Peptidomic Analysis of Potential Bioactive Peptides in Mare Milk Under Different Heat Treatment Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Samples
2.2. Extraction of Whey Proteins
2.3. Assessment of Protein Purity Using SDS-PAGE
2.4. Protein Extraction and Peptide Enzymolysis
2.5. Peptide Treatment
2.6. LC–MS/MS Data Acquisition
2.7. Prediction of Bioactive Peptides
2.7.1. Prediction of ACE Inhibitory Peptide Binding
2.7.2. Prediction of Glucosidase Inhibitory Peptide Binding
2.7.3. Prediction of In Vitro Antioxidant Modeling
3. Results
3.1. Assessment of Purity and Molecular Weight of Proteins Using SDS-PAGE
3.2. Amino Acid Changes During Heating
3.3. Effect of Temperature on Molecular Weight and Amino Acid Composition of Potential Polypeptides
3.4. Gene Ontology (GO) Analysis and KEGG Pathway Analysis
3.5. The Difference in Potential Polypeptide Expression Under Different Heat Treatment Conditions
3.6. Metabolic Pathway Analysis of Potential BAPs
4. Discussion
4.1. Effect of Heat Treatment on the Composition of Mare Whey Proteins
4.2. Effect of Heat Treatment on Potential Peptidomics
4.3. Effects of Heat Treatment on Metabolic Pathways of Potential Active Peptides
4.4. The Biological Activities of Milk Proteins in Mare Milk
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Musaev, A.; Sadykova, S.; Anambayeva, A.; Saizhanova, M.; Balkanay, G.; Kolbaev, M. Mare Milk: Composition, Properties, and Application in Medicine. Arch. Razi Inst. 2021, 76, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Nayik, G.A.; Jagdale, Y.D.; Gaikwad, S.A.; Devkatte, A.N.; Dar, A.H.; Dezmirean, D.S.; Bobis, O.; Ranjha, M.; Ansari, M.; Hemeg, H.; et al. Recent Insights into Processing Approaches and Potential Health Benefits of Goat Milk and Its Products: A Review. Front. Nutr. 2021, 8, 789117. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Zhang, T.; Li, J.; Zhou, Y.; Li, H.; Yu, J. Comparison of backslopping and two-stage fermentation methods for koumiss powder production based on chemical composition and nutritional properties. J. Sci. Food Agric. 2020, 100, 1822–1826. [Google Scholar] [CrossRef] [PubMed]
- Uniacke-Lowe, T.; Huppertz, T.; Fox, P.F. Equine milk Proteins: Chemistry, Structure and Nutritional Significance. Int. Dairy J. 2010, 20, 609–629. [Google Scholar] [CrossRef]
- Nie, C.H. Detection and Analysis of Nutrients in Equine Milk and Comparative Study on Identifying Components in Different Dairy Products. Doctoral Dissertation, Xinjiang Medical University, Xinjiang, China, 2019. [Google Scholar]
- Meng, F.; Uniacke-Lowe, T.; Ryan, A.C.; Kelly, A. The Composition and Physico-chemical Properties of Human Milk: A review. Trends Food Sci. Technol. 2021, 112, 608–621. [Google Scholar] [CrossRef]
- Arasi, S.; Cafarotti, A.; Fiocchi, A. Cow’s milk allergy. Curr. Opin. Allergy Clin. Immunol. 2022, 22, 181–187. [Google Scholar] [CrossRef]
- Padmapriya, D.; Shanthi, C. Hydrolysates with Emulsifying Properties Prepared from Protein Wastes using Microbial Protease. Food Sci. Biotechnol. 2024, 1–11. [Google Scholar] [CrossRef]
- Hakim, B.N.A.; Xuan, N.J.; Oslan, S.N.H. A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry. Foods 2023, 12, 2850. [Google Scholar] [CrossRef]
- Wang, L.; Shao, X.; Cheng, M.; Fan, X.; Wang, C.; Jiang, H.; Zhang, X. Mechanisms and Applications of milk-derived Bioactive Peptides in Food for Special Medical Purposes. Int. J. Food Sci. Technol. 2022, 57, 2830–2839. [Google Scholar] [CrossRef]
- Wen, Q.; Zhang, L.; Zhao, F.; Chen, Y.; Zhang, X.; Chen, P.; Su, Y.; Zheng, T. Production Technology and Functionality of Bioactive Peptides. Curr. Pharm. Des. 2023, 29, 652–674. [Google Scholar] [CrossRef]
- Spada, V.; Ferranti, P.; Chianese, L. Salimei, E.; Addeo, F.Antibacterial Potential of Donkey’s milk Disclosed by Untargeted Proteomics. J. Proteom. 2021, 231, 104007. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhong, W.; Cao, W.; Zhang, Q.; Wu, G. Chondroinductive/chondroconductive Peptides and Their-functionalized Biomaterials for Cartilage tissue Engineering. Bioact. Mater. 2022, 9, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Koirala, P.; Dahal, M.; Rai, S.; Dhakal, M.; Nirmal, M.; Maqsood, S.; Asmari, F.; Buranasompob, A. Dairy Milk Protein-Derived Bioactive Peptides: Avengers Against Metabolic Syndrome. Curr. Nutr. Rep. 2023, 12, 308–326. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, Q.; Xiao, D.; Zhu, Y.; Yang, B.; Ding, Y.; Bai, J.; Wen, H.; Wu, H.; Duan, J.A.; et al. Discovery of Elaphuri Davidiani Cornu-specific peptide biomarkers by peptidomics analysis-based method. Electrophoresis 2023, 44, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Liu, S.; Lu, H.; Chen, Q.; Shi, Y. A Comprehensive review of Microorganism-Derived Cyclic Peptides: Bioactive Functions and Food safety Applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5272–5290. [Google Scholar] [CrossRef]
- Yuecheng, M.; Ruanqing, H.; Jie, C.; Yan, L.; Zhen, W.; Jing, T. Effect of Heat Treatment on Protein Sability in Sour Horse milk. Acta Food Sin. 2022, 22, 174–180. (In Chinese) [Google Scholar] [CrossRef]
- Mei, H.; Yanqing, B.; Lai, M.; Ren, B. SDS-PAGE Analysis of Whey Protein in Different Fermentation periods of Traditional Fermented Mare’s milk in Inner Mongolia. Anim. Husb. Feed. Sci. 2019, 44, 83–92. [Google Scholar]
- Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Variations of Staining Sodium Dodecyl Sulfate-Polyacrylamide Gels with Coomassie Brilliant Blue. Cold Spring Harb. Protoc. 2021, 12, pdb-prot102236. [Google Scholar] [CrossRef]
- Pan, M.; Cao, Y.; Chi, X.; Zheng, S.; Ai, N.; Sun, B. Influence of Processing Conditions on the Physicochemical Properties of a New-Type of Nutritional Drink-Millet Skim Milk Beverage. Molecules 2019, 24, 1338. [Google Scholar] [CrossRef]
- Pan, F.; Liu, D.; Tuersuntuoheti, T.; Xing, H.; Zhu, Z.; Fang, Y.; Zhao, L.; Li, X.; Le, Y.; Hu, Q. Mining Anti-hypertensive Peptides in Animal Food through deep learning: A case study of Gastrointestinal Digestive Products of Royal Jelly. Food Sci. Anim. Prod. 2024, 2, 9240053. [Google Scholar] [CrossRef]
- Xu, J.H. The Nutritional Composition of Donkey Milk and Horse Milk and Its Effect on Intestinal Microbiota. Bachelor’s Dissertation, Shaanxi Normal University, Xi’an, China, 2020. [Google Scholar]
- Simonenko, E.S.; Begunova, A.V. Development of Fermented Milk Product Based on Mare’s Milk and Lactic Microorganisms Association. Vopr. Pitan. 2021, 90, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Yakunin, A.V.; Sinyavskiy, Y.A.; Ibraimov, Y.S. Assessment of The Nutritional Value of Mare’S Milk and Fermented Mare’s Milk Products and The Possibility of Their Use in Baby Food. Curr. Pediatr. Vopr. Sovrem. Pediatr. 2017, 16, 235–240. [Google Scholar] [CrossRef]
- Ning, J.; Yang, M.; Liu, W.; Luo, X.; Yue, X. Proteomics and Peptidomics as a Tool to Compare the Proteins and Endogenous Peptides in Human, Cow, and Donkey Milk. J. Agric. Food Chem. 2023, 71, 16435–16451. [Google Scholar] [CrossRef] [PubMed]
- Papademas, P.; Neoκleous, I.; Mousikos, P. Thermal Processing of Equine Milk—A review. Int. Dairy J. 2023, 138, 105541. [Google Scholar] [CrossRef]
- Addar, L.; Bensouici, C.; Si Ahmed Zennia, S.; Boudjenah Haroun, S.; Mati, A. Antioxidant, Tyrosinase and Urease Inhibitory Activities of Camel αS-casein and its Hydrolysate Fractions. Small Rumin. Res. 2019, 173, 30–35. [Google Scholar] [CrossRef]
- He, B.; Lian, Y.; Xue, H.; Zhou, Y.; Wei, Y.; Ma, J.; Tan, Y.; Wu, Y. DPP-IV Inhibitory Peptide against In Vitro Gastrointestinal Digestion Derived from Goat’s Milk Protein and Its Activity Enhancement via Amino Acid Substitution. Foods 2024, 13, 2721. [Google Scholar] [CrossRef]
- Fan, W.; Tan, X.; Xu, X.; Li, G.; Wang, Z.; Du, M. Relationship between Enzyme, Peptides, Amino Acids, ion Composition, and Bitterness of the Hydrolysates of Alaska Pollock Frame. J. Food Biochem. 2019, 43, e12801. [Google Scholar] [CrossRef]
- Naqin, M.; X, W.; Tu, J. Heat Treatment of Camel Milk, milk, and the Influence of the Amino Acid Composition and Content in the goat. J. Food Ferment. Ind. 2022, 13, 97–103. [Google Scholar] [CrossRef]
- Liyang, W.; Jiukai, Z.; Ying, C. Research Progress on Nutrients and Biological Activities of Different Mammalian Milk. Food Sci. 2019, 44, 365–374. (In Chinese) [Google Scholar]
- Karnila, R.; Dewita, E.; Yoswaty, D.; Putri, T.; Yunus, A. Antioxidant Activity on protein Hydrolysate Peptide of Mudskipper fish (Periophthalmodon schlosseri) using Alcalase Enzyme. Food Sci. Technol. 2023, 43. [Google Scholar] [CrossRef]
- Wiking, L.; Gregersen, S.B.; Hansen, S.F.; Hammershøj, M. Heat-induced Changes in Milk Fat and Milk Fat Globules and its Derived Effects on Acid Dairy Gelation—A review. Int. Dairy J. 2022, 127, 105213. [Google Scholar] [CrossRef]
- Yu, M.; He, S.; Tang, M.; Zhang, Z.; Yu, Z.; Sun, H. Antioxidant Activity and Sensory Characteristics of Maillard Reaction Products Derived from Different Peptide fractions of soybean meal hydrolysate. Food Chem. 2018, 243, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.M.; Zou, Z.; Bansal, N. Camel milk: A review of its nutritional value, heat stability, and potential food products. Food Res. Int. 2022, 153, 110870. [Google Scholar] [CrossRef] [PubMed]
- Arrutia, F.; Puente, Á.; Riera, F.A.; Menéndez, C.; González, U. Influence of Heat Pre-Treatment on BSA Tryptic Hydrolysis and Peptide Release. Food Chem. 2016, 202, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Leite, J.A.S.; Montoya, C.A.; Loveday, S.M.; Maes, E.; Mullaney, J.; McNab, W.C.; Roy., N.C. Heat-Treatments Affect Protease Activities and Peptide Profiles of Ruminants’ Milk. Front. Nutr. 2021, 8, 626475. [Google Scholar] [CrossRef]
- Elhamid, A.M.A.; Elbayoumi, M.M. Effect of Heat Treatment and Fermentation on Bioactive Behavior in Yoghurt Made from Camel Milk. Am. J. Food Sci. Technol. 2017, 5, 109–116. [Google Scholar] [CrossRef]
- Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; et al. Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 12808. [Google Scholar] [CrossRef]
- Fatoki, T.H.; Chukwuejim, S.; Udenigwe, C.C.; Aluko, R. In Silico Exploration of Metabolically Active Peptides as Potential Therapeutic Agents against Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2023, 24, 5828. [Google Scholar] [CrossRef]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [CrossRef]
- Yang, F.; Cao, X.; Huang, M.; Yang, Q.; Cai, X.; Chen, X.; Du, M.; Huang, J.; Wang, S. Molecular Characteristics and Structure–Activity Relationships of Food-Derived Bioactive Peptides. J. Integr. Agric. 2021, 20, 2313–2332. [Google Scholar] [CrossRef]
- Mahdi, C.; Untari, H.; Padaga, M. Identification and Characterization of Bioactive Peptides of Fermented Goat Milk as a Sources of Antioxidant as a Therapeutic Natural Product. IOP Conf. Ser. Mater. Sci. Eng. 2018, 299, 012014. [Google Scholar] [CrossRef]
- Auestad, N.; Layman, D.K. Dairy Bioactive Proteins and Peptides: A narrative review. Nutr. Rev. 2021, 79 (Suppl. S2), 36–47. [Google Scholar] [CrossRef] [PubMed]
- Crowther, J.M.; Allison, J.R.; Smolenski, G.A.; Hodgkinson, A.; Jameson, G.B.; Dobson, R.C.J. The self-Association and Thermal Denaturation of Caprine and Bovine β-lactoglobulin. Eur. Biophys. J. 2018, 47, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Juan, D.; Yunpeng, Z.; Hongtao, D.; Feng, Z. Determination of α-Lactalbumin and β-Lactoglobulin in Whey Protein Powder by Ultra-high Performance Liquid Chromatography-Tandem Triple Quadrupole mass spectrometry. J. Anal. Test. 2019, 39, 900–905. (In Chinese) [Google Scholar]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Cobos, A.; Perira, C. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Habibian-Dehkordi, S.; Farhadian, S. Change in thermal stability and molecular structure characteristics of whey protein beta-lactoglobulin upon the interaction with levamisole hydrochloride. Food Chem. 2024, 431, 137073. [Google Scholar] [CrossRef] [PubMed]
- Mylostyvyi, R.; Sejian, V.; Izhboldina, O.; Kalinichenko, O.; Karlova, L.; Lesnovskay, O.; Begma, N.; Marenkov, O.; Lykhach, V.; Midyk, S.; et al. Changes in the Spectrum of Free Fatty Acids in Blood Serum of Dairy Cows during a Prolonged Summer Heat Wave. Animals 2021, 11, 3391. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality. Beverages 2017, 3, 54. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, R.; Liu, S.; Wang, P.; Zhu, Y.; Niu, T.; Chen, H. The Impact of Thermal Treatment Intensity on Proteins, Fatty Acids, Macro/Micro-Nutrients, Flavor, and Heating Markers of Milk-A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 8670. [Google Scholar] [CrossRef]
- Krishna, T.C.; Najda, A.; Bains, A.; Tosif, M.M.; Papliński, R.; Kapłan, M.; Chawla, P. Influence of Ultra-Heat Treatment on Properties of Milk Proteins. Polymers 2021, 13, 3164. [Google Scholar] [CrossRef]
- Koroleva, V.; Lavlinskaya, M.; Holyavka, M.; Penkov, N.; Zuev, Y.; Artyukhov. Thermal Inactivation, Denaturation and Aggregation Processes of Papain-Like Proteases. Chem. Biodivers. 2024, 21, e202401038. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Tang, X.; Wang, M.; She, X.; Yang, B.R.; Sheng, Q.H.; Abd, A.M. β-Lactoglobulin Separation from Whey Protein: A Comprehensive Review of Isolation and Purification Techniques and Future Perspectives. J. Dairy Sci. 2024. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; Paolella, S.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Identification of novel Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Peptides in Camel Milk Protein Hydrolysates. Food Chem. 2018, 244, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Yang, M.; Zhu, Q.; Li, X.; Liang, X.; Luo, X.; Yue, X. Revealing the Diversity of Endogenous Peptides and Parent Proteins in Human Colostrum and Mature Milk through Peptidomics analysis. Food Chem. 2024, 445, 138651. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xue, S.; Xie, Y.Q.; Teixeira, A.P.; Fussenegger, M. Ultrashort-Peptide-Responsive Gene Switches for Regulation of Therapeutic Protein Expression in Mammalian Cells. Adv. Sci. 2024, 11, e2309411. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Popovich, I.G.; Linkova, N.S.; Mironova, E.; SIlina, A.R.l. Peptide Regulation of Gene Expression: A Systematic Review. Molecules 2021, 26, 7053. [Google Scholar] [CrossRef]
Compared Sample | Number of Polypeptides | Relative Content | Number | Fold (>1.50) |
---|---|---|---|---|
T1VSTK | 579 | Increased | 11 | 137 |
Decreased | 3 | 137 | ||
T2VSTK | 672 | Increased | 10 | 86 |
Decreased | 6 | 151 | ||
T3VSTK | 544 | Increased | 8 | 59 |
Decreased | 2 | 228 | ||
T4VSTK | 530 | Increased | 3 | 56 |
Decreased | 5 | 156 |
GO Class | Relative Content | Metabolic Pathway |
---|---|---|
BP | Increased | Mineral absorption |
Prolactin signaling pathway | ||
TGF-beta signaling pathway | ||
Ferroptosis | ||
BP, MF, CC | HIF-1 signaling pathway | |
BP | Decreased | Thyroid hormone synthesis |
MF | Decreased | Drug-metabolizing enzymes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, X.; Shao, W.; Wu, Y.; Ma, H.; Chen, H.; Zheng, N.; Zhao, Y. Peptidomic Analysis of Potential Bioactive Peptides in Mare Milk Under Different Heat Treatment Conditions. Foods 2024, 13, 3592. https://doi.org/10.3390/foods13223592
Lou X, Shao W, Wu Y, Ma H, Chen H, Zheng N, Zhao Y. Peptidomic Analysis of Potential Bioactive Peptides in Mare Milk Under Different Heat Treatment Conditions. Foods. 2024; 13(22):3592. https://doi.org/10.3390/foods13223592
Chicago/Turabian StyleLou, Xiaoxiao, Wei Shao, Yating Wu, Hongpeng Ma, He Chen, Nan Zheng, and Yankun Zhao. 2024. "Peptidomic Analysis of Potential Bioactive Peptides in Mare Milk Under Different Heat Treatment Conditions" Foods 13, no. 22: 3592. https://doi.org/10.3390/foods13223592
APA StyleLou, X., Shao, W., Wu, Y., Ma, H., Chen, H., Zheng, N., & Zhao, Y. (2024). Peptidomic Analysis of Potential Bioactive Peptides in Mare Milk Under Different Heat Treatment Conditions. Foods, 13(22), 3592. https://doi.org/10.3390/foods13223592