Development of Plant-Based Burgers with Partial Replacement of Texturized Soy Protein by Agaricus bisporus: Effects on Physicochemical and Sensory Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant-Based Burger Preparation
2.3. Chemical Composition
2.4. Texture Profile Analysis
2.5. Instrumental Color Analysis
2.6. Cooking Yield and Shrinkage Analysis
2.7. pH and Water Activity (aW) Analysis
2.8. Sensory Analysis: Acceptance Test and Check-All-That-Apply (CATA)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. pH and aW
3.3. Instrumental Color
3.4. Texture Profile
3.5. Shrinkage and Cooking Yield
3.6. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szenderák, J.; Fróna, D.; Rákos, M. Consumer Acceptance of Plant-Based Meat Substitutes: A Narrative Review. Foods 2022, 11, 1274. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.J. Plant-Based Animal Product Alternatives Are Healthier and More Environmentally Sustainable than Animal Products. Future Foods 2022, 6, 100174. [Google Scholar] [CrossRef]
- Boukid, F.; Rosell, C.M.; Rosene, S.; Bover-Cid, S.; Castellari, M. Non-Animal Proteins as Cutting-Edge Ingredients to Reformulate Animal-Free Foodstuffs: Present Status and Future Perspectives. Crit. Rev. Food Sci. Nutr. 2022, 62, 6390–6420. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Huang, Y.; Liu, Y.; Xiong, Y.; Wang, X.; Tong, L.; Wang, F.; Fan, B.; Bai, X. Relationship between Soybean Protein Isolate and Textural Properties of Texturized Vegetable Protein. Molecules 2023, 28, 7465. [Google Scholar] [CrossRef] [PubMed]
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050; FAO: Rome, Italy, 2018. [Google Scholar]
- Zhang, T.; Dou, W.; Zhang, X.; Zhao, Y.; Zhang, Y.; Jiang, L.; Sui, X. The Development History and Recent Updates on Soy Protein-Based Meat Alternatives. Trends Food Sci. Technol. 2021, 109, 702–710. [Google Scholar] [CrossRef]
- Ribeiro, G.; Piñero, M.-Y.; Parle, F.; Blanco, B.; Roman, L. Optimizing Screw Speed and Barrel Temperature for Textural and Nutritional Improvement of Soy-Based High-Moisture Extrudates. Foods 2024, 13, 1748. [Google Scholar] [CrossRef]
- Lai, W.T.; Khong, N.M.H.; Lim, S.S.; Hee, Y.Y.; Sim, B.I.; Lau, K.Y.; Lai, O.M. A Review: Modified Agricultural by-Products for the Development and Fortification of Food Products and Nutraceuticals. Trends Food Sci. Technol. 2017, 59, 148–160. [Google Scholar] [CrossRef]
- Atila, F.; Owaid, M.N.; Shariati, M.A. The Nutritional and Medical Benefits of Agaricus Bisporus: A Review. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 281–286. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Kolonas, A.; Mourtakos, S.; Androutsos, O.; Gortzi, O. Nutritional Composition and Biological Properties of Sixteen Edible Mushroom Species. Appl. Sci. 2022, 12, 8074. [Google Scholar] [CrossRef]
- Helm, C.V.; Coradin, J.H.; Kestring, D.R. Avaliação Da Composição Química Dos Cogumelos Comestíveis Agaricus Bisporus, Agaricus Brasiliensis, Agaricus Bisporus Portobello, Lentinula Edodes e Pleorotus Ostreatus. Comun. Técnico Embrapa Florestas 2009, 1, 1–7. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Association of Official Analytical Chemists—Official Methods of Analysis, 18th ed.; AOAC: Rockville, MD, USA, 2010. [Google Scholar]
- Bourne, M.C. Food Texture and Viscosity: Concept and Measurement Academic; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Berry, B.W. Low Fat Level Effects on Sensory, Shear, Cooking, and Chemical Properties of Ground Beef Patties. J. Food Sci. 1992, 57, 537. [Google Scholar] [CrossRef]
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to Balance the Effect of Order of Presentation and First-Order Carry-over Effects in Hall Tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Academic Press: Cambridge, MA, USA, 2004; pp. 1–374. [Google Scholar] [CrossRef]
- Sissons, J.; Davila, M.; Du, X. Sautéing and Roasting Effect on Free Amino Acid Profiles in Portobello and Shiitake Mushrooms, and the Effect of Mushroom- and Cooking-Related Volatile Aroma Compounds on Meaty Flavor Enhancement. Int. J. Gastron. Food Sci. 2022, 28, 100550. [Google Scholar] [CrossRef]
- Zhang, Y.; Brouwer, R.; Sala, G.; Scholten, E.; Stieger, M. Exploring Relationships between Juiciness Perception, Food and Bolus Properties of Plant-Based Meat Analogue and Beef Patties. Food Hydrocoll. 2024, 147, 109443. [Google Scholar] [CrossRef]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A Review of Research on Plant-Based Meat Alternatives: Driving Forces, History, Manufacturing, and Consumer Attitudes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 12610. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef]
- Vu, G.; Zhou, H.; McClements, D.J. Impact of Cooking Method on Properties of Beef and Plant-Based Burgers: Appearance, Texture, Thermal Properties, and Shrinkage. J. Agric. Food Res. 2022, 9, 100355. [Google Scholar] [CrossRef]
- Tóth, A.J.; Dunay, A.; Battay, M.; Illés, C.B.; Bittsánszky, A.; Süth, M. Microbial Spoilage of Plant-Based Meat Analogues. Appl. Sci. 2021, 11, 8309. [Google Scholar] [CrossRef]
- Flory, J.; Xiao, R.; Li, Y.; Dogan, H.; Talavera, M.J.; Alavi, S. Understanding Protein Functionality and Its Impact on Quality of Plant-Based Meat Analogues. Foods 2023, 12, 3232. [Google Scholar] [CrossRef]
- Fiorentini, M.; Kinchla, A.J.; Nolden, A.A. Role of Sensory Evaluation in Consumer Acceptance of Plant-Based Meat Analogs and Meat Extenders: A Scoping Review. Foods 2020, 9, 1334. [Google Scholar] [CrossRef] [PubMed]
- Vila-Clarà, G.; Vila-Martí, A.; Vergés-Canet, L.; Torres-Moreno, M. Exploring the Role and Functionality of Ingredients in Plant-Based Meat Analogue Burgers: A Comprehensive Review. Foods 2024, 13, 1258. [Google Scholar] [CrossRef] [PubMed]
- Birke Rune, C.J.; Song, Q.; Clausen, M.P.; Giacalone, D. Consumer Perception of Plant-Based Burger Recipes Studied by Projective Mapping. Future Foods 2022, 6, 100168. [Google Scholar] [CrossRef]
- Noguerol, A.T.; Pagán, M.J.; García-Segovia, P.; Varela, P. Green or Clean? Perception of Clean Label Plant-Based Products by Omnivorous, Vegan, Vegetarian and Flexitarian Consumers. Food Res. Int. 2021, 149, 110652. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, N.; Ahmed, M.A.; Verma, A.K.; Umaraw, P.; Mehta, N.; Abubakar, A.A.; Hayat, M.N.; Kaka, U.; Lee, S.J.; et al. Technological Interventions in Improving the Functionality of Proteins during Processing of Meat Analogs. Front. Nutr. 2022, 9, 1044024. [Google Scholar] [CrossRef]
- Zahari, I.; Östbring, K.; Purhagen, J.K.; Rayner, M. Plant-Based Meat Analogues from Alternative Protein: A Systematic Literature Review. Foods 2022, 11, 2870. [Google Scholar] [CrossRef]
- Godschalk-Broers, L.; Sala, G.; Scholten, E. Meat Analogues: Relating Structure to Texture and Sensory Perception. Foods 2022, 11, 2227. [Google Scholar] [CrossRef]
(%) | Control | M5% | M10% | M15% | M20% | SEM | SIG |
---|---|---|---|---|---|---|---|
Moisture | 53.4 c | 53.3 c | 56.0 b | 57.3 a | 57.6 a | 0.4 | *** |
Fat | 16.1 a | 16.3 a | 16.4 a | 14.9 a | 15.2 a | 0.3 | n.s. |
Protein | 12.1 a | 11.3 ab | 11.0 ab | 11.3 ab | 9.5 b | 0.2 | * |
Ash | 2.6 a | 2.5 b | 2.5 b | 2.5 b | 2.4 c | 0.01 | *** |
Control | M5% | M10% | M15% | M20% | SEM | SIG | |
---|---|---|---|---|---|---|---|
Color | 7.2 a | 7.3 a | 7.1 ab | 7.0 ab | 6.5 b | 0.2 | n.s. |
Aroma | 6.9 a | 6.9 a | 6.9 a | 6.6 a | 6.6 a | 0.3 | * |
Flavor | 6.7 a | 6.7 a | 6.8 a | 6.8 a | 6.5 a | 0.3 | * |
Texture | 6.6 a | 6.7 a | 6.9 a | 6.7 a | 6.7 a | 0.1 | * |
Overall acceptance | 6.9 a | 6.9 a | 7.0 a | 7.0 a | 6.6 a | 0.2 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hollweg, G.; Trindade, P.C.O.; dos Santos, B.A.; Padilha, M.; Fracari, P.R.; Rosa, S.C.; Cichoski, A.J.; Campagnol, P.C.B. Development of Plant-Based Burgers with Partial Replacement of Texturized Soy Protein by Agaricus bisporus: Effects on Physicochemical and Sensory Properties. Foods 2024, 13, 3583. https://doi.org/10.3390/foods13223583
Hollweg G, Trindade PCO, dos Santos BA, Padilha M, Fracari PR, Rosa SC, Cichoski AJ, Campagnol PCB. Development of Plant-Based Burgers with Partial Replacement of Texturized Soy Protein by Agaricus bisporus: Effects on Physicochemical and Sensory Properties. Foods. 2024; 13(22):3583. https://doi.org/10.3390/foods13223583
Chicago/Turabian StyleHollweg, Géssica, Pamela Cristiele Oliveira Trindade, Bibiana Alves dos Santos, Milena Padilha, Priscila Rossato Fracari, Sarita Correa Rosa, Alexandre José Cichoski, and Paulo Cezar Bastianello Campagnol. 2024. "Development of Plant-Based Burgers with Partial Replacement of Texturized Soy Protein by Agaricus bisporus: Effects on Physicochemical and Sensory Properties" Foods 13, no. 22: 3583. https://doi.org/10.3390/foods13223583
APA StyleHollweg, G., Trindade, P. C. O., dos Santos, B. A., Padilha, M., Fracari, P. R., Rosa, S. C., Cichoski, A. J., & Campagnol, P. C. B. (2024). Development of Plant-Based Burgers with Partial Replacement of Texturized Soy Protein by Agaricus bisporus: Effects on Physicochemical and Sensory Properties. Foods, 13(22), 3583. https://doi.org/10.3390/foods13223583