Comparative Characterization of Three Homologous Glutathione Transferases from the Weed Lolium perenne
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Cloning
2.2. Bioinformatics and Structural Analysis of LpGSTU25
2.3. Expression and Purification
2.4. Assay of Enzyme Activity, Kinetics Analysis, and Protein Determination
2.5. Site-Saturation Mutagenesis
2.6. Thermal Stability
2.7. Viscosity Dependence of Kinetic Parameters
3. Results and Discussion
3.1. Cloning, Expression, and Substrate Specificity of LpGSTUs
3.2. Kinetic Analysis
3.3. The Effect of Viscosity on Kcat
3.4. The Role of Phe215 in Xenobiotic Substrate Binding and Catalysis
3.5. Effect of Mutations on Structural Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, Q.; Powles, S. Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiol. 2014, 166, 1106–1118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jugulam, M.; Shyam, C. Non-Target-Site Resistance to Herbicides: Recent Developments. Plants 2019, 8, 417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.G.; Tranel, P.J.; Küpper, A.; Dayan, F.E. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 2020, 295, 10307–10330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Busi, R.; Porri, A.; Gaines, T.A.; Powles, S.B. Pyroxasulfone resistance in Lolium rigidum is metabolism-based. Pestic. Biochem. Physiol. 2018, 148, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Scarabel, L.; Panozzo, S.; Loddo, D.; Mathiassen, S.K.; Kristensen, M.; Kudsk, P.; Gitsopoulos, T.; Travlos, I.; Tani, E.; Chachalis, D.; et al. Diversified Resistance Mechanisms in Multi-Resistant Lolium spp. in Three European Countries. Front. Plant Sci. 2020, 11, 608845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suzukawa, A.K.; Bobadilla, L.K.; Mallory-Smith, C.; Brunharo, C.A.C.G. Non-target-Site Resistance in Lolium spp. Globally: A Review. Front. Plant Sci. 2021, 11, 609209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dücker, R.; Zöllner, P.; Lümmen, P.; Ries, S.; Collavo, A.; Beffa, R. Glutathione transferase plays a major role in flufenacet resistance of ryegrass (Lolium spp.) field populations. Pest Manag. Sci. 2019, 75, 3084–3092. [Google Scholar] [CrossRef] [PubMed]
- Goggin, D.E.; Cawthray, G.R.; Flematti, G.R.; Bringans, S.D.; Lim, H.; Beckie, H.J.; Busi, R. Pyroxasulfone-Resistant Annual Ryegrass (Lolium rigidum) Has Enhanced Capacity for Glutathione Transferase-Mediated Pyroxasulfone Conjugation. J. Agric. Food Chem. 2021, 69, 6414–6422. [Google Scholar] [CrossRef] [PubMed]
- Franco-Ortega, S.; Goldberg-Cavalleri, A.; Walker, A.; Brazier-Hicks, M.; Onkokesung, N.; Edwards, R. Non-target Site Herbicide Resistance Is Conferred by Two Distinct Mechanisms in Black-Grass (Alopecurus myosuroides). Front. Plant Sci. 2021, 12, 636652. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goldberg-Cavalleri, A.; Onkokesung, N.; Franco-Ortega, S.; Edwards, R. ABC transporters linked to multiple herbicide resistance in blackgrass (Alopecurus myosuroides). Front. Plant Sci. 2023, 14, 1082761. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mannervik, B.; Ismail, A.; Lindström, H.; Sjödin, B.; Ing, N.H. Glutathione Transferases as Efficient Ketosteroid Isomerases. Front. Mol. Biosci. 2021, 8, 765970. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mannervik, B. Versatility of Glutathione Transferase Proteins. Biomolecules 2023, 13, 1749. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Labrou, N.E.; Papageorgiou, A.C.; Pavli, O.; Flemetakis, E. Plant GSTome: Structure and functional role in xenome network and plant stress response. Curr. Opin. Biotechnol. 2015, 32, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Eichenberger, M.; Schwander, T.; Hüppi, S.; Kreuzer, J.; Mittl, P.R.E.; Peccati, F.; Jiménez-Osés, G.; Naesby, M.; Buller, R.M. The catalytic role of glutathione transferases in heterologous anthocyanin biosynthesis. Nat. Catal. 2023, 6, 927–938. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sylvestre-Gonon, E.; Morette, L.; Viloria, M.; Mathiot, S.; Boutilliat, A.; Favier, F.; Rouhier, N.; Didierjean, C.; Hecker, A. Biochemical and Structural Insights on the Poplar Tau Glutathione Transferase GSTU19 and 20 Paralogs Binding Flavonoids. Front. Mol. Biosci. 2022, 9, 958586. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Zuo, D.; Cheng, H.; Ali, M.; Wu, C.; Ashraf, J.; Zhang, Y.; Feng, X.; Lin, Z.; Wang, Q.; et al. Glutathione S-transferases GhGSTF1 and GhGSTF2 involved in the anthocyanin accumulation in Gossypium hirsutum L. Int. J. Biol. Macromol. 2020, 165 Pt B, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lv, S.; Zhao, L.; Gao, T.; Yu, C.; Hu, J.; Ma, F. Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. Planta 2023, 257, 108. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Zhu, L.; Tan, L.; Gu, L.; Wang, H.; Du, X.; Zhu, B.; Zeng, T.; Wang, C. Genome-Wide Identification Analysis of GST Gene Family in Wild Blueberry Vaccinium duclouxii and Their Impact on Anthocyanin Accumulation. Plants 2024, 13, 1497. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cummins, I.; Cole, D.J.; Edwards, R. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J. 1999, 18, 285–292. [Google Scholar] [CrossRef]
- Cummins, I.; Moss, S.; Cole, D.J.; Edwards, R. Glutathione transferases in herbicide resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Pestic. Sci. 1997, 51, 244–250. [Google Scholar] [CrossRef]
- Parcharidou, E.; Dücker, R.; Beffa, R. Genome-wide study of glutathione transferases and their regulation in flufenacet susceptible and resistant black-grass (Alopecurus myosuroides Huds.). Pest Manag. Sci. 2024, 80, 3035–3046. [Google Scholar] [CrossRef] [PubMed]
- Parcharidou, E.; Dücker, R.; Zöllner, P.; Ries, S.; Orru, R.; Beffa, R. Recombinant glutathione transferases from flufenacet-resistant black-grass (Alopecurus myosuroides Huds.) form different flufenacet metabolites and differ in their interaction with pre- and post-emergence herbicides. Pest Manag. Sci. 2023, 79, 3376–3386. [Google Scholar] [CrossRef] [PubMed]
- Cummins, I.; Wortley, D.J.; Sabbadin, F.; He, Z.; Coxon, C.R.; Straker, H.E.; Sellars, J.D.; Knight, K.; Edwards, L.; Hughes, D.; et al. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc. Natl. Acad. Sci. USA 2013, 110, 5812–5817. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Georgakis, N.; Poudel, N.; Papageorgiou, A.C.; Labrou, N.E. Comparative structural and functional analysis of phi class glutathione transferases involved in multiple-herbicide resistance of grass weeds and crops. Plant Physiol. Biochem. 2020, 149, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Georgakis, N.; Poudel, N.; Vlachakis, D.; Papageorgiou, A.C.; Labrou, N.E. Phi class glutathione transferases as molecular targets towards multiple-herbicide resistance: Inhibition analysis and pharmacophore design. Plant Physiol. Biochem. 2021, 158, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, M.; Eno, R.F.M.; Freitag-Pohl, S.; Coxon, C.R.; Straker, H.E.; Wortley, D.J.; Hughes, D.J.; Mitchell, G.; Moore, J.; Cummins, I.; et al. Flavonoid-based inhibitors of the Phi-class glutathione transferase from black-grass to combat multiple herbicide resistance. Org. Biomol. Chem. 2021, 19, 9211–9222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ioannou, E.; Papageorgiou, A.C.; Labrou, N.E. Directed Evolution of Phi Class Glutathione Transferases Involved in Multiple-Herbicide Resistance of Grass Weeds and Crops. Int. J. Mol. Sci. 2022, 23, 7469. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Monticolo, F.; Colantuono, C.; Chiusano, M.L. Shaping the evolutionary tree of green plants: Evidence from the GST family. Sci. Rep. 2017, 7, 14363. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duan, X.; Yu, X.; Wang, Y.; Fu, W.; Cao, R.; Yang, L.; Ye, X. Genome-wide identification and expression analysis of glutathione S-transferase gene family to reveal their role in cold stress response in cucumber. Front. Genet. 2022, 13, 1009883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mashiyama, S.T.; Malabanan, M.M.; Akiva, E.; Bhosle, R.; Branch, M.C.; Hillerich, B.; Jagessar, K.; Kim, J.; Patskovsky, Y.; Seidel, R.D.; et al. Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere. PLoS Biol. 2014, 12, e1001843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Rotter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools. Nucleic Acids Res. 2019, 47, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Gouet, P.; Robert, X.; Courcelle, E. ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 2003, 31, 3320–3323. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- DeLano, L.W. PyMOL: An Open-Source Molecular Graphics Tool. Ccp4 Newsl. Protein Crystallogr. 2002, 40, 82–94. [Google Scholar]
- Chronopoulou, E.G.; Labrou, N.E. Site-saturation mutagenesis: A powerful tool for structure-based design of combinatorial mutation libraries. Curr. Protoc. Protein Sci. 2011, 26, 26.6.1–26.6.10. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.V.; Brown, M.G.; Prentiss, P.G. Handbook of Chemistry and Physics; Weast, R.C., Astle, M.J., Beyer, W.H., Eds.; CRC Press, Inc.: Boca Raton, FL, USA, 1985; pp. D-219–D-269. [Google Scholar]
- Lallement, P.A.; Brouwer, B.; Keech, O.; Hecker, A.; Rouhier, N. The still mysterious roles of cysteine-containing glutathione transferases in plants. Front. Pharmacol. 2014, 5, 192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Axarli, I.; Ataya, F.; Labrou, N.E. Repurposing Glutathione Transferases: Directed Evolution Combined with Chemical Modification for the Creation of a Semisynthetic Enzyme with High Hydroperoxidase Activity. Antioxidants 2023, 13, 41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Axarli, I.; Muleta, A.W.; Vlachakis, D.; Kossida, S.; Kotzia, G.; Maltezos, A.; Dhavala, P.; Papageorgiou, A.C.; Labrou, N.E. Directed evolution of Tau class glutathione transferases reveals a site that regulates catalytic efficiency and masks co-operativity. Biochem. J. 2016, 473, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, D. Glutathione and glutathione-dependent enzymes: From biochemistry to gerontology and successful aging. Ageing Res. Rev. 2023, 92, 102066. [Google Scholar] [CrossRef] [PubMed]
- Sharapov, M.G.; Gudkov, S.V.; Lankin, V.Z. Hydroperoxide-Reducing Enzymes in the Regulation of Free-Radical Processes. Biochemistry 2021, 86, 1256–1274. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.S.; Singh, S.P.; Singhal, P.; Horne, D.; Singhal, J.; Awasthi, S. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling. Toxicol. Appl. Pharmacol. 2015, 289, 361–370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, H.; Wang, B.; Han, Y.; Li, S. The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants. J. Exp. Bot. 2020, 71, 3405–3416. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.C.; Mieyal, J.J. Glutathione and Glutaredoxin-Key Players in Cellular Redox Homeostasis and Signaling. Antioxidants 2023, 12, 1553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arora, R. Glucosinolate Hydrolytic Products-A Multi-Arm Warrior. J. AOAC Int. 2024, 107, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dourado, D.F.; Mannervik, B. Evolution of the active site of human glutathione transferase A2-2 for enhanced activity with dietary isothiocyanates. Biochim. Biophys. Acta 2015, 1850, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.; Fraichard, S.; Grassein, P.; Delarue, P.; Senet, P.; Nicolaï, A.; Chavanne, E.; Mucher, E.; Artur, Y.; Ferveur, J.F.; et al. Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification. Insect Biochem. Mol. Biol. 2018, 95, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Ricci, G.; Caccuri, A.M.; Lo Bello, M.; Rosato, N.; Mei, G.; Nicotra, M.; Chiessi, E.; Mazzetti, A.P.; Federici, G. Structural flexibility modulates the activity of human glutathione transferase P1-1. Role of helix 2 flexibility in the catalytic mechanism. J. Biol. Chem. 1996, 271, 16187–16192. [Google Scholar] [CrossRef] [PubMed]
- Caccuri, A.M.; Ascenzi, P.; Antonini, G.; Parker, M.W.; Oakley, A.J.; Chiessi, E.; Nuccetelli, M.; Battistoni, A.; Bellizia, A.; Ricci, G. Structural flexibility modulates the activity of human glutathione transferase P1-1. Influence of a poor co-substrate on dynamics and kinetics of human glutathione transferase. J. Biol. Chem. 1996, 271, 16193–16198. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, R. Kinetic Behavior of Glutathione Transferases: Understanding Cellular Protection from Reactive Intermediates. Biomolecules 2024, 14, 641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roy, Z.; Bansal, R.; Siddiqui, L.; Chaudhary, N. Understanding the Role of Free Radicals and Antioxidant Enzymes in Human Diseases. Curr. Pharm. Biotechnol. 2023, 24, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Luthra, R.; Roy, A. Role of Medicinal Plants against Neurodegenerative Diseases. Curr. Pharm. Biotechnol. 2022, 23, 123–139. [Google Scholar] [CrossRef] [PubMed]
Substrate | Special Activity (U/mg) | ||
---|---|---|---|
LpGSTU-25.1 | LpGSTU-5 | LpGSTU-2 | |
CDNB (1-chloro-2.4 dinitrobenzene) | 66.3 | 2.0 | 2.7 |
NBD-chloride (4-Chloro-7-nitrobenzofurazan) | 3.9 | 2.5 | 0.6 |
pNBD (p-Nitrobenzyl-Chloride) | 9.8 | 9.5 | 2.1 |
CuOOH(Cumene hydroperoxide) | 1.5 | 4.1 | 0.9 |
Tert-butyl-hydroperoxide | 0.5 | 0.8 | 0.4 |
HNE (Trans-2-nonenal) | 7.2 | 20.9 | 0.2 |
2-[2,3-Dichloro-4-(2-methylidenebutanoyl)phenoxy]acetic acid (Ethacrynic acid) | 10.3 | 36.2 | 2.6 |
Trans-4-phenyl-3-buter-2-one | 0.4 | 0.5 | 0.3 |
2.2-Dithiodiethanol | 3.3 | 6.5 | 2.2 |
DHA (Dehydroascorbate) | 20.5 | 160.2 | 0.8 |
AITC (Allyl isothiocyanate) | 5.2 | 25.8 | 6.9 |
PEITC (Phenethyl isothiocyanate) | 19.5 | 48.0 | 1.3 |
Fluorodifen | 0.0 | 0.0 | 0.1 |
Bromosulphopthalein | 24.5 | 90.9 | 0.0 |
Sulphanilamide | 0.0 | 0.0 | 0.1 |
Enzyme | kcat (min−1) | Km (mM) (GSH) | Km (mM) (CDNB) | kcat/Km, (mM−1 min−1) (GSH) | kcat/Km, (mM−1 min1) (CDNB) |
---|---|---|---|---|---|
LpGSTU25 | 6955 ± 140.0 | 1.14 ± 0.12 | 0.28 ± 0.03 | 6100 ± 869.40 | 24,839 ± 3704 |
LpGSTU2 | 63.7 ± 1.2 | 0.46± 0.05 | 0.47 ± 0.03 | 138.5 ± 11.80 | 135.5 ± 13.60 |
Enzyme | kcat (min−1) | Km (mM) (GSH) | S0.5 (mM) 1 (CDNB) | kcat/Km (mM−1 min−1) (GSH) | kcat/S0.5 (mM−1 min1) (CDNB) |
LpGSTU5 | 78.4 ± 9.9 | 0.57 ± 0.03 | 0.10 ± 0.04 | 137.5 ± 10.20 | 784 ± 67.30 |
kcat (min−1) | Κm (mM) (GSH) | Km (mM) (CDNB) | kcat/Km (mM−1 min−1) (GSH) | kcat/Km (mM−1 min−1) (CDNB) | |
---|---|---|---|---|---|
LpGSTU25 | 6955 ± 140.0 | 1.14 ± 0.12 | 0.28 ± 0.03 | 6100 ± 869.4 | 24,839 ± 3704.0 |
Phe215Thr | 1650 ± 27.4 | 1.43 ± 0.16 | 0.31 ± 0.03 | 1153 ± 10.0 | 5322 ± 565.0 |
Phe215Val | 460 ± 7.5 | 1.39 ± 0.13 | 0.29 ± 0.02 | 331 ± 3.1 | 1586 ± 150.0 |
Phe215Ser | 364 ± 6.7 | 1.68 ± 0.14 | 0.33 ± 0.03 | 1103 ± 12.0 | 1103 ± 133.0 |
Phe215Leu | 3.26 ± 1.1 | 1.35 ± 0.12 | 0.25 ± 0.02 | 2.4 ± 0.2 | 13.1 ± 1.2 |
Phe215Arg | 468 ± 6.7 | 1.06 ± 0.17 | 0.92 ± 0.32 | 442 ± 0.3 | 509 ± 189.0 |
Phe215Tyr | 2760 ± 114.0 | 1.03 ± 0.04 | 0.91 ± 0.12 | 2679 ± 182.0 | 3032 ± 585.6 |
Phe215Lys | 1000 ± 34.4 | 1.98 ± 0.30 | 0.77 ± 0.07 | 505 ± 34.0 | 1298 ± 179.9 |
Phe215His | 358 ± 11.8 | 1.41 ± 0.23 | 0.68 ± 0.08 | 254 ± 19.0 | 527 ± 89.3 |
Enzyme | Tm (°C) |
---|---|
LpGSTU25 | 54.1 ± 1.5 |
Phe215Val | 50.3 ± 1.7 |
Phe215His | 58.9 ± 1.6 |
Phe215Thr | 54.9 ± 0.9 |
Phe215Ser | 57.5 ± 0.9 |
Phe215Leu | 51.8 ± 0.6 |
Phe215Lys | 57.0 ± 0.9 |
Phe215Arg | 56.3 ± 0.8 |
Phe215Tyr | 54.8 ± 0.4 |
Enzyme | Inactivation Rate Constants (min−1) | Half-Life (min) | ||
---|---|---|---|---|
Fast Phase | Slow Phase | Fast Phase | Slow Phase | |
LpGSTU25 | 0.231 | 0.004 | 3.0 | 171.5 |
Phe215His | 0.075 | − | 9.3 | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontouri, A.; Ataya, F.S.; Madesis, P.; Labrou, N. Comparative Characterization of Three Homologous Glutathione Transferases from the Weed Lolium perenne. Foods 2024, 13, 3584. https://doi.org/10.3390/foods13223584
Kontouri A, Ataya FS, Madesis P, Labrou N. Comparative Characterization of Three Homologous Glutathione Transferases from the Weed Lolium perenne. Foods. 2024; 13(22):3584. https://doi.org/10.3390/foods13223584
Chicago/Turabian StyleKontouri, Annie, Farid Shokry Ataya, Panagiotis Madesis, and Nikolaos Labrou. 2024. "Comparative Characterization of Three Homologous Glutathione Transferases from the Weed Lolium perenne" Foods 13, no. 22: 3584. https://doi.org/10.3390/foods13223584
APA StyleKontouri, A., Ataya, F. S., Madesis, P., & Labrou, N. (2024). Comparative Characterization of Three Homologous Glutathione Transferases from the Weed Lolium perenne. Foods, 13(22), 3584. https://doi.org/10.3390/foods13223584