Visualization of Moisture Content, Reducing Sugars, and Chewiness in Bread During Oral Processing Based on Hyperspectral Imaging Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Bread Making
2.3. Bread Collection
2.4. Physiochemical Indicators Analysis of Bolus
2.4.1. Measurement of Moisture Content
2.4.2. Measurement of Reducing Sugars Content
2.4.3. Measurement of Chewiness
2.5. Hyperspectral Image Acquisition and Processing
2.6. Visualization of MC, RS, and Chewiness
2.7. Contrast Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Bread Moisture Content, Reducing Sugars, and Chewiness
3.2. Spectral Characteristics and Preprocessing
3.3. Establishment of Regression Model
3.4. Visual Distribution
3.5. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dror, Y.; Rimon, E.; Vaida, R. Whole-Wheat Bread for Human Health; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Prieto-Vázquez del Mercado, P.; Mojica, L.; Morales-Hernández, N. Protein ingredients in bread: Technological, textural and health implications. Foods 2022, 11, 2399. [Google Scholar] [CrossRef] [PubMed]
- Ijarotimi, O.S.; Fakayejo, D.A.; Oluwajuyitan, T.D. Nutritional characteristics, glycaemic index and blood glucose lowering property of gluten-free composite flour from wheat (Triticum aestivum), soybean (Glycine max), oat-bran (Avena sativa) and rice-bran (Oryza sativa). Appl. Food Res. 2021, 1, 100022. [Google Scholar] [CrossRef]
- Mollakhalili-Meybodi, N.; Sheidaei, Z.; Khorshidian, N.; Nematollahi, A.; Khanniri, E. Sensory attributes of wheat bread: A review of influential factors. J. Food Meas. Charact. 2023, 17, 2172–2181. [Google Scholar] [CrossRef]
- Gómez, M.; Gutkoski, L.C.; Bravo-Núñez, Á. Understanding whole-wheat flour and its effect in breads: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3241–3265. [Google Scholar] [CrossRef]
- Drakula, S.; Novotni, D.; Mustač, N.Č.; Voučko, B.; Krpan, M.; Hruškar, M.; Ćurić, D. Alteration of phenolics and antioxidant capacity of gluten-free bread by yellow pea flour addition and sourdough fermentation. Food Biosci. 2021, 44, 101424. [Google Scholar] [CrossRef]
- Tóth, M.; Kaszab, T.; Meretei, A. Texture profile analysis and sensory evaluation of commercially available gluten-free bread samples. Eur. Food Res. Technol. 2022, 248, 1447–1455. [Google Scholar] [CrossRef]
- Jekle, M.; Fuchs, A.; Becker, T. A normalized texture profile analysis approach to evaluate firming kinetics of bread crumbs independent from its initial texture. J. Cereal Sci. 2018, 81, 147–152. [Google Scholar] [CrossRef]
- Cabello-Olmo, M.; Krishnan, P.G.; Araña, M.; Oneca, M.; Díaz, J.V.; Barajas, M.; Rovai, M. Development, Analysis, and Sensory Evaluation of Improved Bread Fortified with a Plant-Based Fermented Food Product. Foods 2023, 12, 2817. [Google Scholar] [CrossRef]
- Brown, W.E. The use of mastication analysis to examine the dynamics of oral breakdown of food contributing to perceived texture. In Characterization of Food; Elsevier: Amsterdam, The Netherlands, 1995; pp. 309–327. [Google Scholar]
- Gao, J.; Zhou, W. Oral processing of bread: Implications of designing healthier bread products. Trends Food Sci. Technol. 2021, 112, 720–734. [Google Scholar] [CrossRef]
- Peyron, M.-A. Oral Physiology and Mastication. In Food Texturology: Measurement and Perception of Food Textural Properties; Springer: Berlin/Heidelberg, Germany, 2023; pp. 65–93. [Google Scholar]
- Sharma, M.; Pondicherry, K.S.; Duizer, L. Understanding relations between rheology, tribology, and sensory perception of modified texture foods. J. Texture Stud. 2022, 53, 327–344. [Google Scholar] [CrossRef]
- Ribes, S.; Talens, P. Correlating instrumental measurements and sensory perceptions of foods with different textural properties for people with impaired oral and swallowing capabilities–A review. Food Res. Int. 2023, 173, 113472. [Google Scholar] [CrossRef] [PubMed]
- Puerta, P.; Garzón, R.; Rosell, C.M.; Fiszman, S.; Laguna, L.; Tárrega, A. Modifying gluten-free bread’s structure using different baking conditions: Impact on oral processing and texture perception. LWT 2021, 140, 110718. [Google Scholar] [CrossRef]
- Pu, D.; Zhang, Y.; Sun, B.; Ren, F.; Zhang, H.; Chen, H.; Tang, Y. Characterization of the key taste compounds during bread oral processing by instrumental analysis and dynamic sensory evaluation. LWT 2021, 138, 110641. [Google Scholar] [CrossRef]
- Mosca, A.C.; Moretton, M.; Angelino, D.; Pellegrini, N. Effect of presence of gluten and spreads on the oral processing behavior of breads. Food Chem. 2022, 373, 131615. [Google Scholar] [CrossRef]
- Faridi Esfanjani, A.; Mohebbi, M. The strategy of odor−taste−texture interactions to produce low salt bread: Oral processing and sensory properties. Cereal Chem. 2023, 100, 384–392. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Q.; Mao, Q. Effect of modifying pumpkin preparation on oral processing of breads. J. Texture Stud. 2024, 55, e12827. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Xia, Y.; Inagaki, T.; Tsuchikawa, S. Non-destructive and fast method of mapping the distribution of the soluble solids content and pH in kiwifruit using object rotation near-infrared hyperspectral imaging approach. Postharvest Biol. Technol. 2021, 174, 111440. [Google Scholar] [CrossRef]
- Tian, X.Y.; Aheto, J.H.; Dai, C.; Ren, Y.; Bai, J.W. Monitoring microstructural changes and moisture distribution of dry-cured pork: A combined confocal laser scanning microscopy and hyperspectral imaging study. J. Sci. Food Agric. 2021, 101, 2727–2735. [Google Scholar] [CrossRef]
- Ouyang, Q.; Yang, Y.; Park, B.; Kang, R.; Wu, J.; Chen, Q.; Guo, Z.; Li, H.J. A novel hyperspectral microscope imaging technology for rapid evaluation of particle size distribution in matcha. J. Food Eng. 2020, 272, 109782. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Chen, Y.; Cui, Q.; Li, L.; Ning, J.; Zhang, Z. Spatial distribution of total polyphenols in multi-type of tea using near-infrared hyperspectral imaging. LWT 2021, 148, 111737. [Google Scholar] [CrossRef]
- Gao, S.; Xu, J. Hyperspectral imaging for prediction and distribution visualization of total acidity and hardness of red globe grapes. Food Sci. 2023, 44, 327–336. [Google Scholar]
- Tian, X.Y.; Aheto, J.H.; Bai, J.W.; Dai, C.; Ren, Y.; Chang, X. Quantitative analysis and visualization of moisture and anthocyanins content in purple sweet potato by Vis–NIR hyperspectral imaging. J. Food Process. Preserv. 2021, 45, e15128. [Google Scholar] [CrossRef]
- Gao, P.; Li, W.; Hashim, S.B.; Liang, J.; Xu, J.; Huang, X.; Zou, X.; Shi, J. Distributional uniformity quantification in heterogeneous prepared dishes combined the hyperspectral imaging technology with Moran’s I: A case study of pizza. Food Chem. 2024, in press. [Google Scholar] [CrossRef]
- Wei, Q.; Pan, C.; Pu, H.; Sun, D.-W.; Shen, X.; Wang, Z.J.F.C. Prediction of freezing point and moisture distribution of beef with dual freeze-thaw cycles using hyperspectral imaging. Food Chem. 2024, 456, 139868. [Google Scholar] [CrossRef]
- Shimada, R.; Yoshimura, M. Effect of resistant starch type 4 from different starch sources on the physical properties and palatability of bread. J. Biorheol. 2021, 35, 10–17. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Aheto, J.H.; Xu, F.; Dai, C.; Ren, Y.; Wang, L.; Yu, S. Rapid non-destructive monitoring and quality assessment of the fumigation process of Shanxi aged vinegar based on Vis-NIR hyperspectral imaging combined with multiple chemometric algorithms. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 320, 124539. [Google Scholar] [CrossRef] [PubMed]
- ElMasry, G.; Wang, N.; Vigneault, C. Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biol. Technol. 2009, 52, 1–8. [Google Scholar] [CrossRef]
- Yu, K.; Zhao, Y.; Li, X.; Shao, Y.; Zhu, F.; He, Y. Identification of crack features in fresh jujube using Vis/NIR hyperspectral imaging combined with image processing. Comput. Electron. Agric. 2014, 103, 1–10. [Google Scholar] [CrossRef]
- Yu, S.; Huang, X.; Xu, F.; Ren, Y.; Dai, C.; Tian, X.; Wang, L.; Zhang, X. Production monitoring and quality characterization of black garlic using Vis-NIR hyperspectral imaging integrated with chemometrics strategies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 326, 125182. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Dai, C. Generalized and hetero two-dimensional correlation analysis of hyperspectral imaging combined with three-dimensional convolutional neural network for evaluating lipid oxidation in pork. Food Control 2023, 153, 109940. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Dai, C. Multi-task convolutional neural network for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed pork using hyperspectral imaging. Meat Sci. 2023, 201, 109196. [Google Scholar] [CrossRef]
- Boulet, J.-C.; Bertrand, D.; Mazerolles, G.; Sabatier, R.; Roger, J.-M. A family of regression methods derived from standard PLSR. Chemom. Intell. Lab. Syst. 2013, 120, 116–125. [Google Scholar] [CrossRef]
- Gunst, R.F.; Mason, R.L. Regression Analysis and Its Application: A Data-Oriented Approach; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Das, D.; Naskar, R. Image splicing detection using low-dimensional feature vector of texture features and Haralick features based on Gray Level Co-occurrence Matrix. Signal Process. Image Commun. 2024, 125, 117134. [Google Scholar] [CrossRef]
- Tebben, L.; Shen, Y.; Li, Y. Improvers and functional ingredients in whole wheat bread: A review of their effects on dough properties and bread quality. Trends Food Sci. Technol. 2018, 81, 10–24. [Google Scholar] [CrossRef]
- Rashed, M.S.; Pathania, S.; Gallagher, E.; Frias, J.M.; McDonagh, C.; Crofton, E. Textural characterisation of wheat–oat breads using a combination of quantitative descriptive analysis and partial napping profiling techniques. Int. J. Food Sci. Technol. 2024, 59, 8501–8511. [Google Scholar] [CrossRef]
- Jia, M.; Yu, Q.; Chen, J.; He, Z.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Physical quality and in vitro starch digestibility of biscuits as affected by addition of soluble dietary fiber from defatted rice bran. Food Hydrocoll. 2020, 99, 105349. [Google Scholar] [CrossRef]
- Sun, L.; Miao, M. Dietary polyphenols modulate starch digestion and glycaemic level: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Pentikäinen, S.; Koistinen, V.; Kolehmainen, M.; Poutanen, K.; Hanhineva, K.; Aura, A.-M. Mastication-induced release of compounds from rye and wheat breads to saliva. Food Chem. 2019, 270, 502–508. [Google Scholar] [CrossRef]
- Wang, X.; Lao, X.; Bao, Y.; Guan, X.; Li, C. Effect of whole quinoa flour substitution on the texture and in vitro starch digestibility of wheat bread. Food Hydrocoll. 2021, 119, 106840. [Google Scholar] [CrossRef]
- Huang, G.; McClements, D.J.; He, K.; Zhang, Z.; Lin, Z.; Xu, Z.; Zou, Y.; Jin, Z.; Chen, L. Review of formation mechanisms and quality regulation of chewiness in staple foods: Rice, noodles, potatoes and bread. Food Res. Int. 2024, 187, 114459. [Google Scholar] [CrossRef]
- Majzoobi, M.; Raiss Jalali, A.; Farahnaky, A. Impact of whole oat flour on dough properties and quality of fresh and stored part-baked bread. J. Food Qual. 2016, 39, 620–626. [Google Scholar] [CrossRef]
- Feng, Y.; Zhu, Y.; Wang, Z.; Li, X. Effects of whole quinoa flour addition on the pasting property, dough rheology, and steam bread textural property of wheat flour. Int. Food Res. J. 2023, 30, 1212–1220. [Google Scholar] [CrossRef]
- Liu, D.; Sun, D.-W.; Zeng, X.-A. Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry. Food Bioprocess Technol. 2014, 7, 307–323. [Google Scholar] [CrossRef]
- Badaró, A.T.; Morimitsu, F.L.; Ferreira, A.R.; Clerici, M.T.P.S.; Barbin, D.F. Identification of fiber added to semolina by near infrared (NIR) spectral techniques. Food Chem. 2019, 289, 195–203. [Google Scholar] [CrossRef]
- Saavedra, R.B.; Cruz-Tirado, J.; Figueroa-Avalos, H.M.; Barbin, D.F.; Amigo, J.M.; Siche, R. Prediction of physicochemical properties of cape gooseberry (Physalis peruviana L.) using near infrared hyperspectral imaging (NIR-HSI). J. Food Eng. 2024, 371, 111991. [Google Scholar] [CrossRef]
- Iqbal, A.; Sun, D.-W.; Allen, P. Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system. J. Food Eng. 2013, 117, 42–51. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, S.; Wu, J.; Zhang, C.; Xu, F.; Yang, X.; Li, J. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 254, 119666. [Google Scholar] [CrossRef]
- Osborne, B.G. Near-infrared spectroscopy in food analysis. In Encyclopedia of Analytical Chemistry Applications, Theory and Instrumentation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar]
- de Souza Zangirolami, M.; Moreira, T.F.M.; Leimann, F.V.; Valderrama, P.; Março, P.H. Texture profile and short-NIR spectral vibrations relationship evaluated through Comdim: The case study for animal and vegetable proteins. Food Control 2023, 143, 109290. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, M.; Mujumdar, A.S.; Wang, D. Non-destructive quality determination of frozen food using NIR spectroscopy-based machine learning and predictive modelling. J. Food Eng. 2023, 343, 111374. [Google Scholar] [CrossRef]
- Laguna, L.; Fiszman, S.; Tarrega, A. Saliva matters: Reviewing the role of saliva in the rheology and tribology of liquid and semisolid foods. Relation to in-mouth perception. Food Hydrocoll. 2021, 116, 106660. [Google Scholar] [CrossRef]
- Gao, J.; Ong, J.J.-X.; Henry, J.; Zhou, W.J. Physical breakdown of bread and its impact on texture perception: A dynamic perspective. Food Qual. Prefer. 2017, 60, 96–104. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Kang, W.; Ma, C.; Waterhouse, G.I. Towards human well-being through proper chewing and safe swallowing: Multidisciplinary empowerment of food design. J. Future Foods 2021, 1, 1–24. [Google Scholar] [CrossRef]
- Puerta, P.; Laguna, L.; Villegas, B.; Rizo, A.; Fiszman, S.; Tárrega, A. Oral processing and dynamics of texture perception in commercial gluten-free breads. Food Res. Int. 2020, 134, 109233. [Google Scholar] [CrossRef]
- Gao, J.; Wong, J.X.; Lim, J.C.-S.; Henry, J.; Zhou, W. Influence of bread structure on human oral processing. J. Food Eng. 2015, 167, 147–155. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Zhao, Y.; Wang, D.; Wang, W. Influence of antioxidant dietary fiber on dough properties and bread qualities: A review. J. Future Foods 2021, 80, 104434. [Google Scholar] [CrossRef]
Bread Type | Formulation |
---|---|
B0 | High-gluten wheat flour 50%, white granulated sugar 6%, pure milk 40%, salt 0.5%, butter 3%, active dry yeast 0.5%, one egg |
B50 | High-gluten wheat flour 25%, whole-wheat flour 25%, white granulated sugar 6%, pure milk 40%, salt 0.5%, butter 3%, active dry yeast 0.5%, one egg |
Models | Type | RMSEC | RMSECV | RMSEP | |||
---|---|---|---|---|---|---|---|
SG-PLSR | MC | 0.9498 | 1.2817 | 0.8890 | 1.9302 | 0.8549 | 2.3551 |
RSs | 0.9106 | 1.3931 | 0.8654 | 1.8316 | 0.8783 | 1.4936 | |
CH | 0.8943 | 4.8045 | 0.8421 | 5.8164 | 0.9012 | 4.6410 | |
GF-PLSR | MC | 0.9476 | 1.3102 | 0.8754 | 2.0831 | 0.8509 | 2.3880 |
RSs | 0.9109 | 1.4409 | 0.8374 | 2.1118 | 0.8374 | 1.7266 | |
CH | 0.8944 | 4.8031 | 0.8470 | 5.5786 | 0.9009 | 4.6472 | |
N-PLSR | MC | 0.9435 | 1.3605 | 0.8472 | 2.9007 | 0.8461 | 2.4259 |
RSs | 0.8834 | 1.6979 | 0.8302 | 2.0787 | 0.8135 | 1.8491 | |
CH | 0.8872 | 4.9634 | 0.8104 | 6.6499 | 0.8968 | 4.7423 | |
SG-PCR | MC | 0.9431 | 1.3642 | 0.8684 | 2.0913 | 0.8558 | 2.3479 |
RSs | 0.8856 | 1.6323 | 0.8438 | 2.1145 | 0.8123 | 1.8549 | |
CH | 0.8923 | 4.8514 | 0.8737 | 5.6536 | 0.8990 | 4.6919 | |
GF-PCR | MC | 0.9430 | 1.3657 | 0.8822 | 2.0189 | 0.8552 | 2.3528 |
RSs | 0.8860 | 1.6296 | 0.7977 | 2.2002 | 0.8120 | 1.8564 | |
CH | 0.8923 | 4.8506 | 0.8366 | 5.6550 | 0.8987 | 4.6980 | |
N-PCR | MC | 0.8926 | 1.8751 | 0.8694 | 2.0305 | 0.8898 | 2.0526 |
RSs | 0.8635 | 1.7832 | 0.7830 | 2.2496 | 0.8034 | 1.8985 | |
CH | 0.8582 | 5.5652 | 0.7884 | 6.9983 | 0.8805 | 5.1040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Fang, Q.; Zhang, X.; Yu, S.; Dai, C.; Huang, X. Visualization of Moisture Content, Reducing Sugars, and Chewiness in Bread During Oral Processing Based on Hyperspectral Imaging Technology. Foods 2024, 13, 3589. https://doi.org/10.3390/foods13223589
Tian X, Fang Q, Zhang X, Yu S, Dai C, Huang X. Visualization of Moisture Content, Reducing Sugars, and Chewiness in Bread During Oral Processing Based on Hyperspectral Imaging Technology. Foods. 2024; 13(22):3589. https://doi.org/10.3390/foods13223589
Chicago/Turabian StyleTian, Xiaoyu, Qin Fang, Xiaorui Zhang, Shanshan Yu, Chunxia Dai, and Xingyi Huang. 2024. "Visualization of Moisture Content, Reducing Sugars, and Chewiness in Bread During Oral Processing Based on Hyperspectral Imaging Technology" Foods 13, no. 22: 3589. https://doi.org/10.3390/foods13223589
APA StyleTian, X., Fang, Q., Zhang, X., Yu, S., Dai, C., & Huang, X. (2024). Visualization of Moisture Content, Reducing Sugars, and Chewiness in Bread During Oral Processing Based on Hyperspectral Imaging Technology. Foods, 13(22), 3589. https://doi.org/10.3390/foods13223589