accessed on 1 February 2023).
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Zeena, D.A.; Shaimaa, R.A.; Khazal, S.A. The Effect of Adding Grape Seed Oil on the Chemical, Physical and Microbial Properties of Yoghurt. IOP Conf. Ser. Earth Environ. Sci. 2023, 1158, 112007. [Google Scholar] [CrossRef]
- Magalhães, K.T.; de Sousa Tavares, T.; Nunes, C.A. The Chemical, Thermal and Textural Characterization of Fractions from Macauba Kernel Oil. Food Res. Int. 2020, 130, 108925. [Google Scholar] [CrossRef]
- Fasina, O.O.; Craig-Schmidt, M.; Colley, Z.; Hallman, H. Predicting Melting Characteristics of Vegetable Oils from Fatty Acid Composition. LWT—Food Sci. Technol. 2008, 41, 1501–1505. [Google Scholar] [CrossRef]
- Shahidi, F.; Jiankang, W.; Wanasundara, U. Methods for Measuring Oxidative Rancidity in Fats and Oils. In Food Lipids; Akoh, C.C., Ed.; CRC Press: Boca Raton, FL, USA, 2017; Volume 1, pp. 1–1048. ISBN 9781498744874. [Google Scholar]
- Ghorghi, Z.B.; Yeganehzad, S.; Hesarinejad, M.A.; Faezian, A.; Kutsenkova, V.; Gao, Z.; Nishinari, K.; Nepovinnykh, N. Fabrication of Novel Hybrid Gel Based on Beeswax Oleogel: Application in the Compound Chocolate Formulation. Food Hydrocoll. 2023, 140, 1–12. [Google Scholar] [CrossRef]
- Lončarević, I.; Petrović, J.; Teslić, N.; Nikolić, I.; Maravić, N.; Pajin, B.; Pavlić, B. Cocoa Spread with Grape Seed Oil and Encapsulated Grape Seed Extract: Impact on Physical Properties, Sensory Characteristics and Polyphenol Content. Foods 2022, 11, 2730. [Google Scholar] [CrossRef]
- Kokabi, S.; Soltani, M.; Dabirian, S.; Kokabian, A.; Daraei Garmakhany, A.; Jafarzadeh, S.; Aghajani, N. Incorporation of Omega-3 Fatty Acid-Rich Grape Seed Oil in Yoghurt: Response Surface Optimization of Physicochemical, Textural, and Sensory Attributes during Refrigerated Storage. Food Sci. Nutr. 2021, 9, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Jung, E.H.; Lee, S.H.; Kim, J.H.; Lee, J.J.; Choi, Y. Il Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-Type Pork Sausages. Food Sci. Anim. Resour. 2015, 35, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Özvural, E.B.; Vural, H. Which Is the Best Grape Seed Additive for Frankfurters: Extract, Oil or Flour? J. Sci. Food Agric. 2014, 94, 792–797. [Google Scholar] [CrossRef] [PubMed]
Extraction Method | Palmitic Acid (C16:0) | Stearic Acid (C18:0) | Palmitoleic Acid (16:1 n-7) | Oleic Acid (C18:1 n-9) | Linoleic Acid (18:2 n-6) | α-Linolenic Acid (C18:3 n-3) | Variety | Ref. |
---|---|---|---|---|---|---|---|---|
6.49 | 3.07 | 0.11 | 16.76 | 66.01 | 0.42 | Ives | [52] | |
7.99 | 3.78 | 0.11 | 13.01 | 68.75 | 0.40 | Cabernet sauvignon | ||
Pressing | 7.39 | 4.09 | n.d. | 13.84 | 74.17 | 0.20 | Cabernet sauvignon | [36] |
7.22 | 3.70 | n.d. | 14.36 | 74.15 | 0.31 | Merlot | ||
6.86 | 3.53 | n.d. | 16.02 | 73.05 | 0.28 | Pinot noir | ||
8.88 | 3.33 | n.d. | 16.62 | 70.90 | 0.27 | Sangiovese | [30] | |
7.95 | 4.42 | n.d. | 22.20 | 64.50 | 0.64 | Syrah | [41] | |
8.47 | 4.60 | n.d. | 24.90 | 61.40 | 0.46 | Tintorera | ||
6.76 | 3.28 | n.d. | 16.85 | 72.53 | 0.28 | Gamay * | [36] | |
7.61 | 4.44 | 0.30 | 20.5 | 66.17 | 0.50 | Graševina * | [31] | |
6.83 | 3.22 | 0.14 | 17.68 | 65.25 | 0.48 | Ives | [52] | |
7.99 | 3.78 | 0.13 | 13.97 | 66.81 | 0.43 | Cabernet sauvignon | ||
Soxhlet | 8.97 | 4.04 | 0.09 | 16.75 | 69.00 | 0.44 | Tempranillo | [59] |
23.50 | 11.04 | 0.10 | 7.23 | 57.68 | 0.16 | Syrah | [26] | |
7.22 | 3.07 | 0.16 | 16.79 | 72.35 | 0.39 | Raboso Piave | [34] | |
7.45 | 3.76 | 0.15 | 15.33 | 71.55 | 0.42 | Pinot gris | [25] | |
6.90 | 3.58 | n.d. | 14.13 | 73.11 | 0.39 | Pinot meunier | [39] | |
6.87 | 3.96 | n.d. | 14.61 | 72.46 | 0.35 | Pinot noir | ||
9.53 | 4.61 | 0.20 | 17.52 | 67.27 | 0.30 | Pinot noir | [33] | |
8.53 | 3.42 | 0.10 | 14.49 | 72.47 | 0.32 | Merlot | ||
10.66 | 4.68 | 0.11 | 14.29 | 69.35 | 0.30 | Cabernet franc | ||
6.87 | 3.87 | 0.19 | 17.14 | 70.15 | 0.45 | Riesling * | [25] | |
7.81 | 4.44 | 0.22 | 19.92 | 66.85 | 0.32 | Italian Riesling * | [33] | |
9.57 | 9.93 | 0.13 | 17.91 | 67.67 | 0.34 | Rhine Riesling * | ||
7.85 | 4.29 | 0.19 | 18.79 | 68.12 | 0.32 | Sauvignon blanc * | ||
6.47 | 4.73 | n.d. | 16.65 | 70.19 | 0.34 | Chardonnay * | [39] | |
6.80 | 3.14 | 0.15 | 17.39 | 65.25 | 0.48 | Ives | [52] | |
8.15 | 3.84 | 0.14 | 14.49 | 66.57 | 0.43 | Cabernet sauvignon | ||
Ultrasound | 7.59 | 4.29 | n.d. | 13.58 | 73.92 | 0.31 | Cabernet sauvignon | [36] |
7.59 | 3.76 | n.d. | 13.49 | 74.66 | 0.29 | Merlot | ||
7.27 | 3.52 | n.d. | 15.69 | 73.05 | 0.26 | Pinot noir | ||
7.39 | 2.80 | 0.10 | 17.74 | 71.6 | 0.36 | Raboso Piave | [34] | |
6.26 | 3.66 | 0.07 | 19.70 | 70.07 | n. d. | Moscatel * | [53] | |
6.85 | 3.28 | n.d. | 16.85 | 72.53 | 0.28 | Gamay * | [36] | |
Supercritical fluids | 21.04 | 10.33 | 0.11 | 6.34 | 61.94 | 0.19 | Syrah | [26] |
7.25 | 4.59 | n.d. | 11.91 | 74.82 | n. d. | Cabernet franc | [35] | |
6.66 | 4.04 | n.d. | 16.00 | 71.70 | 0.47 | Barbera | [21] | |
7.47 | 3.56 | n.d. | 15.60 | 71.80 | 0.38 | Pinot noir | ||
6.53 | 4.16 | n.d. | 13.60 | 74.30 | 0.43 | Nebbiolo | ||
6.82 | 3.64 | n.d. | 14.80 | 73.20 | 0.43 | Muller Thurgau * | ||
8.89 | 2.84 | n.d. | 15.30 | 71.0 | 0.56 | Moscato * | ||
7.62 | 3.55 | n.d. | 16.80 | 70.40 | 0.36 | Chardonnay * | ||
8.88 | 4.49 | 0.37 | 21.20 | 64.00 | 0.51 | Graševina * | [31] | |
Pulsed electric field + supercritical fluids | 8.58 | 4.40 | 0.37 | 21.09 | 64.61 | 0.52 | Graševina * | [31] |
Content | Pressing | Ref. | Content | Soxhlet | Ref. | Content | Supercritical Fluid | Ref. | FAO/WHO | |
---|---|---|---|---|---|---|---|---|---|---|
Tocopherols | ||||||||||
α | 38.4 | Merlot | [43] | 24.63 | Merlot | [28] | 90.0 | Merlot | [85] | 16.0–38.0 |
49.8 | Merlot | [32] | 39 | Chardonnay * | [21] | 59.1 | Chardonnay * | |||
47.3 | Syrah | [41] | 53 | Chardonnay * | [29] | 68 | Chardonnay * | [21] | ||
73 | Chardonnay * | [21] | 82.58 | Syrah | [28] | 87 | Chardonnay * | [29] | ||
127 | Moscato * | 63 | Moscato * | [21] | 131 | Moscato * | [21] | |||
41 | Muller Thurgau * | 27 | Muller Thurgau * | 51 | Muller Thurgau * | |||||
115 | Nebbiolo | 114 | Nebbiolo | 157 | Nebbiolo | |||||
61 | Pinot noir | 94 | Pinot noir | 79 | Pinot noir | |||||
199 | Barbera | 106 | Barbera | 196 | Barbera | |||||
39.8 | Hamburg | [43] | 75.64 | Carignan | [28] | 123 | Moscato * | [29] | ||
64.0 | Ital. Riesling * | 22.6 | Garnacha | [82] | 101 | Muller Thurgau * | ||||
49.6 | Sila * | 125.1 | Tempranillo | 174 | Nebbiolo | |||||
50.1 | Tintorera | [41] | 23.8 | Tempranillo | [59] | 172 | Pinot noir | |||
75.9 | Graševina * | [31] | 193.1 | Palomino fino * | 156 | Barbera | ||||
188.9 | Pedro Ximénez * | 131.34 | Cabernet sauvignon | [85] | ||||||
172.4 | Muscat Alexandria * | 69.8 | Graševina * | [31] | ||||||
114.8 | Tintilla de Rota | |||||||||
β | 48.4 | Syrah | [41] | n.d. | Syrah | [28] | 2.53 | Cabernet sauvignon | [85] | n.d.–89.0 |
40.5 | Tintorera | 10.77 | Merlot | 1.75 | Merlot | |||||
41.87 | Carignan | 5.3 | Moscato * | [29] | ||||||
5.6 | Moscato * | [29] | 8.9 | Muller Thurgau * | ||||||
9.3 | Muller Thurgau * | 13 | Nebbiolo | |||||||
12 | Nebbiolo | 5.7 | Pinot noir | |||||||
6.7 | Pinot noir | 4.4 | Barbera | |||||||
7.4 | Barbera | 10.6 | Chardonnay * | |||||||
7.2 | Chardonnay * | 0.86 | Chardonnay * | [85] | ||||||
0.3 | Tempranillo | [82] | ||||||||
0.5 | Garnacha | |||||||||
1.0 | Mencia | |||||||||
0.5 | Carrasquín | |||||||||
0.6 | Albarin * | |||||||||
γ | 12.6 | Graševina * | [31] | 44.7 | Palomino fino * | [59] | 33 | Moscato * | [29] | n.d.–73.0 |
24 | Chardonnay * | [21] | 38.6 | Pedro Ximénez * | 33 | Muller Thurgau * | ||||
24 | Moscato * | 25.6 | Muscat Alexandria * | 41 | Nebbiolo | |||||
17 | Muller Thurgau * | 73.3 | Tintilla de Rota | 43 | Pinot noir | |||||
53 | Nebbiolo | 22.9 | Tempranillo | 31 | Barbera | |||||
24 | Pinot noir | 3.4 | Tempranillo | [82] | 18 | Chardonnay * | ||||
30 | Barbera | 3.6 | Garnacha | 17.37 | Chardonnay * | [85] | ||||
16.8 | Syrah | [41] | 14.9 | Mencia | 21 | Chardonnay * | [21] | |||
21.5 | Tintorera | 14.7 | Carrasquín | 33 | Moscato * | |||||
15.9 | Albarin * | 18 | Muller Thurgau * | |||||||
11.15 | Merlot | [28] | 53 | Nebbiolo | ||||||
63.84 | Carignan | 23 | Pinot noir | |||||||
42.77 | Syrah | 55 | Barbera | |||||||
20 | Moscato * | [21] | 40.51 | Cabernet sauvignon | [85] | |||||
14 | Muller Thurgau * | 22.19 | Merlot | |||||||
51 | Nebbiolo | |||||||||
25 | Pinot noir | |||||||||
62 | Barbera | |||||||||
11 | Chardonnay * | |||||||||
δ | 1.2 | Merlot | [43] | 13 | Moscato * | [29] | 16 | Moscato * | [29] | n.d.–4.0 |
1.8 | Hamburg | 23 | Muller Thurgau * | 23 | Muller Thurgau * | |||||
Tocopherols | ||||||||||
δ | 2.8 | Ital. Riesling * | [43] | 15 | Nebbiolo | [29] | 19 | Nebbiolo | [29] | n.d.–4.0 |
3.9 | Sila * | 32 | Pinot noir | 18 | Pinot noir | |||||
n. d. | Syrah | [41] | 35 | Barbera | 19 | Barbera | ||||
n. d. | Tintorera | 52 | Chardonnay * | 5 | Chardonnay * | |||||
10.2 | Palomino fino * | [59] | 0.26 | Chardonnay * | [85] | |||||
8.1 | Tintilla de Rota | 1.48 | Cabernet sauvignon | |||||||
11.9 | Tempranillo | 0.8 | Merlot | |||||||
0.5 | Garnacha | [82] | ||||||||
0.9 | Mencia | |||||||||
0.6 | Carrasquín | |||||||||
1 | Albarin * | |||||||||
0.2 | Tempranillo | |||||||||
Tocotrienols | ||||||||||
α | 67 | Moscato * | [21] | 26 | Moscato * | [21] | 81 | Moscato * | [21] | 18.0–107.0 |
103 | Muller Thurgau * | 105 | Muller Thurgau * | 98 | Muller Thurgau * | |||||
167 | Nebbiolo | 124 | Nebbiolo | 170 | Nebbiolo | |||||
75 | Pinot noir | 93 | Pinot noir | 82 | Pinot noir | |||||
62 | Barbera | 68 | Barbera | 97 | Barbera | |||||
131 | Chardonnay * | 88 | Chardonnay * | 122 | Chardonnay * | |||||
215.7 | Syrah | [41] | 131.8 | Tempranillo | [82] | 177.7 | Chardonnay * | [85] | ||
230.8 | Tintorera | 85.3 | Garnacha | 201.59 | Cabernet sauvignon | |||||
124.1 | Graševina * | [31] | 92.3 | Mencia | 239.95 | Merlot | ||||
54.6 | Carrasquín | 124.1 | Graševina * | [31] | ||||||
73.2 | Albarin * | |||||||||
β | - | - | - | 11 | Moscato * | [29] | 14 | Moscato * | [29] | - |
20 | Muller Thurgau * | 18 | Muller Thurgau * | |||||||
29 | Nebbiolo | 32 | Nebbiolo | |||||||
8 | Pinot noir | 11 | Pinot noir | |||||||
12 | Barbera | 22 | Barbera | |||||||
14 | Chardonnay * | 23 | Chardonnay * | |||||||
1.3 | Tempranillo | [82] | 2.41 | Chardonnay * | [85] | |||||
1.4 | Garnacha | 2.73 | Cabernet sauvignon | |||||||
2.1 | Mencia | 2.73 | Merlot | |||||||
1.1 | Carrasquín | |||||||||
1.7 | Albarin * | |||||||||
γ | 87 | Moscato * | [21] | 52 | Moscato * | [21] | 110 | Moscato * | [21] | 115.0–205.0 |
198 | Muller Thurgau * | 187 | Muller Thurgau * | 212 | Muller Thurgau * | |||||
185 | Nebbiolo | 154 | Nebbiolo | 179 | Nebbiolo | |||||
279 | Pinot noir | 224 | Pinot noir | 253 | Pinot noir | |||||
190 | Barbera | 106 | Barbera | 151 | Barbera | |||||
172 | Chardonnay * | 131 | Chardonnay * | 170 | Chardonnay * | |||||
482.5 | Syrah | [41] | 107 | Tempranillo | [82] | 128.87 | Chardonnay * | [85] | ||
498.3 | Tintorera | 80 | Garnacha | 164.71 | Cabernet sauvignon | |||||
144.5 | Graševina * | [31] | 101.8 | Mencia | 156.29 | Merlot | ||||
98 | Carrasquín | 99.9 | Graševina * | [31] | ||||||
101.6 | Albarin * | |||||||||
δ | 16.8 | Syrah | [41] | 2.2 | Tempranillo | [82] | 11.2 | Chardonnay * | [85] | n.d.–3.2 |
12.6 | Tintorera | 1.7 | Garnacha | 12.07 | Cabernet sauvignon | |||||
3.9 | Mencia | 0.8 | Merlot | |||||||
2.7 | Carrasquín | |||||||||
3.5 | Albarin * |
Content | Pressing | Ref. | Content | Soxhlet | Ref. | Content | Ultrasound | Ref. | Content | Supercritical Fluid | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Red grape | |||||||||||
1.27 | Merlot | [43] | 97.0 | Merlot | [33] | 72.0 | Mollar | [53] | 5.51 | Borgoña-Chincha | [66] |
5.99 | Merlot | [36] | 14.85 | Merlot | [58] | 139.0 | Quebranta | 6.04 | Borgoña-Ica | ||
15.15 | Merlot | [58] | 5.63 | Merlot | [28] | 6.99 | Pinot noir | [36] | 13.59 | Quebranta-Chincha | |
2.46 | Merlot | [32] | 10.6 | Syrah | 7.24 | Gamay | 12.97 | Quebranta-Ica | |||
6.28 | Cabernet sauvignon | [36] | 18.26 | Syrah | [58] | 7.64 | Prokupac | 8.06 | Merlot | [85] | |
24.0 | Cabernet sauvignon | [58] | 35.23 | Sangiovese | 6.35 | Cabernet sauvignon | 9.81 | Cabernet sauvignon | |||
4.47 | Hamburg | [43] | 10.45 | Sangiovese | [28] | 5.85 | Merlot | 6.0 | Pinot noir | [29] | |
6.85 | Pinot noir | [36] | 24.0 | Pinot noir | [33] | 4.7 | Nebbiolo | ||||
7.18 | Gamay | 5.3 | Pinot noir | [29] | 3.9 | Barbera | |||||
7.45 | Prokupac | 28.0 | Cabernet franc | [33] | |||||||
14.82 | Syrah | [58] | 28.0 | Lemberger | |||||||
17.73 | Sangiovese | 45.3 | Cabernet sauvignon | [58] | |||||||
35.0 | Carignan | [38] | 11.69 | Carignan | [28] | ||||||
2.93 | Black Kerküş | [44] | 4.2 | Nebbiolo | [29] | ||||||
4.7 | Verdani | 3.5 | Barbera | ||||||||
80.0 | Concord | ||||||||||
16.0 | Ruby red | ||||||||||
44.0 | Muscadine | [93] | |||||||||
White grape | |||||||||||
0.93 | Ital Riesling | [43] | 108.0 | Italian Riesling | [33] | 154.0 | Moscatel | [53] | 4.66 | Chardonnay | [85] |
1.19 | Sila | 65.0 | Rhine Riesling | 59.0 | Torontel | 3.2 | Chardonnay | [29] | |||
10.25 | Sauvignon blanc | [58] | 94.3 | Rhine Riesling | [94] | 122.0 | Albilla | 2.8 | Muscat | ||
4.34 | Atfi | [44] | 91.3 | Welsch Riesling | 4.1 | Muller Thurgau | |||||
2.82 | Karfoki | 61.0 | Sauvignon blanc | [33] | |||||||
2.63 | Kerküş | 12.88 | Sauvignon blanc | [58] | |||||||
2.68 | Marzuna | 100.5 | Sauvignon blanc | [94] | |||||||
2.19 | Zeyti | 10.81 | Muscat | [28] | |||||||
23.0 | Chardonnay | 2.4 | Muscat | [29] | |||||||
77.0 | Albariño | [90] | 2.9 | Chardonnay | |||||||
73.4 | Chardonnay | [94] | |||||||||
113.0 | Királyleányka | [33] | |||||||||
5.81 | Razagui | [28] | |||||||||
7.03 | Khamri | ||||||||||
6.39 | Razaki | ||||||||||
6.81 | Marsaoui | ||||||||||
3.8 | Muller Thurgau | [29] | |||||||||
104.3 | Smederevka | [94] | |||||||||
76.1 | Tamjanika |
Compounds | Variety | Analytical Method | Pressing | Ref. | Soxhlet | Ref. | Supercritical Fluid | Ref. | PEF-SF | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Nonflavonoids | ||||||||||
Phenolic acid | ||||||||||
Gallic ac. | Graševina | HPLC-DAD/MS | 0.219 | [31] | - | 0.033 | [31] | 0.583 | [31] | |
Manakka | HPLC-UV/Vis | - | 3.70 | [62] | - | - | ||||
Hydroxybenzoic ac. | Graševina | HPLC-DAD/MS | 0.473 | [31] | - | 0.173 | [31] | 0.267 | [31] | |
p-OH benzoic ac. | Merlot | HPLC-DAD, ESI-QqQ-MS/MS | <0.08 | [43] | - | - | - | |||
Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 0.398 | [32] | - | - | - | ||||
Manakka | HPLC-UV/Vis | - | 2.20 | [62] | - | - | ||||
p-Coumaric ac. | Graševina | HPLC-DAD/MS | 0.139 | [31] | - | 0.074 | [31] | 0.282 | [31] | |
Merlot | HPLC-DAD, ESI-QqQ-MS/MS | <0.08 | [43] | - | - | - | ||||
Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 0.241 | [32] | - | - | - | ||||
Syrah | HPLC-DAD | - | 0.98 | [26] | 3.14 | [26] | - | |||
Ferulic ac. | Graševina | HPLC-DAD/MS | 0.084 | [31] | - | 0.060 | [31] | 0.135 | [31] | |
Merlot | HPLC-DAD, ESI-QqQ-MS/MS | <0.08 | [43] | - | - | - | ||||
Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 0.144 | [32] | - | - | - | ||||
trans-Ferulic ac. | Syrah | HPLC-DAD | - | 1.32 | [26] | 4.34 | [26] | - | ||
Vanillic ac. | Merlot | HPLC-DAD, ESI-QqQ-MS/MS | <0.3 | [43] | - | - | - | |||
Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 0.698 | [32] | - | - | - | ||||
Proto-catechinic ac. | Merlot | HPLC-DAD, ESI-QqQ-MS/MS | <0.04 | [43] | - | - | - | |||
Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 0.073 | [32] | - | - | - | ||||
Ursolic ac. | Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 82.3 | [43] | - | - | - | |||
Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 136.3 | [32] | - | - | - | ||||
Chlorogenic ac. | Manakka | HPLC-UV/Vis | - | 1.10 | [62] | - | - | |||
Caffeic ac. | Syrah | HPLC-DAD | - | 1.81 | [26] | 5.02 | [26] | - | ||
Manakka | HPLC-UV/Vis | - | 5.20 | [62] | - | - | ||||
trans-Cinnamic ac. | Syrah | HPLC-DAD | - | 8.48 | [26] | 20.65 | [26] | - | ||
Ellagic ac. | Manakka | HPLC-UV/Vis | - | 1.50 | [62] | - | - | |||
Resveratrol | Merlot | HPLC-DAD, ESI-QqQ-MS/MS | <0.3 | [43] | - | - | - | |||
Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 2.16 | [32] | - | - | - | ||||
Syrah | HPLC-DAD | 1.04 | [26] | 1.25 | [26] | - | ||||
trans-Resveratrol | Graševina | HPLC-DAD/MS | 0.084 | [31] | 0.069 | [31] | 0.111 | [31] | ||
Flavonoids | ||||||||||
Flavan-3-ols | ||||||||||
(+)-Catechin | Graševina | HPLC-DAD/MS | 0.672 | [31] | - | 0.281 | [31] | 0.450 | [31] | |
Syrah | HPLC-DAD | 12.22 | [26] | 3.84 | [26] | - | ||||
(-)-Epicatechin | Graševina | HPLC-DAD/MS | 0.279 | [31] | - | 0.030 | [31] | 0.040 | [31] | |
Syrah | HPLC-DAD | 18.80 | [26] | 2.98 | [26] | - | ||||
Procyanidin dimer B1 | Graševina | HPLC-DAD/MS | 1.515 | [31] | - | 0.773 | [31] | 1.338 | [31] | |
Flavonols | ||||||||||
Quercetin | Graševina | HPLC-DAD/MS | 0.065 | [31] | - | 0.063 | [31] | 0.107 | [31] | |
Quercetin-3-β-d-glucoside | Syrah | HPLC-DAD | 4.80 | [26] | 5.17 | [26] | - | |||
Myricetin | Graševina | HPLC-DAD/MS | 0.070 | [31] | - | 0.045 | [31] | 0.047 | [31] | |
Kaempherol | Merlot | HPLC-DAD, ESI-QqQ-MS/MS | <0.3 | [43] | - | - | - | |||
Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 1.80 | [32] | - | - | - | ||||
Rutin | Syrah | HPLC-DAD | 1.87 | [26] | n. d. | [26] | - | |||
Flavanon (Naringenin) | Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 0.008 | [43] | - | - | - | |||
Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 0.125 | [32] | - | - | - | ||||
Syrah | HPLC-DAD | 5.05 | [26] | 13.77 | [26] | - | ||||
Flavon (Krisoeriol) | Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 0.023 | [43] | - | - | - | |||
Flavonoids | ||||||||||
Flavon (Krisoeriol) | Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 0.017 | [32] | - | - | - | |||
Biflavon (Amentoflavon) | Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 0.216 | [43] | - | - | - | |||
Merlot | HPLC-DAD, ESI-QqQ-MS/MS | 0.056 | [32] | - | - | - | ||||
Isoflavon (Formononetin) | Syrah | HPLC-DAD | - | 14.25 | [26] | 108.81 | [26] | - |
Method | Analytical Method | Variety | Volatile Compounds | Ref. |
---|---|---|---|---|
Pressing | GC-MS | Cabernet sauvignon | 8 alcohols (ethanol, 3-methylbutanol, 2-methylbutanol, hexanol, 2,3-butandiol, 1,3-butandiol, 1-octen-3-ol, phenethyl alcohol) 8 esters (ethyl acetate, ethyl hexanoate, isoamyl acetate, 2-methyl butyl acetate, isobutyl acetate, hexyl acetate, ethyl heptanoate, ethyl octanoate) 6 aldehydes (diethylacetal, hexanal, heptanal, benzaldehyde, trans-2-heptenal, trans-2-octenal) 1 terpene (limonene) 3 ketones (3-hydroxy-2-butanone, 2-heptanone, 3-octen-2-one) 1 hydrocarbon (styrene) 3 carboxylic acids (acetic acid, hexanoic acid, octanoic acid) 1 lactone (γ-butyrolactone) 1 furan (2-pentylfuran) | [57] |
GC-MS | Chardonnay * | 7 alcohols (ethanol, 3-methylbutanol, 2-methylbutanol, hexanol, 2,3-butandiol, 1,3-butandiol, phenethyl alcohol) 8 esters (ethyl acetate, ethyl hexanoate, isoamyl acetate, 2-methyl butyl acetate, isobutyl acetate, hexyl acetate, ethyl heptanoate, ethyl octanoate) 4 aldehydes (diethylacetal, benzaldehyde, trans-2-heptenal, trans-2-octenal) 3 ketones (3-hydroxy-2-butanone, 2-heptanone, 3-octen-2-one) 1 hydrocarbon (styrene) 3 carboxylic acids (acetic acid, hexanoic acid, octanoic acid) 1 lactone (γ-butyrolactone) | [57] | |
Soxhlet | GC-MS | Okusgozy | 5 alcohols (isoamyl alcohol, 1-octen-3-ol, heptyl alcohol, phenyl-ethyl alcohol, nonanol) 4 esters (ethyl heptanoate, hexyl acetate, ethyl octanoate, ethyl laurate) 3 aldehydes (octanal, nonanal, benzaldehyde) 1 carboxylic acid (octanoic acid) | [61] |
GC-MS | Cabernet | 5 alcohols (isoamyl alcohol, 1-octen-3-ol, heptyl alcohol, phenyl-ethyl alcohol, nonanol) 7 esters (isoamyl acetate, ethyl heptanoate, hexyl acetate, ethyl octanoate, benzyl acetate, phenyl ethyl acetate, ethyl laurate) 3 aldehydes (octanal, nonanal, n-decanal) 6 carboxylic acids (isovaleric acid, valeric acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid) | [61] | |
Soxhlet | GC-MS-FID | Okuzgozu | 9 alcohols (3-penten-2-ol, 3-hexanol, 2-hexanol, 3-methyl cyclopentanol, 1-hexanol, 1-octen-3-ol, 2-phenyl-2-propanol, benzyl alcohol, phenyl-ethyl alcohol) 12 esters (isoamyl acetate, butyl butanoate, ethyl hexanoate, hexyl acetate, ethyl octanoate, ethyl decanoate, diethyl succinate, phenyl ethyl acetate, ethyl dodecanoate, phenoxy ethyl acetate, ethyl palmitate, ethyl linoleate) 8 aldehydes (hexanal, octanal, (E)-2-heptenal, nonanal, 2-nonenal, benzene acetaldehyde, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal) 1 terpene (citronellol) 3 ketones (acetoin, 2-nonanone, acetophenone) 7 carboxylic acids (pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid), 2 lactones (γ-butyrolactone, pantolactone) 3 volatile phenols (phenol, carvacrol, 2,4-ditertbutyl phenol) 1 furan (5-phenyl-2-furanone) | [15] |
GC-MS-FID | Moscatello * | 10 alcohols (3-penten-2-ol, 3-hexanol, 2-hexanol, 3-methyl cyclopentanol, 1-hexanol, 1-octen-3-ol, α-cumyl alcohol, butoxyethoxy ethanol, benzyl alcohol, phenyl-ethyl alcohol) 7 esters (isoamyl acetate, butyl butanoate, ethyl octanoate, ethyl benzoate, ethyl decanoate, phenyl ethyl acetate, phenoxy ethyl acetate) 3 aldehydes (hexanal, nonanal, 2-nonenal) 3 terpenes (linalool, germacrene, ∆-cadinene) 3 ketones (2-octanone, 2-nonanone, acetophenone) 5 carboxylic acids (isovaleric acid, hexanoic acid, octanoic acid, nonanoic acid, decanoic acid) 2 lactones (γ-butyrolactone, pantolactone) 1 volatile phenols (phenol) | [15] |
Extraction Method | Variety -[Oil] | Incubation Time | Gram-Positive Batteries | Gram-Negative Batteries | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
Soxhlet | Tamjanika (100%) | 37 °C for 24 h | Staphylococcus aureus | ✔ | DZI (8.0) | Escherichia coli | ✘ | [94] | |
Enterococcus faecalis | ✘ | Klebsiella pneumoniae | ✘ | ||||||
Bacillus subtilis | ✘ | ||||||||
Tamjanika | 37 °C for 24 h | Staphylococcus aureus | ✔ | MIC (7.7), MBC (15.4) | Pseudomonas aeruginosa | ✔ | MIC (7.7), MBC (15.4) | [69] | |
Micrococcus flavus | ✔ | MIC (15.4), MBC (30.8) | Escherichia coli | ✔ | MIC (7.7), MBC (15.4) | ||||
Bacillus cereus | ✔ | MIC (7.7), MBC (15.4) | Enterobacter cloacae | ✔ | MIC (7.7), MBC (15.4) | ||||
Pressing | Commercial oil (50%) | 37 °C for 24 h | Staphylococcus aureus | ✘ | - | Escherichia coli | ✘ | [49] | |
Listeria monocytogenes | ✘ | Salmonella enterica | ✘ | ||||||
Commercial oil | 37 °C for 18–24 h | Staphylococcus aureus | ✔ | MIC (30), DZI (10.0) | Escherichia coli | ✔ | MIC (25), DZI (11.3) | [97] | |
Salmonella typhimurium | ✔ | MIC (25), DZI (12.1) | |||||||
Pseudomonas fluorescens | ✔ | MIC (25), DZI (11.1) |
Extraction Method | Type of Food Added | Purpose of Addition to Food | Results Obtained | Ref. |
---|---|---|---|---|
Not mentioned | Added in milk for the elaboration of yogurt, in proportions of 1.5, 2.5, and 3.5% | Evaluate the antioxidant and microbiological properties of yogurt during storage for 14 days. | Increase in peroxide and acidity index in yogurt. Decrease in lactic acid batteries (Lactobacillus bulgarus and Streptococcus thermophiles) with an increase in oil. | [109] |
Not mentioned | In the formulation of chocolate at four ratios of olegoel/hydrogel (0/100; 1/99; 5/95; 10/90). | Evaluate the thermal, textural, rheological, and sensory properties of chocolate. | The chocolates with the hybrid gel showed a high thermal resistance, a hardness similar to the control, low adhesiveness, and greater sensory acceptability. | [113] |
Grape seed oil var. Carignan was obtained by pressing | In canned fish, only grape seed oil was added. | Evaluate the nutritional characteristics and lipid oxidation of canned sardines. | The canned fish had increased nutritional value with greater amounts of linoleic acid; the oxidation of fatty acids was also decreased. | [38] |
Red grape seed oil was extracted by pressing. | For the cocoa spread formulation, 6% grape seed oil was used. | To evaluate the nutritional, physical, and sensory properties of cocoa spread. | Polyphenols and flavonoids increased in the cocoa paste, raising the antioxidant activity and intensifying grape seed oil’s aroma and flavor. | [114] |
Oil was extracted by pressing. | Red mullets were submerged in a nanoemulsion with 4% grape seed oil | Evaluate the shelf-life of red mullet and the physicochemical, sensory, and microbiological characteristics. | Extended the shelf-life of red mullet fillets during cold storage because lipid oxidation and hydrolysis were slowed and microbiological contamination was reduced. | [56] |
Not mentioned | In the elaboration of yogurt, in a proportion of 1.5 and 3% grape seed oil. | Evaluate physicochemical, texture, and sensory properties and produce a low-fat product. | The yogurt had a higher content of unsaturated fatty acids and hardness. However, it scored lower in relation to taste and general acceptance. | [115] |
Not mentioned | Added as an emulsion in the formulation of sausages mixed with other oils (2 and 4% grape seed oil + 16% other oils). | Evaluate the physicochemical, texture, and sensory properties. | Unsaturated fatty acids increased, and saturated fatty acids decreased; hardness, elasticity, and chewiness also decreased. | [116] |
Oil was extracted by pressing | Frankfurt sausages were enriched with 1, 2, 4, 6, 8, and 10% grape seed oil. | Select the best additive considering lipid oxidation and general acceptance. | The increase in grape seed oil decreases the sausages’ general acceptability. However, it decreases lipid oxidation during the 90-day storage period. | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laqui-Estaña, J.; Obreque-Slier, E.; García-Nauto, N.; Saldaña, E. Advances in Grape Seed Oil Extraction Techniques and Their Applications in Food Products: A Comprehensive Review and Bibliometric Analysis. Foods 2024, 13, 3561. https://doi.org/10.3390/foods13223561
Laqui-Estaña J, Obreque-Slier E, García-Nauto N, Saldaña E. Advances in Grape Seed Oil Extraction Techniques and Their Applications in Food Products: A Comprehensive Review and Bibliometric Analysis. Foods. 2024; 13(22):3561. https://doi.org/10.3390/foods13223561
Chicago/Turabian StyleLaqui-Estaña, Jaime, Elías Obreque-Slier, Nidia García-Nauto, and Erick Saldaña. 2024. "Advances in Grape Seed Oil Extraction Techniques and Their Applications in Food Products: A Comprehensive Review and Bibliometric Analysis" Foods 13, no. 22: 3561. https://doi.org/10.3390/foods13223561
APA StyleLaqui-Estaña, J., Obreque-Slier, E., García-Nauto, N., & Saldaña, E. (2024). Advances in Grape Seed Oil Extraction Techniques and Their Applications in Food Products: A Comprehensive Review and Bibliometric Analysis. Foods, 13(22), 3561. https://doi.org/10.3390/foods13223561