Exploring Edible Insects: From Sustainable Nutrition to Pasta and Noodle Applications—A Critical Review
Abstract
:1. Introduction
2. Insects as Food
2.1. A Way Towards Sustainability
2.2. A Way Towards Nutrition
2.3. A Way Towards Health
3. Pasta and Noodles as Carrier Foods
4. Insect-Enriched Pasta and Noodles
4.1. A Strategy for Global Nutrition
4.1.1. Wheat-Based Pasta
4.1.2. Gluten-Free Noodles
4.2. Technology and Quality Evaluation
4.2.1. Wheat-Based Products
Flour Blends and Premixes
Dough Rheology and Microstructure
Cooking Quality
Color and Texture
4.2.2. Non-Wheat-Based Products
5. A Way Towards Consumption
5.1. Food Neophobia, the Role of Information
5.2. Sensory Analysis, the Role of Development
6. Opportunities
7. Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, H.S.G.; Fischer, A.R.H.; Tinchan, P.; Stieger, M.; Steenbekkers, L.P.A.; van Trijp, H.C.M. Insects as Food: Exploring Cultural Exposure and Individual Experience as Determinants of Acceptance. Food Qual. Prefer. 2015, 42, 78–89. [Google Scholar] [CrossRef]
- van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security, 1st ed.; FAO: Rome, Italy, 2013; Volume 171, ISBN 9789251075951. [Google Scholar]
- Messia, M.C.; Cuomo, F.; Falasca, L.; Trivisonno, M.C.; De Arcangelis, E.; Marconi, E. Nutritional and Technological Quality of High Protein Pasta. Foods 2021, 10, 589. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Mata, N.; García-Zepeda, R.A.; Ontiveros-Higareda, M.B.; Morales-Guerrero, J.C. Gluten-Free Pasta as an Alternative in the Diet of Patients with Celiac Disease. J. Food Sci. 2024, 89, 3384–3399. [Google Scholar] [CrossRef]
- Suo, X.; Dall’Asta, M.; Giuberti, G.; Minucciani, M.; Wang, Z.; Vittadini, E. Effect of “Shape” on Technological Properties and Nutritional Quality of Chickpea-Corn-Rice Gluten Free Pasta. LWT 2024, 192, 115661. [Google Scholar] [CrossRef]
- Zhao, R.; Zhao, R.; Li, Q.; Li, K.; Liu, Q.; Liu, W.; Hu, H. Improvement Effect of Different Protein Powder on Cooking Characteristics of Gluten-free Pasta and the Establishment of Quality Evaluation Based on Principal Component Analysis. Int. J. Food Sci. Technol. 2024, 59, 1138–1149. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, R.; Singh, S.; Ramniwas, S. 3D Printing of Sustainable Insect Materials, 1st ed.; Singh, D., Kumar, R., Singh, S., Ramniwas, S., Eds.; Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-031-25993-7. [Google Scholar]
- Dolganyuk, V.; Sukhikh, S.; Kalashnikova, O.; Ivanova, S.; Kashirskikh, E.; Prosekov, A.; Michaud, P.; Babich, O. Food Proteins: Potential Resources. Sustainability 2023, 15, 5863. [Google Scholar] [CrossRef]
- Lumsden, C.L.; Jägermeyr, J.; Ziska, L.; Fanzo, J. Critical Overview of the Implications of a Global Protein Transition in the Face of Climate Change: Key Unknowns and Research Imperatives. One Earth 2024, 7, 1187–1201. [Google Scholar] [CrossRef]
- Lähteenmäki-Uutela, A.; Marimuthu, S.B.; Meijer, N. Regulations on Insects as Food and Feed: A Global Comparison. J. Insects Food Feed 2021, 7, 849–856. [Google Scholar] [CrossRef]
- Niassy, S.; Omuse, E.R.; Roos, N.; Halloran, A.; Eilenberg, J.; Egonyu, J.P.; Tanga, C.; Meutchieye, F.; Mwangi, R.; Subramanian, S.; et al. Safety, Regulatory and Environmental Issues Related to Breeding and International Trade of Edible Insects in Africa. OIE Rev. Sci. Tech. 2022, 41, 117–131. [Google Scholar] [CrossRef]
- van Huis, A. Did Early Humans Consume Insects? J. Insects Food Feed 2017, 3, 161–163. [Google Scholar] [CrossRef]
- Wing, E.S. Animals Used for Food in the Past: As Seen by Their Remains Excavated from Archaeological Sites. In The Cambridge World History of Food; Kiple, K.F., Ornelas, K.C., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 51–58. ISBN 9780521402149. [Google Scholar]
- Dufour, D.L.; Sander, J.B. Insects. In The Cambridge World History of Food; Kiple, K.F., Ornelas, K.C., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 546–554. ISBN 9780521402149. [Google Scholar]
- Olivadese, M.; Dindo, M.L. Edible Insects: A Historical and Cultural Perspective on Entomophagy with a Focus on Western Societies. Insects 2023, 14, 690. [Google Scholar] [CrossRef] [PubMed]
- Morales-Ramos, J.A.; Tomberlin, J.K.; Miranda, C.; Rojas, M.G. Rearing Methods of Four Insect Species Intended as Feed, Food, and Food Ingredients: A Review. J. Econ. Entomol. 2024, 117, 1210–1224. [Google Scholar] [CrossRef] [PubMed]
- Hunts, H.J.; Dunkel, F.V.; Thienes, M.J.; Carnegie, N.B. Gatekeepers in the Food Industry: Acceptability of Edible Insects. J. Insects Food Feed 2020, 6, 231–243. [Google Scholar] [CrossRef]
- Kavle, R.R.; Pritchard, E.T.M.; Bekhit, A.E.D.A.; Carne, A.; Agyei, D. Edible Insects: A Bibliometric Analysis and Current Trends of Published Studies (1953–2021). Int. J. Trop. Insect Sci. 2022, 42, 3335–3355. [Google Scholar] [CrossRef]
- Finke, M.D. Complete Nutrient Composition of Commercially Raised Invertebrates Used as Food for Insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional Composition and Safety Aspects of Edible Insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected Species of Edible Insects as a Source of Nutrient Composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Jayanegara, A.; Sholikin, M.M.; Sabila, D.A.N.; Suharti, S.; Astuti, D.A. Lowering Chitin Content of Cricket (Gryllus assimilis) through Exoskeleton Removal and Chemical Extraction and Its Utilization as a Ruminant Feed in Vitro. Pak. J. Biol. Sci. 2017, 20, 523–529. [Google Scholar] [CrossRef]
- Soares Araújo, R.R.; dos Santos Benfica, T.A.R.; Ferraz, V.P.; Moreira Santos, E. Nutritional Composition of Insects Gryllus assimilis and Zophobas morio: Potential Foods Harvested in Brazil. J. Food Compos. Anal. 2019, 76, 22–26. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; Raffaelli, N.; et al. Bread Enriched with Cricket Powder (Acheta domesticus): A Technological, Microbiological and Nutritional Evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of Sex on the Nutritional Value of House Cricket, Acheta domestica L. Food Chem. 2019, 272, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Mishyna, M.; Martinez, J.J.I.; Chen, J.; Davidovich-Pinhas, M.; Benjamin, O. Heat-Induced Aggregation and Gelation of Proteins from Edible Honey Bee Brood (Apis mellifera) as a Function of Temperature and PH. Food Hydrocoll. 2019, 91, 117–126. [Google Scholar] [CrossRef]
- Orkusz, A. Edible Insects versus Meat—Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef] [PubMed]
- Toribio, E.; Correa, M.J.; Medici, S.K.; Ferrero, C.; Arp, C.G. Characterising Cricket Flour from Gryllus assimilis: An Alternative Source of Nutrients for Sustainability. Int. J. Food Sci. Technol. 2024, 59, 7509–7516. [Google Scholar] [CrossRef]
- Montowska, M.; Kowalczewski, P.Ł.; Rybicka, I.; Fornal, E. Nutritional Value, Protein and Peptide Composition of Edible Cricket Powders. Food Chem. 2019, 289, 130–138. [Google Scholar] [CrossRef]
- Schmidt, A.; Call, L.M.; Macheiner, L.; Mayer, H.K. Determination of Vitamin B 12 in Four Edible Insect Species by Immunoaffinity and Ultra-High Performance Liquid Chromatography. Food Chem. 2019, 281, 124–129. [Google Scholar] [CrossRef]
- Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of Frozen and Dried Formulations from Whole Yellow Mealworm (Tenebrio molitor Larva) as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06778. [Google Scholar] [CrossRef]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Athanassiou, C.G.; Lalas, S.I. Innovative Applications of Tenebrio molitor Larvae in Food Product Development: A Comprehensive Review. Foods 2023, 12, 4223. [Google Scholar] [CrossRef]
- Jantzen da Silva Lucas, A.; Menegon de Oliveira, L.; da Rocha, M.; Prentice, C. Edible Insects: An Alternative of Nutritional, Functional and Bioactive Compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef]
- Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Borkowska, A.; Pieszko, M. Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods 2021, 10, 766. [Google Scholar] [CrossRef]
- Tzompa-Sosa, D.A.; Dewettinck, K.; Provijn, P.; Brouwers, J.F.; de Meulenaer, B.; Oonincx, D.G.A.B. Lipidome of Cricket Species Used as Food. Food Chem. 2021, 349, 129077. [Google Scholar] [CrossRef] [PubMed]
- Kosečková, P.; Zvěřina, O.; Pěchová, M.; Krulíková, M.; Duborská, E.; Borkovcová, M. Mineral Profile of Cricket Powders, Some Edible Insect Species and Their Implication for Gastronomy. J. Food Compos. Anal. 2022, 107, 104340. [Google Scholar] [CrossRef]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as Ingredients for Bakery Goods. A Comparison Study of H. illucens, A. domestica and T. molitor Flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Althwab, S.A.; Alhomaid, R.M.; Ali, R.F.M.; Mohammed El-Anany, A.; Mousa, H.M. Effect of Migratory Locust (Locusta migratoria) Powder Incorporation on Nutritional and Sensorial Properties of Wheat Flour Bread. Br. Food J. 2021, 123, 3576–3591. [Google Scholar] [CrossRef]
- Jonas-Levi, A.; Martinez, J.J.I. The High Level of Protein Content Reported in Insects for Food and Feed Is Overestimated. J. Food Compos. Anal. 2017, 62, 184–188. [Google Scholar] [CrossRef]
- Gonzalez-de la Rosa, T.; Montserrat-de la Paz, S.; Rivero-Pino, F. Production, Characterisation, and Biological Properties of Tenebrio molitor-Derived Oligopeptides. Food Chem. 2024, 450, 139400. [Google Scholar] [CrossRef]
- Summart, R.; Imsoonthornruksa, S.; Yongsawatdigul, J.; Ketudat-Cairns, M.; Udomsil, N. Characterization and Molecular Docking of Tetrapeptides with Cellular Antioxidant and ACE Inhibitory Properties from Cricket (Acheta domesticus) Protein Hydrolysate. Heliyon 2024, 10, e35156. [Google Scholar] [CrossRef]
- Anuduang, A.; Mustapha, W.A.W.; Lim, S.J.; Jomduang, S.; Phongthai, S.; Ounjaijean, S.; Boonyapranai, K. Evaluation of Thai Silkworm (Bombyx mori L.) Hydrolysate Powder for Blood Pressure Reduction in Hypertensive Rats. Foods 2024, 13, 943. [Google Scholar] [CrossRef]
- Bonysana, R.; Singh, K.D.; Devi, W.D.; Koijam, A.S.; Kapesa, K.; Kalita, J.; Mukherjee, P.K.; Rajashekar, Y. Ethno-Entomotherapeutic and Metabolite Profiling of Coridius Chinensis (Dallas), a Traditional Edible Insect Species of North-East India. Sci. Rep. 2024, 14, 6545. [Google Scholar] [CrossRef]
- Triunfo, M.; Guarnieri, A.; Ianniciello, D.; Coltelli, M.B.; Salvia, R.; Scieuzo, C.; De Bonis, A.; Falabella, P. A Comprehensive Characterization of Hermetia illucens Derived Chitosan Produced through Homogeneous Deacetylation. Int. J. Biol. Macromol. 2024, 271, 132669. [Google Scholar] [CrossRef]
- Tocharus, C.; Sutheerawattananonda, M. Hypoglycemic Ability of Sericin-Derived Oligopeptides (SDOs) from Bombyx mori Yellow Silk Cocoons and Their Physiological Effects on Streptozotocin (STZ)-Induced Diabetic Rats. Foods 2024, 13, 2184. [Google Scholar] [CrossRef] [PubMed]
- Eun, S.Y.; Do Park, G.; Cheon, Y.H.; Lee, M.S.; Cho, H.J.; Kim, J.Y. Inhibition of Receptor Activator of Nuclear Factor Kappa-B Ligand-Mediated Osteoclast Differentiation and Bone Resorption by Gryllus Bimaculatus Extract: An in Vitro Study. J. Cell. Biochem. 2024, 125, e30518. [Google Scholar] [CrossRef] [PubMed]
- Suk, W.; Kim, J.E.; Kim, D.Y.; Lim, H.; Choue, R. Effect of Wheat Flour Noodles with Bombyx mori Powder on Glycemic Response in Healthy Subjects. Prev. Nutr. Food Sci. 2016, 21, 165–170. [Google Scholar] [CrossRef] [PubMed]
- de la Sánchez-Estrada, M.L.; Aguirre-Becerra, H.; Feregrino-Pérez, A.A. Bioactive Compounds and Biological Activity in Edible Insects: A Review. Heliyon 2024, 10, e24045. [Google Scholar] [CrossRef] [PubMed]
- Tarahi, M.; Hedayati, S.; Niakousari, M. Supplementation of Cereal Products with Edible Insects: Nutritional, Techno-Functional, and Sensory Properties. Food Rev. Int. 2024, 40, 3398–3423. [Google Scholar] [CrossRef]
- Dziki, D. Current Trends in Enrichment of Wheat Pasta: Quality, Nutritional Value and Antioxidant Properties. Processes 2021, 9, 1280. [Google Scholar] [CrossRef]
- Cornicelli, M.; Saba, M.; Machello, N.; Silano, M.; Neuhold, S. Nutritional Composition of Gluten-Free Food versus Regular Food Sold in the Italian Market. Dig. Liver Dis. 2018, 50, 1305–1308. [Google Scholar] [CrossRef]
- Fajardo, V.; González, M.P.; Martínez, M.; de Samaniego-Vaesken, M.L.; Achón, M.; Úbeda, N.; Alonso-Aperte, E. Updated Food Composition Database for Cereal-Based Gluten Free Products in Spain: Is Reformulation Moving On? Nutrients 2020, 12, 2369. [Google Scholar] [CrossRef]
- Tsafrakidou, P.; Michaelidou, A.M.; Biliaderis, C.G. Fermented Cereal-Based Products: Nutritional Aspects, Possible Impact on Gut Microbiota and Health Implications. Foods 2020, 9, 734. [Google Scholar] [CrossRef]
- Dall’Asta, M.; Angelino, D.; Paolella, G.; Dodi, R.; Pellegrini, N.; Martini, D. Nutritional Quality of Wholegrain Cereal-Based Products Sold on the Italian Market: Data from the FLIP Study. Nutrients 2022, 14, 798. [Google Scholar] [CrossRef]
- Carcea, M.; Cubadda, R.; Marconi, E. Durum Wheat Milling and Pasta. In ICC Handbook of 21st Century Cereal Science and Technology; Shewry, P.R., Koskel, H., Taylor, J.R.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 345–352. ISBN 9780323952958. [Google Scholar]
- Cato, L. Asian Noodles. In ICC Handbook of 21st Century Cereal Science and Technology; Shewry, P.R., Koskel, H., Taylor, J.R.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 337–344. ISBN 9780323952958. [Google Scholar]
- Gooding, M.J. Wheat. In ICC Handbook of 21st Century Cereal Science and Technology; Shewry, P.R., Koskel, H., Taylor, J.R.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 121–130. ISBN 9780323952958. [Google Scholar]
- Nazari, V.; Pasqualone, A.; Pieroni, A.; Todisco, V.; Belardinelli, S.; Pievani, T. Evolution of the Italian Pasta Ripiena: The First Steps toward a Scientific Classification. Discov. Food 2024, 4, 57. [Google Scholar] [CrossRef]
- Aravind, N.; Sissons, M.; Fellows, C.M.; Blazek, J.; Gilbert, E.P. Optimisation of Resistant Starch II and III Levels in Durum Wheat Pasta to Reduce in Vitro Digestibility While Maintaining Processing and Sensory Characteristics. Food Chem. 2013, 136, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, Y.; Dong, Z.; Zhou, W. Structural and Mechanical Characteristics of Bread and Their Impact on Oral Processing: A Review. Int. J. Food Sci. Technol. 2018, 53, 858–872. [Google Scholar] [CrossRef]
- Lin, S.; Gao, J.; Jin, X.; Wang, Y.; Dong, Z.; Ying, J.; Zhou, W. Whole-Wheat Flour Particle Size Influences Dough Properties, Bread Structure and: In Vitro Starch Digestibility. Food Funct. 2020, 11, 3610–3620. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Li, M.; Dhital, S.; Tian, Y.; Guo, B. Texture and Digestion of Noodles with Varied Gluten Contents and Cooking Time: The View from Protein Matrix and Inner Structure. Food Chem. 2020, 315, 126230. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Rizzi, C.; Pasini, G.; Lucini, L.; Giuberti, G.; Simonato, B. Effect of Moringa Oleifera L. Leaf Powder Addition on the Phenolic Bioaccessibility and on in Vitro Starch Digestibility of Durum Wheat Fresh Pasta. Foods 2020, 9, 628. [Google Scholar] [CrossRef]
- Arp, C.G.; Correa, M.J.; Ferrero, C. Resistant Starches: A Smart Alternative for the Development of Functional Bread and Other Starch-Based Foods. Food Hydrocoll. 2021, 121, 106949. [Google Scholar] [CrossRef]
- Romano, A.; Ferranti, P.; Gallo, V.; Masi, P. New Ingredients and Alternatives to Durum Wheat Semolina for a High Quality Dried Pasta. Curr. Opin. Food Sci. 2021, 41, 249–259. [Google Scholar] [CrossRef]
- Betrouche, A.; Estivi, L.; Colombo, D.; Pasini, G.; Benatallah, L.; Brandolini, A.; Hidalgo, A. Antioxidant Properties of Gluten-Free Pasta Enriched with Vegetable By-Products. Molecules 2022, 27, 8993. [Google Scholar] [CrossRef]
- Oliveira, B.C.C.; Machado, M.; Machado, S.; Costa, A.S.G.; Bessada, S.; Alves, R.C.; Oliveira, M.B.P.P. Algae Incorporation and Nutritional Improvement: The Case of a Whole-Wheat Pasta. Foods 2023, 12, 3039. [Google Scholar] [CrossRef]
- Dhital, S.; Warren, F.J.; Butterworth, P.J.; Ellis, P.R.; Gidley, M.J. Mechanisms of Starch Digestion by α-Amylase—Structural Basis for Kinetic Properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 875–892. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Manson, J.; Liu, S. Glycemic Index, Glycemic Load, and Risk of Type 2 Diabetes. Am. J. Clin. Nutr. 2002, 76, 274S–280S. [Google Scholar] [CrossRef] [PubMed]
- Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi, C.L.; Urbanski, P.; et al. Nutrition Therapy Recommendations for the Management of Adults with Diabetes. Diabetes Care 2014, 37, 120–143. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Hey, S.J. The Contribution of Wheat to Human Diet and Health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Duda, A.; Adamczak, J.; Chelminska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and Nutritional/Textural Properties of Durum Wheat Pasta Enriched with Cricket Powder. Foods 2019, 8, 46. [Google Scholar] [CrossRef]
- Çabuk, B.; Yılmaz, B. Fortification of Traditional Egg Pasta (Erişte) with Edible Insects: Nutritional Quality, Cooking Properties and Sensory Characteristics Evaluation. J. Food Sci. Technol. 2020, 57, 2750–2757. [Google Scholar] [CrossRef]
- Piazza, L.; Ratti, S.; Girotto, F.; Cappellozza, S. Silkworm Pupae Derivatives as Source of High Value Protein Intended for Pasta Fortification. J. Food Sci. 2023, 88, 341–355. [Google Scholar] [CrossRef]
- Hidalgo, A.; Cullere, M.; Dalle Zotte, A.; Pasini, G. Salt-Soluble Protein Extracts from Hermetia illucens and Bombyx mori for High Protein Pasta Production. LWT 2023, 190, 115507. [Google Scholar] [CrossRef]
- Musika, J.; Kapcum, C.; Itthivadhanapong, P.; Musika, T.; Hanmontree, P.; Piayura, S. Enhancing Nutritional and Functional Properties of Gluten-Free Riceberry Rice Pasta Supplemented with Cricket Powder Using D-Optimal Mixture Design. Front. Sustain. Food Syst. 2024, 8, 1417045. [Google Scholar] [CrossRef]
- Wannasupchue, W.; Wongthahan, P. Amino Acid Composition and Chemical Properties of Protein Noodles Incorporated with Cricket (Gryllus bimaculatus De Geer) Powder. Int. Food Res. J. 2024, 31, 368–377. [Google Scholar] [CrossRef]
- Carpentieri, S.; Orkusz, A.; Ferrari, G.; Harasym, J. Effect of Replacing Durum Wheat Semolina with Tenebrio molitor Larvae Powder on the Techno-Functional Properties of the Binary Blends; The Techno-Functional Properties of Durum Wheat and Tenebrio molitor Binary Blends. Curr. Res. Food Sci. 2024, 8, 100672. [Google Scholar] [CrossRef] [PubMed]
- Gkinali, A.A.; Matsakidou, A.; Paraskevopoulou, A. Assessing the Emulsifying Properties of Tenebrio molitor Larvae Protein Preparations: Impact of Storage, Thermal, and Freeze-Thaw Treatments on o/w Emulsion Stability. Int. J. Biol. Macromol. 2023, 250, 126165. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, A.; Cardone, G.; Jucker, C.; Savoldelli, S.; Marti, A. Technological Performance of Cricket Powder (Acheta domesticus L.) in Wheat-Based Formulations. Insects 2022, 13, 546. [Google Scholar] [CrossRef] [PubMed]
- Bruttomesso, M.; Bianchi, F.; Pasqualoni, I.; Rizzi, C.; Simonato, B. Evaluation of the Technological and Compositional Features of Pancakes Fortified with Acheta domesticus. LWT 2024, 199, 116073. [Google Scholar] [CrossRef]
- Aboge, D.O.; Orinda, M.A.; Konyole, S.O. Effect of Partial Substitution of Soybean Flour with Cricket Flour on the Nutritional Composition, in Vitro-Protein Digestibility and Functional Properties of Complementary Porridge Flour. Int. J. Trop. Insect Sci. 2022, 42, 1137–1145. [Google Scholar] [CrossRef]
- Adedeji, O.E.; Lee, H.E.; Kim, Y.; Kang, H.J.; Kang, M.D.; Kim, J.Y.; Kim, J.S.; Ezekiel, O.O.; Kim, W.C.; Lee, S.J.; et al. Three-Dimensional Printing of Wheat Flour and Acheta domesticus Powder Blends. Int. J. Food Sci. Technol. 2022, 57, 6279–6285. [Google Scholar] [CrossRef]
- Hahn, D.H. Application of Rheology in the Pasta Industry. In Dough Rheology and Baked Product Texture; Springer: Boston, MA, USA, 1990; pp. 385–404. [Google Scholar] [CrossRef]
- Dhiraj, B.; Prabhasankar, P. Influence of Wheat-Milled Products and Their Additive Blends on Pasta Dough Rheological, Microstructure, and Product Quality Characteristics. Int. J. Food Sci. 2013, 2013, 538070. [Google Scholar] [CrossRef]
- Ho, I.; Peterson, A.; Madden, J.; Huang, E.; Amin, S.; Lammert, A. Will It Cricket? Product Development and Evaluation of Cricket (Acheta domesticus) Powder Replacement in Sausage, Pasta, and Brownies. Foods 2022, 11, 3128. [Google Scholar] [CrossRef]
- Pasini, G.; Cullere, M.; Vegro, M.; Simonato, B.; Dalle Zotte, A. Potentiality of Protein Fractions from the House Cricket (Acheta domesticus) and Yellow Mealworm (Tenebrio molitor) for Pasta Formulation. LWT 2022, 164, 113638. [Google Scholar] [CrossRef]
- Biró, B.; Fodor, R.; Szedljak, I.; Pásztor-Huszár, K.; Gere, A. Buckwheat-Pasta Enriched with Silkworm Powder: Technological Analysis and Sensory Evaluation. LWT 2019, 116, 108542. [Google Scholar] [CrossRef]
- Sanz, T.; Martínez-Cervera, S.; Salvador, A.; Fiszman, S.M. Resistant Starch Content and Glucose Release of Different Resistant Starch Commercial Ingredients: Effect of Cooking Conditions. Eur. Food Res. Technol. 2010, 231, 655–662. [Google Scholar] [CrossRef]
- Bellary, A.N.; Indiramma, A.R.; Prakash, M.; Baskaran, R.; Rastogi, N.K. Anthocyanin Infused Watermelon Rind and Its Stability during Storage. Innov. Food Sci. Emerg. Technol. 2016, 33, 554–562. [Google Scholar] [CrossRef]
- Jakab, I.; Tormási, J.; Dhaygude, V.; Mednyánszky, Z.S.; Sipos, L.; Szedljak, I. Cricket Flour-Laden Millet Flour Blends’ Physical and Chemical Composition and Adaptation in Dried Pasta Products. Acta Aliment. 2020, 49, 4–12. [Google Scholar] [CrossRef]
- Thongkaew, C.; Singthong, J.; Klangsinsirikul, S. Properties of Insect Protein Concentrate and Potential Application in Seasoned Rice Noodles. Food Sci. Technol. Int. 2024, 30, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Kiiru, S.; Ng’ang’a, J.; Konyole, S.; Roos, N.; Hetzer, B.; Marel, A.; Orkusz, A.; Harasym, J.; Kinyuru, J. Physicochemical Characterisation and Impact of Gryllus Bimaculatus Addition on Gluten-free Flour Blends. Int. J. Food Sci. Technol. 2024, 59, 4620–4634. [Google Scholar] [CrossRef]
- Barrena, R.; Sánchez, M. Neophobia, Personal Consumer Values and Novel Food Acceptance. Food Qual. Prefer. 2013, 27, 72–84. [Google Scholar] [CrossRef]
- Lombardi, A.; Vecchio, R.; Borrello, M.; Caracciolo, F.; Cembalo, L. Willingness to Pay for Insect-Based Food: The Role of Information and Carrier. Food Qual. Prefer. 2019, 72, 177–187. [Google Scholar] [CrossRef]
- Toti, E.; Massaro, L.; Kais, A.; Aiello, P.; Palmery, M.; Peluso, I. Entomophagy: A Narrative Review on Nutritional Value, Safety, Cultural Acceptance and a Focus on the Role of Food Neophobia in Italy. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 628–643. [Google Scholar] [CrossRef]
- Ho, I.; Peterson, A.; Madden, J.; Wai, K.; Lesniauskas, R.; Garza, J.; Gere, A.; Amin, S.; Lammert, A. The Crick-Eatery: A Novel Approach to Evaluate Cricket (Acheta domesticus) Powder Replacement in Food Products through Product Eating Experience and Emotional Response. Foods 2022, 11, 4115. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, E.; Ibarra-Herrera, C.C.; Pérez-Carrillo, E. Effect of Incorporation of Solid-State Fermented Edible Insects Tenebrio molitor and Sphenarium Purpurascens with Aspergillus oryzae in the Elaboration of Bread. LWT 2023, 184, 115003. [Google Scholar] [CrossRef]
- Tharanathan, R.N.; Kittur, F.S. Chitin—The Undisputed Biomolecule of Great Potential. Crit. Rev. Food Sci. Nutr. 2003, 43, 61–87. [Google Scholar] [CrossRef] [PubMed]
Biological Activity | Ingredient | Insect Species | Processing Conditions | Relevant Findings | Study |
---|---|---|---|---|---|
Antioxidant | Whole flour, hydrolysate powders | T. molitor | Flour hydrolyzed with Alcalase or Alcalase and Flavourzyme, as is and after INFOGEST digestion | EC50 of DPPH reducing activity was similar for whole flour and hydrolysates Simulated digestion significantly decreased EC50 of hydrolysates but not in whole flour | [40] |
Fractioned protein hydrolysates | A. domesticus | Flour protein extraction at pH 12 followed by precipitation at pH 4, hydrolyzed with Alcalasa and fractioned with size exclusion and reverse phase chromatography | Size exclusion fractions showed several antioxidant capacities (by DPPH, ABTS, FRAP) | [41] | |
Hydro-alcoholic extract | Coridius chinensis | Hydro-alcoholic (methanol) extraction of room-temperature dried and grounded specimens | Several antioxidant capacities (SOD, GST, DPPH, ABTS) demonstrated in vitro | [43] | |
Decolorated and non-decolorated homogeneous chitosan | H. illucens | Chitin from larvae, pupal exuviae, and adults (biomasses) extraction (mineralization, deproteinization, decoloration) followed by homogeneous deacetylation | Free radical scavenging activity (DPPH) of homogeneous chitosan from H. illucens was similar (non-decolorated) or higher (decolorated) than other common chitosan sources (shiitake fungi and crab shells) | [44] | |
Antihypertensive | Hydrolysate powders | B. mori | Vacuum microwave oven-dried powder hydrolyzed with Alcalase®2.4 L and freeze-dried | LD50 ≥ 2000 mg kg−1 lowering blood pressure effect in hypertensive rats ≥ 100 mg kg−1 | [42] |
Fractioned protein hydrolysates | A. domesticus | Flour protein extraction at pH 12 followed by precipitation at pH 4, hydrolyzed with Alcalasa and fractioned with size exclusion and reverse phase chromatography | All fractions had ACE inhibition activity | [41] | |
Anti-inflammatory | Whole flour, hydrolysate powders | T. molitor | INFOGEST digested whole flour and flour hydrolyzed with Alcalase or Alcalase and Flavourzyme | Digested samples reduced the expression of several pro-inflammatory genes (TNF-α, IFN-γ, and IL-6) on CACO-2 cells in most cases Some increase of anti-inflammatory cytokine IL-4 | [40] |
Hydro-alcoholic extract | C. chinensis | Hydro-alcoholic (methanol) extraction of room-temperature dried and grounded specimens | In vitro protein denaturation inhibition: IC50 1592.3 μg mL−1 crude extract; identification of known anti-inflammatory compounds (palmitoyl ethanolamide and etodolac glucuronide) in extracts | [43] | |
Antimicrobial | Decolorated and non-decolorated homogeneous chitosan | H. illucens | Chitin from larvae, pupal exuviae, and adults (biomasses) extraction (mineralization, deproteinization, decolorating) followed by homogeneous deacetylation | Minimal inhibitory concentration of 0.15 mg mL−1 Higher E. coli inhibitory activity than commercial crustaceans’ chitosan at concentrations higher than 0.3 mg mL−1 | [44] |
Antidiabetic | Sericin-derived oligopeptides (SDO) from silk cocoons | B. mori | Autoclaving, filtering, and proteolysis of the aqueous extract, followed by centrifugation, ultra membrane filtration, and freeze-drying | In a study with male rats, compared to the diabetic control SDO at 50–200 mg kg−1 increased HDL, albumin, and aorta relaxation; decreased blood glucose level, and aorta contraction (at normal control level); recovered pancreas histopathology, and both α and β cells immunohistochemistry features SDO at 100–200 mg kg−1 lowered blood triglycerides, alkaline phosphatase; and increased protein body weight gain, and total proteins compared to diabetic control SDO at 200 mg kg−1 increased insulin level, decrease uric acid, and reduce 50% eye cataracts compared to diabetic control | [45] |
Anti-osteoclastogenic | Insect commercial extract | G. bimaculatus | Not reported | Extracts reduced the receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclast differentiation, osteoclast maturation traits, and osteoclast bone resorption ability without cytotoxic effect on bone marrow macrophages (up to 5 μg mL−1) | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arp, C.G.; Pasini, G. Exploring Edible Insects: From Sustainable Nutrition to Pasta and Noodle Applications—A Critical Review. Foods 2024, 13, 3587. https://doi.org/10.3390/foods13223587
Arp CG, Pasini G. Exploring Edible Insects: From Sustainable Nutrition to Pasta and Noodle Applications—A Critical Review. Foods. 2024; 13(22):3587. https://doi.org/10.3390/foods13223587
Chicago/Turabian StyleArp, Carlos Gabriel, and Gabriella Pasini. 2024. "Exploring Edible Insects: From Sustainable Nutrition to Pasta and Noodle Applications—A Critical Review" Foods 13, no. 22: 3587. https://doi.org/10.3390/foods13223587
APA StyleArp, C. G., & Pasini, G. (2024). Exploring Edible Insects: From Sustainable Nutrition to Pasta and Noodle Applications—A Critical Review. Foods, 13(22), 3587. https://doi.org/10.3390/foods13223587