Impact of Thermophysical and Biological Pretreatments on Antioxidant Properties and Phenolic Profile of Broccoli Stem Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Inoculum Preparation
2.3. Powder Manufacturing
2.3.1. Preliminary Fermentation and Drying Study
2.3.2. Impact of Thermophysical and Biological Pretreatments on Ground Broccoli Stems and Powdered Products
2.4. Characterisation of Intermediate and Final Broccoli Stem Products
2.4.1. Microbial Counts
2.4.2. Physicochemical Properties: Water Activity, Moisture Content, and Soluble Solids
2.4.3. Antioxidant Properties: Total Phenols and Flavonoids and Antiradical Activity
2.4.4. Phenolic Constituents by High Performance Liquid Chromatography (HPLC)
2.5. Cryo-Scanning Electron Microscopy (Cryo-SEM)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Impact of Drying on Fermented and Non-Fermented Broccoli Stems
3.2. Probiotic Properties of Broccoli Waste Powders
3.3. Impact of Thermophysical and Biological Treatments on Broccoli Stem Products
3.3.1. Physicochemical, Antioxidant, and Microstructural Properties of Broccoli Wastes as Affected by Thermophysical and Biological Pretreatments
3.3.2. Impact of Pretreatments on the Properties of Powdered Broccoli Stem Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajković, M.B.; Popović, M.D.; Milinčić, D.; Zdravković, M. Circular economy in food industry. Zaštita Mater. 2020, 61, 229–250. [Google Scholar] [CrossRef]
- FAO; WHO. Sustainable Healthy Diets—Guiding Principles; Food and Agriculture Organization of the United Nations and World Health Organization: Rome, Italy, 2019. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Hyoun Kim, S.; Wong, J.W.C. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xia, Y.; Liu, H.-Y.; Guo, H.; He, X.-Q.; Liu, Y.; Wu, D.-T.; Mai, Y.-H.; Li, H.-B.; Zou, L.; et al. Nutritional values, beneficial effects, and food applications of broccoli (Brassica oleracea var. italica Plenck). Trends Food Sci. Technol. 2022, 119, 288–308. [Google Scholar] [CrossRef]
- FAOSTAT. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 12 September 2024).
- Kaparapu, J.; Pragada, P.M.; Narasimha, M.; Geddada, R. Fruits and Vegetables and its Nutritional Benefits. In Functional Foods and Nutraceuticals; Springer: Cham Switzerland, 2020; pp. 241–260. [Google Scholar]
- Ganesh, K.S.; Sridhar, A.; Vishali, S. Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities-A review. Chemosphere 2022, 287, 132221. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Gómez, V.; González-Barrio, R.; Baenas, N.; Moreno, D.A.; Periago, M.J. Dietary-Fibre-Rich Fractions Isolated from Broccoli Stalks as a Potential Functional Ingredient with Phenolic Compounds and Glucosinolates. Int. J. Mol. Sci. 2022, 23, 13309. [Google Scholar] [CrossRef] [PubMed]
- Mandha, J.; Shumoy, H.; Matemu, A.O.; Raes, K. Characterization of fruit juices and effect of pasteurization and storage conditions on their microbial, physicochemical, and nutritional quality. Food Biosci. 2023, 51, 102335. [Google Scholar] [CrossRef]
- Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L. Impact of Disruption and Drying Conditions on Physicochemical, Functional and Antioxidant Properties of Powdered Ingredients Obtained from Brassica Vegetable By-Products. Foods 2022, 11, 3663. [Google Scholar] [CrossRef]
- Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L. Turning Agri-Food Cooperative Vegetable Residues into Functional Powdered Ingredients for the Food Industry. Sustainability 2020, 12, 1284. [Google Scholar] [CrossRef]
- Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L.; Harasym, J. IV-Range Carrot Waste Flour Enhances Nutritional and Functional Properties of Rice-Based Gluten-Free Muffins. Foods 2024, 13, 1312. [Google Scholar] [CrossRef]
- Singh, L.; Kaur, S.; Aggarwal, P. Techno and bio functional characterization of industrial potato waste for formulation of phytonutrients rich snack product. Food Biosci. 2022, 49, 101824. [Google Scholar] [CrossRef]
- Yao, J.; Chen, W.; Fan, K. Novel Efficient Physical Technologies for Enhancing Freeze Drying of Fruits and Vegetables: A Review. Foods 2023, 12, 4321. [Google Scholar] [CrossRef] [PubMed]
- Miletić, N.; Mitrović, O.; Popović, B.; Nedović, V.; Zlatković, B.; Kandić, M. Polyphenolic Content and Antioxidant Capacity in Fruits of Plum (Prunus domestica L.) Cultivars “Valjevka” and “Mildora” as Influenced by Air Drying. J. Food Qual. 2013, 36, 229–237. [Google Scholar] [CrossRef]
- Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L. Physicochemical, Technological and Functional Properties of Upcycled Vegetable Waste Ingredients as Affected by Processing and Storage. Plant Foods Hum. Nutr. 2023, 78, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xiao, Y.; Lagnika, C.; Li, D.; Liu, C.; Jiang, N.; Song, J.; Zhang, M. A comparative evaluation of nutritional properties, antioxidant capacity and physical characteristics of cabbage (Brassica oleracea var. Capitate var L.) subjected to different drying methods. Food Chem. 2020, 309, 124935. [Google Scholar] [CrossRef]
- Bassey, E.J.; Cheng, J.H.; Sun, D.W. Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends Food Sci. Technol. 2021, 112, 137–148. [Google Scholar] [CrossRef]
- Mohammed, H.H.; Tola, Y.B.; Taye, A.H.; Abdisa, Z.K. Effect of pretreatments and solar tunnel dryer zones on functional properties, proximate composition, and bioactive components of pumpkin (Cucurbita maxima) pulp powder. Heliyon 2022, 8, e10747. [Google Scholar] [CrossRef]
- Ummat, V.; Sivagnanam, S.P.; Rajauria, G.; O’Donnell, C.; Tiwari, B.K. Advances in pre-treatment techniques and green extraction technologies for bioactives from seaweeds. Trends Food Sci. Technol. 2021, 110, 90–106. [Google Scholar] [CrossRef]
- Li, Z.; Teng, J.; Lyu, Y.; Hu, X.; Zhao, Y.; Wang, M. Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917. Molecules 2018, 24, 51. [Google Scholar] [CrossRef]
- Kiczorowski, P.; Kiczorowska, B.; Samolińska, W.; Szmigielski, M.; Winiarska-Mieczan, A. Effect of fermentation of chosen vegetables on the nutrient, mineral, and biocomponent profile in human and animal nutrition. Sci. Rep. 2022, 12, 13422. [Google Scholar] [CrossRef]
- Zdziobek, P.; Jodłowski, G.S.; Strzelec, E.A. Biopreservation and Bioactivation Juice from Waste Broccoli with Lactiplantibacillus plantarum. Molecules 2023, 28, 4594. [Google Scholar] [CrossRef]
- Ye, J.H.; Huang, L.Y.; Terefe, N.S.; Augustin, M.A. Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria. Food Chem. 2019, 286, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F.; Inanloodoghouz, M.; Ghazvineh, S. Influence of microwave pretreatment on the total phenolics, antioxidant activity, moisture diffusivity, and rehydration rate of dried sweet cherry. Food Sci. Nutr. 2023, 11, 7870–7876. [Google Scholar] [CrossRef] [PubMed]
- Md Salim, N.S.; Garièpy, Y.; Raghavan, V. Effects of Processing on Quality Attributes of Osmo-Dried Broccoli Stalk Slices. Food Bioproc. Technol. 2019, 12, 1174–1184. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Aydar, A.Y.; Kutlu, N.; Aslam, R.; Sahni, P.; Mitharwal, S.; Gavahian, M.; Kumar, M.; Raposo, A.; Yoo, S.; et al. Individual and interactive effect of ultrasound pre-treatment on drying kinetics and biochemical qualities of food: A critical review. Ultrason. Sonochem 2023, 92, 106261. [Google Scholar] [CrossRef]
- Zhu, X.; Das, R.S.; Bhavya, M.L.; Garcia-Vaquero, M.; Tiwari, B.K. Acoustic cavitation for agri-food applications: Mechanism of action, design of new systems, challenges and strategies for scale-up. Ultrason Sonochem. 2024, 105, 106850. [Google Scholar] [CrossRef]
- Llavata, B.; García-Pérez, J.V.; Simal, S.; Cárcel, J.A. Innovative pre-treatments to enhance food drying: A current review. Curr. Opin. Food Sci. 2020, 35, 20–26. [Google Scholar] [CrossRef]
- Salehi, F. Physico-chemical properties of fruit and vegetable juices as affected by ultrasound: A review. Int. J. Food Prop. 2020, 23, 1748–1765. [Google Scholar] [CrossRef]
- Barba, F.J.; Mariutti, L.R.B.; Bragagnolo, N.; Mercadante, A.Z.; Barbosa-Cánovas, G.V.; Orlien, V. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends Food Sci. Technol. 2017, 67, 195–206. [Google Scholar] [CrossRef]
- Taheri, M.E.; Salimi, E.; Saragas, K.; Novakovic, J.; Barampouti, E.M.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M. Effect of pretreatment techniques on enzymatic hydrolysis of food waste. Biomass Convers. Biorefin. 2021, 11, 219–226. [Google Scholar] [CrossRef]
- Aamir, M.; Ovissipour, M.; Sablani, S.S.; Rasco, B. Predicting the Quality of Pasteurized Vegetables Using Kinetic Models: A Review. Int. J. Food Sci. 2013, 2013, 271271. [Google Scholar] [CrossRef]
- Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L. Impact of Fermentation Pretreatment on Drying Behaviour and Antioxidant Attributes of Broccoli Waste Powdered Ingredients. Foods 2023, 12, 3526. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.W.; Liong, M.T.; Tsai, Y.C. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. J. Microbiol. 2018, 56, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Seddik, H.A.; Bendali, F.; Gancel, F.; Fliss, I.; Spano, G.; Drider, D. Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics Antimicrob. Proteins 2017, 9, 111–122. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, M.; Adhikari, B. Fruits and vegetable powders. In Handbook of Food Powders; Elsevier: Amsterdam, The Netherlands, 2024; pp. 423–436. [Google Scholar]
- Clifford, P.A. Report on Moisture in Dried Fruit. J. AOAC Int. 1934, 17, 215–228. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzym. 1999, 299, 152–178. [Google Scholar]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant Activity of Apple Peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Luximon-Ramma, A.; Bahorun, T.; Soobrattee, M.A.; Aruoma, O.I. Antioxidant Activities of Phenolic, Proanthocyanidin, and Flavonoid Components in Extracts of Cassia fistula. J. Agric. Food Chem. 2002, 50, 5042–5047. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Caprioli, G.; Nzekoue, F.K.; Giusti, F.; Vittori, S.; Sagratini, G. Optimization of an extraction method for the simultaneous quantification of sixteen polyphenols in thirty-one pulse samples by using HPLC-MS/MS dynamic-MRM triple quadrupole. Food Chem. 2018, 266, 490–497. [Google Scholar] [CrossRef]
- Giusti, F.; Capuano, E.; Sagratini, G.; Pellegrini, N. A comprehensive investigation of the behaviour of phenolic compounds in legumes during domestic cooking and in vitro digestion. Food Chem. 2019, 285, 458–467. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, P.M.; de Leite Júnior, B.R.C.; Martins, E.M.F.; Martins, M.L.; Vieira, É.N.R.; de Barros, F.A.R.; Cristianini, M.; de Almeida Costa, N.; Ramos, A.M. Mango and carrot mixed juice: A new matrix for the vehicle of probiotic lactobacilli. J. Food Sci. Technol. 2021, 58, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef]
- Alp, D.; Bulantekin, Ö. The microbiological quality of various foods dried by applying different drying methods: A review. Eur. Food Res. Technol. 2021, 247, 1333–1343. [Google Scholar] [CrossRef]
- Lewicki, P.P.; Pawlak, G. Effect of Drying on Microstructure of Plant Tissue. Dry. Technol. 2003, 21, 657–683. [Google Scholar] [CrossRef]
- Djantou, E.B.; Mbofung, C.M.F.; Scher, J.; Phambu, N.; Morael, J.D. Alternation drying and grinding (ADG) technique: A novel approach for producing ripe mango powder. LWT Food Sci. Technol. 2011, 44, 1585–1590. [Google Scholar] [CrossRef]
- Santos, P.H.S.; Silva, M.A. Retention of Vitamin C in Drying Processes of Fruits and Vegetables—A Review. Dry. Technol. 2008, 26, 1421–1437. [Google Scholar] [CrossRef]
- Gulati, T.; Datta, A.K. Mechanistic understanding of case-hardening and texture development during drying of food materials. J. Food Eng. 2015, 166, 119–138. [Google Scholar] [CrossRef]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H.E. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef]
- Yang, X.; Hong, J.; Wang, L.; Cai, C.; Mo, H.; Wang, J.; Fang, X.; Liao, Z. Effect of Lactic Acid Bacteria Fermentation on Plant-Based Products. Fermentation 2024, 10, 48. [Google Scholar] [CrossRef]
- Knez, E.; Kadac-Czapska, K.; Grembecka, M. Effect of Fermentation on the Nutritional Quality of the Selected Vegetables and Legumes and Their Health Effects. Life 2023, 13, 655. [Google Scholar] [CrossRef] [PubMed]
- Buckenhueskes, H.J. Quality improvement and fermentation control in vegetables. In Advances in Fermented Foods and Beverages: Improving Quality, Technologies and Health Benefits; Woodhead Publishing: Sawston, UK, 2015; pp. 515–539. [Google Scholar]
- Chin, S.; Siew, E.; Soon, W. Drying characteristics and quality evaluation of kiwi slices under hot air natural convective drying method. Int. Food Res. J. 2015, 22, 2188–2195. [Google Scholar]
- Chen, M.L.; Yang, D.J.; Liu, S.C. Effects of drying temperature on the flavonoid, phenolic acid and antioxidative capacities of the methanol extract of citrus fruit (Citrus sinensis (L.) Osbeck) peels. Int. J. Food Sci. Technol. 2011, 46, 1179–1185. [Google Scholar] [CrossRef]
- Bernaert, N.; De Clercq, H.; Van Bockstaele, E.; De Loose, M.; Van Droogenbroeck, B. Antioxidant changes during postharvest processing and storage of leek (Allium ampeloprasum var. porrum). Postharvest Biol. Technol. 2013, 86, 8–16. [Google Scholar] [CrossRef]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Effect of vacuum-drying, hot air-drying and freeze-drying on polyphenols and antioxidant capacity of lemon (Citrus limon) pomace aqueous extracts. Int. J. Food Sci. Technol. 2017, 52, 880–887. [Google Scholar] [CrossRef]
- Lutz, M.; Hernández, J.; Henríquez, C. Phenolic content and antioxidant capacity in fresh and dry fruits and vegetables grown in Chile. CYTA J. Food 2015, 13, 541–547. [Google Scholar]
- Nooshkam, M.; Varidi, M.; Bashash, M. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chem. 2019, 275, 644–660. [Google Scholar] [CrossRef]
- Honda, M.; Kageyama, H.; Hibino, T.; Ichihashi, K.; Takada, W.; Goto, M. Isomerization of Commercially Important Carotenoids (Lycopene, β-Carotene, and Astaxanthin) by Natural Catalysts: Isothiocyanates and Polysulfides. J. Agric. Food Chem. 2020, 68, 3228–3237. [Google Scholar] [CrossRef]
- Chamberlain, M.C.; O’Flaherty, S.; Cobián, N.; Barrangou, R. Metabolomic Analysis of Lactobacillus acidophilus, L. gasseri, L. crispatus, and Lacticaseibacillus rhamnosus Strains in the Presence of Pomegranate Extract. Front. Microbiol. 2022, 13, 863228. [Google Scholar] [CrossRef]
- Marques, L.G.; Silveira, A.M.; Freire, J.T. Freeze-Drying Characteristics of Tropical Fruits. Dry. Technol. 2006, 24, 457–463. [Google Scholar] [CrossRef]
- Silva-Espinoza, M.A.; Ayed, C.; Foster, T.; Del Mar Camacho, M.; Martínez-Navarrete, N. The Impact of Freeze-Drying Conditions on the Physico-Chemical Properties and Bioactive Compounds of a Freeze-Dried Orange Puree. Foods 2019, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Tylewicz, U.; Nowacka, M.; Rybak, K.; Drozdzal, K.; Dalla Rosa, M.; Mozzon, M. Design of Healthy Snack Based on Kiwifruit. Molecules 2020, 25, 3309. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, M.E.; Bornhorst, G.M.; Eim, V.; Rosselló, C.; Simal, S. Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples. Food Chem. 2017, 215, 7–16. [Google Scholar] [CrossRef]
- Rudy, S.; Dziki, D.; Krzykowski, A.; Gawlik-Dziki, U.; Polak, R.; Rózyło, R.; Kulig, R. Influence of pre-treatments and freeze-drying temperature on the process kinetics and selected physico-chemical properties of cranberries (Vaccinium macrocarpon Ait.). LWT Food Sci. Technol. 2015, 63, 497–503. [Google Scholar] [CrossRef]
- Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L. Effect of Processing and In Vitro Digestion on Bioactive Constituents of Powdered IV Range Carrot (Daucus carota, L.). Wastes. Foods 2023, 12, 731. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Niu, L.; Li, D.; Liu, C.; Liu, Y.; Liu, C.; Song, J. Effects of different drying methods on quality, bacterial viability and storage stability of probiotic enriched apple snacks. J. Integr. Agric. 2018, 17, 247–255. [Google Scholar] [CrossRef]
- Champagne, C.P.; Ross, R.P.; Saarela, M.; Hansen, K.F.; Charalampopoulos, D. Recommendations for the viability assessment of probiotics as concentrated cultures and in food matrices. Int. J. Food Microbiol. 2011, 149, 185–193. [Google Scholar] [CrossRef]
- Betoret, E.; Betoret, N.; Arilla, A.; Bennár, M.; Barrera, C.; Codoñer, P.; Fito, P. No invasive methodology to produce a probiotic low humid apple snack with potential effect against Helicobacter pylori. J. Food Eng. 2012, 110, 289–293. [Google Scholar] [CrossRef]
- Shekh, S.L.; Boricha, A.A.; Chavda, J.G.; Vyas, B.R.M. Probiotic potential of lyophilized Lactobacillus plantarum, G.P. Ann Microbiol. 2020, 70, 1–12. [Google Scholar] [CrossRef]
- Rishabh, D.; Athira, A.; Preetha, R.; Nagamaniammai, G. Freeze dried probiotic carrot juice powder for better storage stability of probiotic. J. Food Sci. Technol. 2023, 60, 916–924. [Google Scholar] [CrossRef]
- Bekić Šarić, B. Processing of agricultural products by lyophilization. In Proceedings of the II International Scientific Conference “Sustainable Agriculture and Rural Development”, Belgrade, Serbia, 16–17 December 2021. [Google Scholar]
- Guiné, R.P.F. The Drying of Foods and Its Effect on the Physical-Chemical, Sensorial and Nutritional Properties. ETP Int. J. Food Eng. 2018, 2, 93–100. [Google Scholar] [CrossRef]
- Scherzinger, M.; Kulbeik, T.; Kaltschmitt, M. Autoclave pre-treatment of green wastes—Effects of temperature, residence time and rotation speed on fuel properties. Fuel 2020, 273, 117796. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, D.W.; Cheng, J.H.; Han, Z. Microwave processing techniques and their recent applications in the food industry. Trends Food Sci. Technol. 2017, 67, 236–247. [Google Scholar] [CrossRef]
- Ye, M.; Zhou, H.; Hao, J.; Chen, T.; He, Z.; Wu, F.; Liu, X. Microwave pretreatment on microstructure, characteristic compounds and oxidative stability of Camellia seeds. Ind. Crops Prod. 2021, 161, 113193. [Google Scholar] [CrossRef]
- Kong, F.; Singh, R.P. Chemical Deterioration and Physical Instability of Foods and Beverages. In The Stability and Shelf Life of Food; Elsevier: Amsterdam, The Netherlands, 2016; pp. 43–76. [Google Scholar]
- Rolfe, C.; Daryaei, H. Intrinsic and Extrinsic Factors Affecting Microbial Growth in Food Systems. In Food Safety Engineering; Food Engineering Series; Springer: Cham, Switzerland, 2020; pp. 3–24. [Google Scholar]
- Nimkarde, A.D.; Gopnarayan, S.P.; Vaidya, K.S. Effect of Microwaves on the pH and °Brix value of Cranberry, Grape, Blackberry and Lemon. J. Adv. Appl. Sci. Res. 2022, 4, 74–79. [Google Scholar] [CrossRef]
- Alvi, T.; Khan, M.K.I.; Maan, A.A.; Shahid, M.; Sablani, S. Microwaves as sustainable approach for artificial ripening of date fruit cv. Khupra Reduce Fruit. Waste. Food Biosci. 2023, 54, 102829. [Google Scholar] [CrossRef]
- Malik, F.; Nadeem, M.; Ainee, A.; Kanwal, R.; Sultan, M.; Iqbal, A.; Mahmoud, S.F.; Alshehry, G.A.; Jumayi, H.A.A.L.; Algarni, E.H.A. Quality Evaluation of Lemon Cordial Stored at Different Times with Microwave Heating (Pasteurization). Sustainability 2022, 14, 1953. [Google Scholar] [CrossRef]
- Conesa, C.; Seguí, L.; Laguarda-Miró, N.; Fito, P. Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food Bioprod. Process. 2016, 100, 203–213. [Google Scholar] [CrossRef]
- Shrotri, A.; Kobayashi, H.; Fukuoka, A. Cellulose Depolymerization over Heterogeneous Catalysts. Acc. Chem. Res. 2018, 51, 761–768. [Google Scholar] [CrossRef]
- Liu, H.; Ni, Y.; Yu, Q.; Fan, L. Evaluation of co-fermentation of L. plantarum and P. kluyveri of a plant-based fermented beverage: Physicochemical, functional, and sensory properties. Food Res. Int. 2023, 172, 113060. [Google Scholar] [CrossRef]
- Peng, W.; Meng, D.; Yue, T.; Wang, Z.; Gao, Z. Effect of the apple cultivar on cloudy apple juice fermented by a mixture of Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus fermentum. Food Chem. 2021, 340, 127922. [Google Scholar] [CrossRef] [PubMed]
- Santhirasegaram, V.; Razali, Z.; Somasundram, C. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrason. Sonochem 2013, 20, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Aadil, R.M.; Zeng, X.A.; Wang, M.S.; Liu, Z.W.; Han, Z.; Zhang, Z.H.; Hong, J.; Jabbar, S. A potential of ultrasound on minerals, micro-organisms, phenolic compounds and colouring pigments of grapefruit juice. Int. J. Food Sci. Technol. 2015, 50, 1144–1150. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Q.S.; Wang, X.D.; Hong Z dong Zhao, B. Pretreatment of ultrasound combined vacuum enhances the convective drying efficiency and physicochemical properties of okra (Abelmoschus esculentus). LWT 2019, 112, 108201. [Google Scholar] [CrossRef]
- Santos, N.C.; Almeida, R.L.J.; Albuquerque, J.C.; de Andrade, E.W.V.; Gregório, M.G.; Santos, R.M.S.; Rodrigues, T.J.A.; Carvalho, R.d.O.; Gomes, M.M.d.A.; Moura, H.V.; et al. Optimization of ultrasound pre-treatment and the effect of different drying techniques on antioxidant capacity, bioaccessibility, structural and thermal properties of purple cabbage. Chem. Eng. Process. Process Intensif. 2024, 201, 109801. [Google Scholar] [CrossRef]
- Urquieta-Herrero, M.; Cornejo-Mazón, M.; Gutiérrez-López, G.F.; García-Pinilla, S. Effect of two pasteurization methods on the content of bioactive compounds and antioxidant capacity of nance (Byrsonima crassifolia) pulp and their kinetics of loss during refrigerated storage. Rev. Mex. Ing. Quim. 2021, 20, 663–678. [Google Scholar] [CrossRef]
- Alongi, M. Sviluppo di Alimenti Funzionali Mediante Interventi di Proceso e Formulazione Innovativi e Sostenibili; Università degli Studi di Udine: Udine, Italy, 2020. [Google Scholar]
- Debelo, H.; Li, M.; Ferruzzi, M.G. Processing influences on food polyphenol profiles and biological activity. Curr. Opin. Food Sci. 2020, 32, 90–102. [Google Scholar] [CrossRef]
- Cai, Y.X.; Wang, J.H.; McAuley, C.; Augustin, M.A.; Terefe, N.S. Fermentation for enhancing the bioconversion of glucoraphanin into sulforaphane and improve the functional attributes of broccoli puree. J. Funct. Foods 2019, 61, 103461. [Google Scholar] [CrossRef]
- Meng, F.B.; Lei, Y.T.; Li, Q.Z.; Li, Y.C.; Deng, Y.; Liu, D.Y. Effect of Lactobacillus plantarum and Lactobacillus acidophilus fermentation on antioxidant activity and metabolomic profiles of loquat juice. LWT 2022, 171, 114104. [Google Scholar] [CrossRef]
- Garcia, C.; Remize, F. Lactic acid fermentation of fruit and vegetable juices and smoothies: Innovation and health aspects. In Lactic Acid Bacteria in Food Biotechnology—Innovations and Functional Aspects; Elsevier: Amsterdam, The Netherlands, 2022; pp. 27–46. [Google Scholar]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Hou, F.; Cai, Y.; Wang, J. Antioxidant Capacity Changes and Untargeted Metabolite Profile of Broccoli during Lactic Acid Bacteria Fermentation. Fermentation 2023, 9, 474. [Google Scholar] [CrossRef]
- Bei, Q.; Liu, Y.; Wang, L.; Chen, G.; Wu, Z. Improving free, conjugated, and bound phenolic fractions in fermented oats (Avena sativa L.) with Monascus anka and their antioxidant activity. J. Funct. Foods 2017, 32, 185–194. [Google Scholar] [CrossRef]
- Wu, C.; Li, T.; Qi, J.; Jiang, T.; Xu, H.; Lei, H. Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. LWT 2020, 122, 109064. [Google Scholar] [CrossRef]
- Sapci, Z. The effect of microwave pretreatment on biogas production from agricultural straws. Bioresour. Technol. 2013, 128, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Almaiman, S.A.; Albadr, N.A.; Alsulaim, S.; Alhuthayli, H.F.; Osman, M.A.; Hassan, A.B. Effects of microwave heat treatment on fungal growth, functional properties, total phenolic content, and antioxidant activity of sorghum (Sorghum bicolor L.) grain. Food Chem. 2021, 348, 128979. [Google Scholar] [CrossRef]
- Álvarez, A.; Poejo, J.; Matias, A.A.; Duarte, C.M.M.; Cocero, M.J.; Mato, R.B. Microwave pretreatment to improve extraction efficiency and polyphenol extract richness from grape pomace. Effect on antioxidant bioactivity. Food Bioprod. Process. 2017, 106, 162–170. [Google Scholar] [CrossRef]
- Gupta, Y.; Barrett, B.; Vlachos, D.G. Understanding microwave-assisted extraction of phenolic compounds from diverse food waste feedstocks. Chem. Eng. Process. Process Intensif. 2024, 203, 109870. [Google Scholar] [CrossRef]
- Popoola, O.O. Phenolic compounds composition and in vitro antioxidant activity of Nigerian Amaranthus viridis seed as affected by autoclaving and germination. Meas. Food 2022, 6, 100028. [Google Scholar] [CrossRef]
- Sanchiz, A.; Pedrosa, M.M.; Guillamón, E.; Arribas, C.; Cabellos, B.; Linacero, R.; Cuadrado, C. Influence of boiling and autoclave processing on the phenolic content, antioxidant activity and functional properties of pistachio, cashew and chestnut flours. LWT 2019, 105, 250–256. [Google Scholar] [CrossRef]
- Rojas, M.L.; Kubo, M.T.K.; Caetano-Silva, M.E.; Augusto, P.E.D. Ultrasound processing of fruits and vegetables, structural modification and impact on nutrient and bioactive compounds: A review. Int. J. Food Sci. Technol. 2021, 56, 4376–4395. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Men, K.; Li, D.; Wen, T.; Gong, Z.; Sunden, B.; Wu, Z. Application of ultrasound technology in the drying of food products. Ultrason. Sonochem 2020, 63, 104950. [Google Scholar] [CrossRef] [PubMed]
- Rajewska, K.; Mierzwa, D. Influence of ultrasound on the microstructure of plant tissue. Innov. Food Sci. Emerg. Technol. 2017, 43, 117–129. [Google Scholar] [CrossRef]
- Vera Zambrano, M.; Dutta, B.; Mercer, D.G.; MacLean, H.L.; Touchie, M.F. Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review. Trends Food Sci. Technol. 2019, 88, 484–496. [Google Scholar] [CrossRef]
- Prosapio, V.; Norton, I. Influence of osmotic dehydration pre-treatment on oven drying and freeze drying performance. LWT 2017, 80, 401–408. [Google Scholar] [CrossRef]
- Maskan, M. Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. J. Food Eng. 2001, 48, 177–182. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Rybak, K.; Pobiega, K.; Nikodem, A.; Gramza-Michałowska, A. Sustainable Production and Characteristics of Dried Fermented Vegetables. Fermentation 2022, 8, 659. [Google Scholar] [CrossRef]
- Oyinloye, T.M.; Yoon, W.B. Effect of Freeze-Drying on Quality and Grinding Process of Food Produce: A Review. Processes 2020, 8, 354. [Google Scholar] [CrossRef]
- Ramírez-Pulido, B.; Bas-Bellver, C.; Betoret, N.; Barrera, C.; Seguí, L. Valorization of Vegetable Fresh-Processing Residues as Functional Powdered Ingredients. A Review on the Potential Impact of Pretreatments and Drying Methods on Bioactive Compounds and Their Bioaccessibility. Front. Sustain. Food Syst. 2021, 5, 82. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, Y.; Mehmood, A.; Lu, T.; Chen, X. Unraveling the temporal changes of Maillard reaction products and aroma profile in coffee leaves during hot-air drying. J. Food Compos. Anal. 2024, 128, 106055. [Google Scholar] [CrossRef]
- Somjai, C.; Siriwoharn, T.; Kulprachakarn, K.; Chaipoot, S.; Phongphisutthinant, R.; Wiriyacharee, P. Utilization of Maillard reaction in moist-dry-heating system to enhance physicochemical and antioxidative properties of dried whole longan fruit. Heliyon 2021, 7, e07094. [Google Scholar] [CrossRef] [PubMed]
- Réblová, Z. Effect of temperature on the antioxidant activity of phenolic acids. Czech J. Food Sci. 2012, 30, 171–175. [Google Scholar] [CrossRef]
- Parchem, K.; Piekarska, A.; Bartoszek, A. Enzymatic activities behind degradation of glucosinolates. In Glucosinolates: Properties, Recovery, and Applications; Academic Press: Cambridge, MA, USA, 2020; pp. 79–106. [Google Scholar]
- Antal, T. Comparative study of three drying methods: Freeze, hot air-assisted freeze and infrared-assisted freeze modes. Agron. Res. 2015, 13, 863–878. [Google Scholar]
- Vargas, L.; Kapoor, R.; Nemzer, B.; Feng, H. Application of different drying methods for evaluation of phytochemical content and physical properties of broccoli, kale, and spinach. LWT 2022, 155, 112892. [Google Scholar] [CrossRef]
- Zura-Bravo, L.; Rodriguez, A.; Stucken, K.; Vega-Gálvez, A. Drying kinetics of probiotic-impregnated murta (Ugni molinae T.) berries. J. Food Sci. Technol. 2019, 56, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Oh, J.; Jeong, Y.S. Lactobacillus plantarum-mediated conversion of flavonoid glycosides into flavonols, quercetin, and kaempferol in Cudrania tricuspidata leaves. Food Sci. Biotechnol. 2015, 24, 1817–1821. [Google Scholar] [CrossRef]
- Filannino, P.; Bai, Y.; Di Cagno, R.; Gobbetti, M.; Gänzle, M.G. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiol. 2015, 46, 272–279. [Google Scholar] [CrossRef]
- Vega-Galvez, A.; Uribe, E.; Pasten, A.; Camus, J.; Rojas, M.; Garcia, V.; Araya, M.; Valenzuela-Barra, G.; Zambrano, A.; Goñi, M.G. Low-Temperature Vacuum Drying on Broccoli: Enhanced Anti-Inflammatory and Anti-Proliferative Properties Regarding Other Drying Methods. Foods 2023, 12, 3311. [Google Scholar] [CrossRef]
- Chu, Q.; Li, L.; Duan, X.; Zhao, M.; Wang, Z.; Wang, Z.; Ren, X.; Li, C.; Ren, G. Effect mechanism of different drying methods on the quality and browning for daylily. LWT 2023, 182, 114862. [Google Scholar] [CrossRef]
Treatment | xw (gw/gtotal) | aw | xss (gss/gdm) |
---|---|---|---|
FRESH | 0.9163 ± 0.0011 f | 0.9932 ± 0.0014 g | 0.69 ± 0.04 de |
FERM | 0.9128 ± 0.0007 f | 0.9920 ± 0.0012 g | 0.654 ± 0.008 bcd |
HAD 50 | 0.054 ± 0.005 a | 0.23 ± 0.02 c | 0.600 ± 0.016 a |
HAD 60 | 0.054 ± 0.002 a | 0.215 ± 0.011 bc | 0.599 ± 0.016 a |
HAD 70 | 0.055 ± 0.003 a | 0.249 ± 0.006 d | 0.61 ± 0.00 ab |
Ferm HAD 50 | 0.093 ± 0.012 c | 0.200 ± 0.006 ab | 0.673 ± 0.017 cde |
Ferm HAD 60 | 0.1075 ± 0.0014 de | 0.193 ± 0.012 a | 0.637 ± 0.017 abc |
Ferm HAD 70 | 0.0991 ± 0.0010 cd | 0.2110 ± 0.0016 bc | 0.64 ± 0.00 abc |
FD | 0.075 ± 0.011 b | 0.280 ± 0.013 e | 0.72 ± 0.00 e |
Ferm FD | 0.115 ± 0.006 e | 0.330 ± 0.013 f | 0.70 ± 0.04 de |
Treatment | xw (gw/gtotal) | aw | xss (gss/gdm) |
---|---|---|---|
FRESH | 0.934 ± 0.004 c | 0.9910 ± 0.0009 ab | 0.66 ± 0.04 b |
PAST | 0.934 ± 0.002 c | 0.9940 ± 0.0013 c | 0.65 ± 5 0.018 b |
AUTO | 0.928 ± 0.004 b | 0.9931 ± 0.0009 bc | 0.66 ± 0.00 b |
MW | 0.913 ± 0.004 a | 0.9947 ± 0.0009 c | 0.678 ± 0.006 c |
FERM | 0.938 ± 0.003 c | 0.990 ± 0.003 a | 0.55 ± 0.08 a |
US | 0.93 ± 0.00 c | 0.9948 ± 0.0014 c | 0.669 ± 0.011 b |
Treatment | Total Phenols (mg GAE/gdm) | Total Flavonoids (mg QE/gdm) | ABTS (mg TE/gdm) | DPPH (mg TE/gdm) |
---|---|---|---|---|
FRESH | 4.2 ± 0.2 a | 2.05 ± 0.17 a | 5.8 ± 0.2 a | 1.01 ± 0.10 a |
PAST | 6.1 ± 0.004 c | 2.58 ± 0.18 b | 9.5 ± 0.4 c | 3.5 ± 0.7 b |
AUTO | 4.05 ± 0.11 a | 4.1 ± 0.2 c | 7.56 ± 0.14 b | 1.9 ± 0.2 a |
MW | 4.8 ± 0.3 ab | 2.02 ± 0.11 a | 7.6 ± 0.3 b | 3.87 ± 0.14 b |
FERM | 5.3 ± 0.3 bc | 2.9 ± 0.3 b | 7.9 ± 0.4 b | 1.43 ± 0.07 a |
US | 5.79 ± 0.18 c | 4.88 ± 0.12 d | 9.2 ± 0.7 c | 3.7 ± 0.2 b |
Treatment | xw (gw/gtotal) | aw | xss (gss/gdm) |
---|---|---|---|
HAD60 | 0.059 ± 0.002 de | 0.243 ± 0.005 b | 0.670 ± 0.016 bcdef |
PAST HAD60 | 0.068 ± 0.002 f | 0.307 ± 0.005 h | 0.655 ± 0.016 abcd |
AUTO HAD60 | 0.060 ± 0.003 e | 0.305 ± 0.005 h | 0.64 ± 0.02 abc |
MW HAD60 | 0.0493 ± 0.0011 c | 0.268 ± 0.006 de | 0.630 ± 0.011 a |
FERM HAD60 | 0.115 ± 0.003 g | 0.302 ± 0.004 gh | 0.631 ± 0.011 a |
US HAD60 | 0.0520 ± 0.0014 cd | 0.26 ± 0.008 cd | 0.688 ± 0.016 def |
FD | 0.033 ± 0.005 a | 0.261 ± 0.008 cd | 0.678 ± 0.011 cdef |
PAST FD | 0.059 ± 0.004 de | 0.2495 ± 0.0017 bc | 0.663 ± 0.016 abcde |
AUTO FD | 0.046 ± 0.004 bc | 0.281 ± 0.006 ef | 0.68 ± 0.02 def |
MW FD | 0.042 ± 0.003 b | 0.260 ± 0.007 cd | 0.70 ± 0.02 f |
FERM FD | 0.057 ± 0.010 de | 0.208 ± 0.005 a | 0.691 ± 0.005 ef |
US FD | 0.048 ± 0.002 bc | 0.290 ± 0.008 fg | 0.64 ± 0.03 ab |
Phenolic Compounds (mg/100 gdm) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydroxycinamic Acids | Hydroxybenzoic Acids | Flavonoids | Total | |||||||||||||||||
Sinapic Acid | Caffeic Acid | p-Coumaric Acid | Ferulic Acid | 4-O-Caffeoyl-Quinic | Trans-Cinnamic Acid | Total | Gallic Acid | 4-Hydroxibezoic Acid | Total | Epicatechin | Quercitin 3-Glucoside | Rutin | Quercitrin | Naringenin | Apigenin-7-Glucoside | Quercetin | Kaempherol | Total | ||
HAD60 | 0.928 ± 0.014 f | 0.609 ± 0.006 a | 0.406 ± 0.002 a | 0.91 ± 0.11 c | 2.1 ± 0.2 c | n.d. | 5.0 ± 0.3 cd | 3.13 ± 0.08 a | n.d. | 3.13 ± 0.08 a | n.d. | 2.5 ± 0.5 d | n.d. | 0.71 ± 0.08 b | n.d. | n.d. | 1.640 ± 0.008 b | n.d. | 4.9 ± 0.6 e | 13.03 ± 0.23 f |
PAST HAD60 | 0.64 ± 0.02 ab | 3.25 ± 0.13 de | 0.570 ± 0.016 cd | 0.75 ± 0.04 b | 0.46 ± 0.03 a | n.d. | 5.7 ± 0.2 de | 5.3 ± 1.7 a | n.d. | 5.3 ± 1.7 a | n.d. | 1.28 ± 0.09 abc | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.28 ± 0.09 ab | 12.3 ± 1.5 f |
AUTO HAD60 | 0.79 ± 0.03 bcdef | 1.4 ± 0.3 b | n.d. | n.d. | 1.148 ± 0.016 b | n.d. | 3.0 ±0.5 a | n.d. | n.d. | n.d. | n.d. | 1.8 ± 0.2 cd | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.8 ± 0.2 bc | 4.9 ± 0.3 a |
MW HAD60 | 0.74 ± 0.08 bcde | 1.64 ± 0.07 bc | 0.53 ± 0.05 c | n.d. | 0.78 ± 0.02 ab | n.d. | 3.64 ± 0.14 ab | n.d. | n.d. | n.d. | n.d. | 1.58 ± 0.05 bc | n.d. | 0.523 ± 0.013 a | n.d. | n.d. | n.d. | n.d. | 2.10 ± 0.03 c | 5.74 ± 0.16 ab |
FERM HAD60 | 0.95 ± 0.02 f | 0.59 ± 0.02 a | n.d. | 1.03 ± 0.06 d | 0.55 ± 0.02 a | n.d. | 3.12 ± 0.11 a | n.d. | n.d. | n.d. | n.d. | 1.624 ± 0.016 bc | 4.89 ± 0.03 b | 0.674 ± 0.015 b | n.d. | n.d. | n.d. | n.d. | 7.18 ± 0.02 f | 10.30 ± 0.14 de |
US HAD60 | 0.68 ± 0.05 abcd | 3.30 ± 0.17 e | 0.466 ± 0.013 b | n.d. | 0.556 ± 0.016 a | n.d. | 4.8 ± 0.3 c | n.d. | n.d. | n.d. | n.d. | 0.73 ± 0.05 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.73 ± 0.05 a | 5.6 ± 0.3 a |
FD | 0.56 ± 0.03 a | 0.634 ± 0.005 a | n.d. | 0.600 ± 0.006 a | 4.59 ± 0.17 d | n.d. | 6.38 ± 0.16 e | n.d. | n.d. | n.d. | n.d. | 0.8252 ± 0.0016 a | n.d. | 1.05 ± 0.10 c | n.d. | n.d. | 1.613 ± 0.002 a | n.d. | 3.40 ± 0.10 d | 9.9 ± 0.2 d |
PAST FD | 0.7 ± 0.3 bcde | 2.0 ± 0.4 c | n.d. | 0.60 ± 0.03 a | n.d. | n.d. | 3.4 ± 0.7 ab | 10 ± 3 b | n.d. | 10 ± 3 b | n.d. | 1.04 ± 0.03 ab | n.d. | 0.53 ± 0.09 a | n.d. | n.d. | n.d. | n.d. | 1.58 ± 0.05 bc | 15 ± 3 ef |
AUTO FD | 0.676 ± 0.012 abc | 0.834 ± 0.006 a | n.d. | 1.615 ± 0.016 f | 1.172 ± 0.014 b | n.d. | 4.29 ± 0.04 bc | n.d. | n.d. | n.d. | n.d. | 3.4 ± 1.2 e | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 3.4 ± 1.2 d | 7.3 ± 1.4 bc |
MW FD | 0.88 ± 0.04 ef | 2.9 ± 0.5 d | 0.58 ± 0.02 d | 1.29 ± 0.04 e | 1.10 ± 0.05 b | n.d. | 6.1 ± 0.8 e | n.d. | n.d. | n.d. | n.d. | 1.60 ± 0.12 bc | n.d. | 0.434 ± 0.013 a | n.d. | n.d. | n.d. | n.d. | 2.03 ± 0.11 c | 8.1 ± 0.8 c |
FERM FD | 0.84 ± 0.10 def | 1.91 ± 0.03 c | 0.409 ± 0.005 a | 0.881 ± 0.006 c | 8.5 ± 0.9 e | n.d. | 13.0 ± 0.9 g | n.d. | n.d. | n.d. | n.d. | 1.85 ± 0.05 cd | 1.7 ± 0.4 a | 0.48 ± 0.05 a | n.d. | n.d. | n.d. | n.d. | 3.82 ± 0.08 d | 16.8 ± 0.8 g |
US FD | 0.80 ± 0.02 cdef | 4.92 ± 0.06 e | 0.609 ± 0.004 d | 1.65 ± 0.05 f | 0.83 ± 0.05 ab | n.d. | 8.6 ± 0.4 f | n.d. | n.d. | n.d. | n.d. | 1.70 ± 0.06 bc | n.d. | 2.015 ± 0.013 d | n.d. | n.d. | n.d. | n.d. | 3.72 ± 0.07 d | 12.3 ± 0.4 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bas-Bellver, C.; Barrera, C.; Seguí, L. Impact of Thermophysical and Biological Pretreatments on Antioxidant Properties and Phenolic Profile of Broccoli Stem Products. Foods 2024, 13, 3585. https://doi.org/10.3390/foods13223585
Bas-Bellver C, Barrera C, Seguí L. Impact of Thermophysical and Biological Pretreatments on Antioxidant Properties and Phenolic Profile of Broccoli Stem Products. Foods. 2024; 13(22):3585. https://doi.org/10.3390/foods13223585
Chicago/Turabian StyleBas-Bellver, Claudia, Cristina Barrera, and Lucía Seguí. 2024. "Impact of Thermophysical and Biological Pretreatments on Antioxidant Properties and Phenolic Profile of Broccoli Stem Products" Foods 13, no. 22: 3585. https://doi.org/10.3390/foods13223585
APA StyleBas-Bellver, C., Barrera, C., & Seguí, L. (2024). Impact of Thermophysical and Biological Pretreatments on Antioxidant Properties and Phenolic Profile of Broccoli Stem Products. Foods, 13(22), 3585. https://doi.org/10.3390/foods13223585