Smart E-Tongue Based on Polypyrrole Sensor Array as Tool for Rapid Analysis of Coffees from Different Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Smart E-Tongue
2.3. Measurement Protocol
2.4. Statistical Analysis
3. Results and Discussion
3.1. Redox Response Mechanism of PPy Sensors
3.2. Evaluation of the Stability and Repeatability of Voltammetric Responses of Sensors
3.3. Assessment of the Cross-Selectivity of the Sensor Array
3.4. Evaluation of Discrimination Capacity of Smart E-Tongue Against Coffee Samples Made with Different Bean Varieties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spence, C.; Carvalho, F. The coffee drinking experience: Product extrinsic (atmospheric) influences on taste and choice. Food Qual. Prefer. 2020, 80, 103802. [Google Scholar] [CrossRef]
- Sporchia, F.; Caro, D.; Bruno, M.; Patrizi, N.; Marchettini, N.; Pulselli, F.M. Estimating the impact on water scarcity due to coffee production, trade, and consumption worldwide and a focus on EU. J. Environ. Manag. 2023, 327, 116881. [Google Scholar] [CrossRef] [PubMed]
- Freitas, V.V.; Rodrigues Borges, L.L.; Teixeira Ribeiro Vidigal, M.C.; dos Santos, M.H.; Stringheta, P.C. Coffee: A comprehensive overview of origin, market, and the quality process. Trends Food Sci. Technol. 2024, 146, 104411. [Google Scholar] [CrossRef]
- Kennedy, S.P.; Gonzales, P.; Roungchun, J. Coffee and tea fraud. In Book Food Fraud—A Global Threat With Public Health and Economic Consequences, 1st ed.; Hellberg, R.S., Everstine, K., Sklare, S.A., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2021; pp. 139–150. [Google Scholar] [CrossRef]
- Kamiloglu, S. Authenticity and traceability in beverages. Food Chem. 2019, 277, 12–24. [Google Scholar] [CrossRef]
- Thorburn Burns, D.; Tweed, L.; Walker, M.J. Ground roast coffee: Review of analytical strategies to estimate geographic origin, species authenticity and adulteration by dilution. Food Anal. Methods 2017, 10, 2302–2310. [Google Scholar] [CrossRef]
- Campmajo, G.; Saez-Vigo, R.; Saurina, J.; Núñez, O. High-performance liquid chromatography with fluorescence detection fingerprinting combined with chemometrics for nut classification and the detection and quantitation of almondbased product adulterations. Food Control 2020, 114, 107265. [Google Scholar] [CrossRef]
- Eloisa, B.; Giulia, S.; Carlo, B.; Erica, L. Industrial food quality and consumer choice: Artificial intelligence-based tools in the chemistry of sensory notes in comfort foods (coffee, cocoa and tea). Trends Food Sci. Technol. 2024, 147, 104415. [Google Scholar] [CrossRef]
- Tavares, K.M.; Lima, A.R.; Nunes, C.A.; Silva, V.A.; Mendes, E.; Casal, S.; Rosemary, G.F.; Pereira, A. Free tocopherols as chemical markers for Arabica coffee adulteration with maize and coffee by-products. Food Control 2016, 70, 318–324. [Google Scholar] [CrossRef]
- Wang, X.; Lim, L.-T.; Fu, Y. Review of Analytical Methods to Detect Adulteration in Coffee. J. AOAC Int. 2020, 1, 11. [Google Scholar] [CrossRef]
- Welna, M.; Szymczycha-Madeja, A.; Zyrnicki, W. Applicability of ICP-OES, UV-VIS, and FT-IR Methods for the Analysis of Coffee Products. Anal. Lett. 2013, 46, 2927–2940. [Google Scholar] [CrossRef]
- Domingues, D.S.; Pauli, E.D.; de Abreu, J.E.; Massura, F.W.; Cristiano, V.; Santos, M.J.; Nixdorf, S.L. Detection of roasted and ground coffee adulteration by HPLC by amperometric and by post-column derivatization UV–Vis detection. Food Chem. 2014, 146, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Munyendo, L.; Njoroge, D.; Hitzmann, B. The Potential of Spectroscopic Techniques in Coffee Analysis—A Review. Processes 2022, 10, 71. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di-Natale, C.; D’Amico, A. Nonspecific Sensor Arrays (“Electronic Tongue”) for Chemical Analysis of Liquids (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Hayashi, K.; Yamanaka, M.; Toko, K.; Yamafuji, K. Multichannel taste sensor using lipid membranes. Sens. Actuators B Chem. 1990, 2, 205–213. [Google Scholar] [CrossRef]
- Feng, C.; Zhao, P.; Wang, L.; Yang, T.; Wu, Y.; Ding, Y.; Hu, A. Fluorescent Electronic Tongue Based on Soluble Conjugated Polymeric Nanoparticles for the Discrimination of Heavy Metal Ions in Aqueous Solution. Polym. Chem. 2019, 10, 2256–2262. [Google Scholar] [CrossRef]
- Winquist, F.; Olsson, J.; Eriksson, M. Multicomponent analysis of drinking water by a voltammetric electronic tongue. Anal. Chim. Acta 2011, 683, 192–197. [Google Scholar] [CrossRef]
- Yang, Z.; Miao, N.; Zhang, X.; Li, Q.; Wang, Z.; Li, C.; Sun, X.; Lan, Y. Employment of an electronic tongue combined with deep learning and transfer learning for discriminating the storage time of Pu-erh tea. Food Control 2021, 121, 107608. [Google Scholar] [CrossRef]
- Ceto, X.; Perez, S. Voltammetric electronic tongue for vinegar fingerprinting. Talanta 2020, 219, 121253. [Google Scholar] [CrossRef]
- Zhu, X.; Li, T.; Hai, X.; Bi, S. A nanozyme-based colorimetric sensor array as electronic tongue for thiols discrimination and disease identification. Biosens. Bioelectron. 2022, 213, 114438. [Google Scholar] [CrossRef]
- Vahdatiyekta, P.; Zniber, M.; Bobacka, J.; Huynh, T.-P. A review on conjugated polymer-based electronic tongues. Anal. Chim. Acta 2022, 1221, 340114. [Google Scholar] [CrossRef]
- Mondal, D.; Equbal, M.Z.; Jain, A.; Mishra, V. Disposable paper-based sensor array for detection of orange juice adulteration. J. Food Meas. Charact. 2024, 18, 5779–5790. [Google Scholar] [CrossRef]
- Rodríguez-Méndez, M.L.; Arrieta, A.A.; De Saja, J.A.; Blanco, C.A.; Nimubona, D. Prediction of bitterness and alcoholic strength in beer using an electronic tongue. Food Chem. 2010, 123, 642–646. [Google Scholar] [CrossRef]
- Pigani, L.; Simone, G.V.; Foca, G.; Ulrici, A.; Masino, F.; Cubillana-Aguilera, L.; Calvini, R.; Seeber, R. Prediction of parameters related to grape ripening by multivariate calibration of voltammetric signals acquired by an electronic tongue. Talanta 2017, 178, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, A.; Nuñez, Y.; Mendoza, J. Mini-electronic Tongue Used to Discriminate between Coffee Samples of Different Geographical Origin. Int. J. Technol. 2020, 11, 288–298. [Google Scholar] [CrossRef]
- Lin, R.; Yuan, H.; Wang, C.; Yang, Q.; Guo, Z. Study on the Flavor Compounds of Fo Tiao Qiang under Different Thawing Methods Based on GC–IMS and Electronic Tongue Technology. Foods 2022, 11, 1330. [Google Scholar] [CrossRef]
- Bakhsh, A.; Lee, S.-J.; Lee, E.-Y.; Hwang, Y.-H.; Joo, S.-T. Characteristics of Beef Patties Substituted by Different Levels of Textured Vegetable Protein and Taste Traits Assessed by Electronic Tongue System. Foods 2021, 10, 2811. [Google Scholar] [CrossRef]
- Halappa Naveen, M.; Ganesh Gurudatt, N.; Shim, Y.-B. Applications of conducting polymer composites to electrochemical sensors: A review. Appl. Mater. Today 2017, 9, 419–433. [Google Scholar] [CrossRef]
- Pang, A.L.; Arsad, A.; Ahmadipour, M. Synthesis and factor affecting on the conductivity of polypyrrole: A short review. Polym. Adv. Technol. 2021, 32, 1428–1454. [Google Scholar] [CrossRef]
- Jain, R.; Jadon, N.; Pawaiya, A. Polypyrrole based next generation electrochemical sensors and biosensors: A review. TrAC Trends Anal. Chem. 2017, 97, 363–373. [Google Scholar] [CrossRef]
- Shrestha, B.K.; Ahmad, R.; Shrestha, S.; Park, C.-H.; Kim, C.-S. In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application. Biosens. Bioelectron. 2017, 94, 686–693. [Google Scholar] [CrossRef]
- Arrieta, A.A.; Díaz, J.A.; Fuentes, O.C. Optimization of the synthesis of polypyrrole for the elaboration of a array of sensors electrochemical (electronic tongue). J. Peru Chem. Soc. 2016, 82, 152–161. [Google Scholar] [CrossRef]
- Gabrieli, G.; Hu, R.; Matsumoto, K.; Temiz, Y.; Bissig, S.; Cox, A.; Heller, R.; López, A.; Barroso, J.; Kaneda, K.; et al. Combining an integrated sensor array with machine learning for the simultaneous quantification of multiple cations in aqueous mixtures. Anal. Chem. 2021, 93, 16853–16861. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez Pineda, E.; Azpeitia, L.A.; Rodríguez Presa, M.J.; Bolzán, A.E.; Gervasi, C.A. Benchmarking electrodes modified with bi-doped polypyrrole for sensing applications. Electrochim. Acta 2023, 444, 142011. [Google Scholar] [CrossRef]
- Liu, B.; Liu, X.; Yuan, Z.; Jiang, Y.; Su, Y.; Ma, J.; Tai, H. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sens. Actuators B Chem. 2019, 295, 86–92. [Google Scholar] [CrossRef]
- Zhong, J.; Zhao, H.; Cheng, Y.; Feng, T.; Lan, M.; Zuo, S. A high-performance electrochemical sensor for the determination of Pb(II) based on conductive dopamine polymer doped polypyrrole hidrogel. J. Electroanal. Chem. 2021, 902, 115815. [Google Scholar] [CrossRef]
- NTC 3566:2011; Café verde. Preparación de Muestras para Uso en Análisis Sensorial. ICONTEC: Bogotá, Colombia, 2011. Available online: https://tienda.icontec.org/gp-cafe-verde-preparacion-de-muestras-para-uso-en-analisis-sensorial-ntc3566-2011.html (accessed on 10 May 2024).
- Arrieta, A.A.; Fuentes, O.; Palencia, M. Android and PSoC Technology Applied to Electronic Tongue Development. J. Appl. Sci. Eng. Technol. 2015, 10, 782–788. [Google Scholar] [CrossRef]
- Arrieta, A.A.; Palencia, M.; Fuentes, O. Miniaturised Multi-Channel System of Electrochemical Measurements for an Electronic Tongue for Milk Samples. Maejo Int. J. Sci. Technol. 2018, 12, 28–35. Available online: https://mijst.mju.ac.th/Vol12/28-35.pdf (accessed on 23 May 2024).
- Arrieta, A.A.; Fuentes, O. Portable Electronic Tongue for the Analysis of Raw Milk Based on PSoC (Programmable System on Chip) and Android Technology. Ingeniare J. Chil. Eng. 2016, 24, 445–453. [Google Scholar] [CrossRef]
- Tietje-Girault, J.; Ponce de León, C.; Walsh, F.C. Electrochemically deposited polypyrrole films and their characterization. Surf. Coat. Technol. 2007, 201, 6025–6034. [Google Scholar] [CrossRef]
- Wallace, G.G.; Spinks, G.M.; Kane-Maguire, L.A.P.; Teasdale, P.R. Conductive Electroactive Polymers: Intelligent Materials Systems, 2nd ed.; CRC Press: Boca ratón, FL, USA, 2002; pp. 89–121. [Google Scholar] [CrossRef]
- Scholz, M.; Fraunholz, M.; Selbig, J. Nonlinear Principal Component Analysis: Neural Network Models and Applications. In Book Lecture Notes in Computational Science and Enginee, 1st ed.; Gorban, A.N., Kégl, B., Wunsch, D.C., Zinovyev, A.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 44–67. [Google Scholar] [CrossRef]
- Wesoły, M.; Ciosek-Skibińska, P. Comparison of various data analysis techniques applied for the classification of pharmaceutical samples by electronic tongue. Sens. Actuators B Chem. 2018, 267, 570–580. [Google Scholar] [CrossRef]
Sensor | Acronym | Counterion Concentration [mol L−1] | Polymerization Time (s) |
---|---|---|---|
S1 | PPy/PC | 0.05 | 60 |
S2 | PPy/FCN | 0.1 | 45 |
S3 | PPy/SF | 0.05 | 70 |
S4 | PPy/SO4 | 0.1 | 50 |
S5 | PPy/DBS | 0.1 | 60 |
S6 | PPy/AQDS | 0.1 | 60 |
S7 | PPy /TSA | 0.05 | 70 |
Sensor | Acronym | Redox Process I | Redox Process II | ||
---|---|---|---|---|---|
Oxidation | Reduction | Oxidation | Reduction | ||
S1 | PPy/PC | −0.48 | - | 0.29 | −0.09 |
S2 | PPy/FCN | −0.51 | −0.83 | 0.98 | −0.21 |
S3 | PPy/SF | - | - | −0.09 | −0.59 |
S4 | PPy/SO4 | −0.33 | −0.60 | 0.11 | - |
S5 | PPy/DBS | −0.46 | −0.57 | 0.26 | −0.02 |
S6 | PPy/AQDS | −0.55 | −0.63 | 0.08 | 0.06 |
S7 | PPy /TSA | - | - | 0.07 | −0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almario, A.A.; Calabokis, O.P.; Barrera, E.A. Smart E-Tongue Based on Polypyrrole Sensor Array as Tool for Rapid Analysis of Coffees from Different Varieties. Foods 2024, 13, 3586. https://doi.org/10.3390/foods13223586
Almario AA, Calabokis OP, Barrera EA. Smart E-Tongue Based on Polypyrrole Sensor Array as Tool for Rapid Analysis of Coffees from Different Varieties. Foods. 2024; 13(22):3586. https://doi.org/10.3390/foods13223586
Chicago/Turabian StyleAlmario, Alvaro Arrieta, Oriana Palma Calabokis, and Eisa Arrieta Barrera. 2024. "Smart E-Tongue Based on Polypyrrole Sensor Array as Tool for Rapid Analysis of Coffees from Different Varieties" Foods 13, no. 22: 3586. https://doi.org/10.3390/foods13223586
APA StyleAlmario, A. A., Calabokis, O. P., & Barrera, E. A. (2024). Smart E-Tongue Based on Polypyrrole Sensor Array as Tool for Rapid Analysis of Coffees from Different Varieties. Foods, 13(22), 3586. https://doi.org/10.3390/foods13223586