Process Modeling and Convective Drying Optimization of Raspberry Pomace as a Fiber-Rich Functional Ingredient: Effect on Techno-Functional and Bioactive Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Preparation
2.2. Experimental Set-Up and Drying Procedure
2.3. Drying Kinetics
2.4. Drying Process Modeling
2.5. Effective Moisture Diffusivity and Activation Energy
2.6. Quality and Functionality of DRP After Convective Drying
2.6.1. Dietary Fiber Composition
2.6.2. Techno-Functional Properties
2.6.3. Bioactive and Antioxidant Properties
2.7. Statistical Analysis
3. Results and Discussion
3.1. Drying Kinetics
3.2. Drying Process Modeling
3.3. Effective Moisture Diffusivity and Activation Energy
3.4. Quality and Functionality of DRP After Convective Drying
3.4.1. Dietary Fiber Composition
3.4.2. Techno-Functional Properties
3.4.3. Bioactive and Antioxidant Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food Security and Nutrition in the World. Available online: https://www.fao.org/3/ca9692en/ca9692en.pdf (accessed on 29 September 2024).
- Fotschki, B.; Juśkiewicz, J.; Jurgoński, A.; Kosmala, M.; Milala, J.; Zduńczyk, Z.; Markowski, J. Grinding levels of raspberry pomace affect intestinal microbial activity, lipid and glucose metabolism in Wistar rats. Food Res. Int. 2019, 120, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Gouw, V.P.; Jung, J.; Zhao, Y. Functional properties, bioactive compounds, and in vitro gastrointestinal digestion study of dried fruit pomace powders as functional food ingredients. LWT Food Sci. Technol. 2017, 80, 136–144. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Yang, G.; Sun, L.; Song, X.; Chen, Q.; Bao, Y.; Luo, T.; Wang, J. Microstructure, physicochemical properties, and adsorption capacity of deoiled red raspberry pomace and its total dietary fiber. LWT Food Sci. Technol. 2022, 153, 112478. [Google Scholar] [CrossRef]
- Baenas, N.; Nunez-Gomez, V.; Navarro-Gonzalez, I.; Sanchez-Martinez, L.; Garcia-Alonso, J.; Periago, M.J.; Gonzalez-Barrio, R. Raspberry dietary fibre: Chemical properties, functional evaluation and prebiotic in vitro effect. LWT Food Sci. Technol. 2020, 134, 110140. [Google Scholar] [CrossRef]
- Krivokapić, S.; Vlaović, M.; Damjanović Vratnica, B.; Perović, A.; Perović, S. Biowaste as a potential source of bioactive compounds—A case study of raspberry fruit pomace. Foods 2021, 10, 706. [Google Scholar] [CrossRef]
- Šarić, B.; Dapčević-Hadnađev, T.; Hadnađev, M.; Sakač, M.; Mandić, A.; Mišan, A.; Škrobot, D. Fiber concentrates from raspberry and blueberry pomace in gluten-free cookie formulation: Effect on dough rheology and cookie baking properties. J. Texture Stud. 2019, 50, 124–130. [Google Scholar] [CrossRef]
- Luo, Y.; Yuan, F.; Li, Y.; Wang, J.; Gao, B.; Yu, L. Triacylglycerol and fatty acid compositions of blackberry, red raspberry, black raspberry, blueberry and cranberry seed oils by ultra-performance convergence chromatography-quadrupole time-of-flight mass spectrometry. Foods 2021, 10, 2530. [Google Scholar] [CrossRef]
- Tejeda-Miramonte, J.P.; González-Frías, S.E.; Padlon-Manjarrez, S.; García-Cayuela, T.; Tejada-Ortigoza, V.; Garcia-Amezquita, L.E. Obtaining a fiber-rich ingredient from blueberry pomace through convective drying: Process modeling and its impact on techno-functional and bioactive properties. LWT Food Sci. Technol. 2024, 210, 116862. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Wei, Z.; Huang, W.; Yan, Z.; Luo, Z.; Beta, T.; Xu, X. Effects of four drying methods on the quality, antioxidant activity and anthocyanin components of blueberry pomace. Food Prod. Process. Nutr. 2023, 5, 35. [Google Scholar] [CrossRef]
- Si, X.; Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Li, Z. Comparison of different drying methods on the physical properties, bioactive compounds and antioxidant activity of raspberry powders. J. Sci. Food Agric. 2016, 96, 2055–2062. [Google Scholar] [CrossRef]
- Zielinska, M.; Ropelewska, E.; Xiao, H.W.; Mujumdar, A.S.; Law, C.L. Review of recent applications and research progress in hybrid and combined microwave-assisted drying of food products: Quality properties. Crit. Rev. Food Sci. Nutr. 2020, 60, 2212–2264. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, H.S.; Izzah, D.N.; Linggajati, I.W.L. Microwave-assisted drying of Ocimum sanctum leaves: Analysis of moisture content, drying kinetic model, and techno-economics. Appl. Food Res. 2023, 3, 100337. [Google Scholar] [CrossRef]
- Chatzilia, T.; Kaderides, K.; Goula, A.M. Drying of peaches by a combination of convective and microwave methods. J. Food Process Eng. 2023, 46, e14296. [Google Scholar] [CrossRef]
- Mierzwa, D.; Szadzińska, J.; Pawłowski, A.; Pashminehazar, R.; Kharaghani, A. Nonstationary convective drying of raspberries, assisted by microwaves and ultrasound. Dry. Technol. 2019, 37, 988–1001. [Google Scholar] [CrossRef]
- Mishra, M.; Kandasamy, P.; Shukla, R.N.; Kumar, A. Convective hot-air drying of green mango: Influence of hot water blanching and chemical pretreatments on drying kinetics and physicochemical properties of dried product. Small Fruits Rev. 2021, 21, 732–757. [Google Scholar] [CrossRef]
- Hadibi, T.; Mennouche, D.; Boubekri, A.; Arıcı, M.; Wang, Y.; Li, M.; Hassanien, R.H.E.; Shirkole, S.S. Experimental investigation, performance analysis, and optimization of hot air convective drying of date fruits via response surface methodology. Renew. Energy 2024, 226, 120404. [Google Scholar] [CrossRef]
- Poblete, J.; Quispe-Fuentes, I.; Aranda, M.; Vega-Gálvez, A. Application of vacuum and convective drying processes for the valorization of pisco grape pomace to enhance the retention of its bioactive compounds. Waste Biomass Valorization 2024, 15, 3093–3107. [Google Scholar] [CrossRef]
- Ross, K.A.; DeLury, N.; Fukumoto, L.; Diarra, M.S. Dried berry pomace as a source of high value-added bioproduct: Drying kinetics and bioactive quality indices. Int. J. Food Prop. 2020, 23, 2123–2143. [Google Scholar] [CrossRef]
- Sridhar, K.; Charles, A.L. Mathematical modeling and effect of drying temperature on physicochemical properties of new commercial grape “Kyoho” seeds. J. Food Process Eng. 2020, 43, e13203. [Google Scholar] [CrossRef]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Campanella, O.H.; Welti-Chanes, J. Influence of drying method on the composition, physicochemical properties, and prebiotic potential of dietary fibre concentrates from fruit peels. J. Food Qual. 2018, 2018, 9105237. [Google Scholar] [CrossRef]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Torres, J.A.; Welti-Chanes, J. Extraction and modification of dietary fiber applying thermal processes. In Science and Technology of Fibers in Food Systems; Welti-Chanes, J., Serna-Saldívar, S.O., Campanella, O., Tejada-Ortigoza, V., Eds.; Springer: Cham, Switzerland, 2020; pp. 329–342. [Google Scholar]
- Stamenković, Z.; Pavkov, I.; Radojčin, M.; Tepić Horecki, A.; Kešelj, K.; Bursać Kovačević, D.; Putnik, P. Convective drying of fresh and frozen raspberries and change of their physical and nutritive properties. Foods 2019, 8, 251. [Google Scholar] [CrossRef] [PubMed]
- Llavata, B.; Picinelli, A.; Simal, S.; Carcel, J.A. Cider apple pomace as a source of nutrients: Evaluation of the polyphenolic profile, antioxidant and fiber properties after drying process at different temperatures. Food Chem. X 2022, 15, 100403. [Google Scholar] [CrossRef]
- AOAC International. Fruits and Fruit Products. In Official Methods of Analysis, 21st ed.; Methods 981.12; AOAC International: Rockville, MD, USA, 2019; Chapter 37. [Google Scholar]
- AOAC International. Sugar and Sugar Products. In Official Methods of Analysis, 21st ed.; Methods 932.12; AOAC International: Rockville, MD, USA, 2019; Chapter 44. [Google Scholar]
- AOAC International. Vitamins and Other Nutrients. In Official Methods of Analysis, 21st ed.; Methods 942.15; AOAC International: Rockville, MD, USA, 2019; Chapter 45. [Google Scholar]
- Martín-Gómez, J.; Varo, M.Á.; Mérida, J.; Serratosa, M.P. Influence of drying processes on anthocyanin profiles, total phenolic compounds and antioxidant activities of blueberry (Vaccinium corymbosum). LWT Food Sci. Technol. 2020, 120, 108931. [Google Scholar] [CrossRef]
- İzli, G.; Yildiz, G.; Berk, S.E. Quality retention in pumpkin powder dried by combined microwave-convective drying. J. Food Sci. Technol. 2022, 59, 1558–1569. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.W.; Rao, J.Q.; Wang, D.; Xie, L.; Xiao, H.W.; Liu, Y.H.; Gao, Z.J. Process-based drying temperature and humidity integration control enhances drying kinetics of apricot halves. Dry. Technol. 2015, 33, 365–376. [Google Scholar] [CrossRef]
- Delfiya, D.A.; Prashob, K.; Murali, S.; Alfiya, P.V.; Samuel, M.P.; Pandiselvam, R. Drying kinetics of food materials in infrared radiation drying: A review. J. Food Process Eng. 2022, 45, e13810. [Google Scholar] [CrossRef]
- Mugi, V.R.; Chandramohan, V.P. Shrinkage, effective diffusion coefficient, surface transfer coefficients and their factors during solar drying of food products—A review. Sol. Energy 2021, 229, 84–101. [Google Scholar] [CrossRef]
- Szadzińska, J.; Łechtańska, J.; Pashminehazar, R.; Kharaghani, A.; Tsotsas, E. Microwave-and ultrasound-assisted convective drying of raspberries: Drying kinetics and microstructural changes. Dry. Technol. 2019, 37, 1–12. [Google Scholar] [CrossRef]
- Leelawat, B.; Taikerd, T. Effect of drying methods and conditions on the physicochemical properties of young jackfruit-based chicken meat analogs. ACS Food Sci. Technol. 2024, 10, 1000791. [Google Scholar] [CrossRef]
- Ueda, J.M.; Morales, P.; Fernández-Ruiz, V.; Ferreira, A.; Barros, L.; Carocho, M.; Heleno, S.A. Powdered foods: Structure, processing, and challenges: A review. Appl. Sci. 2023, 13, 12496. [Google Scholar] [CrossRef]
- Alp, D.; Bulantekin, Ö. The microbiological quality of various foods dried by applying different drying methods: A review. Eur. Food Res. Technol. 2021, 247, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Jurevičiūtė, I.; Keršienė, M.; Bašinskienė, L.; Leskauskaitė, D.; Jasutienė, I. Characterization of berry pomace powders as dietary fiber-rich food ingredients with functional properties. Foods 2022, 11, 716. [Google Scholar] [CrossRef]
- Liu, D.; Lopez-Sanchez, P.; Martinez-Sanz, M.; Gilbert, E.P.; Gidley, M.J. Adsorption isotherm studies on the interaction between polyphenols and apple cell walls: Effects of variety, heating and drying. Food Chem. 2019, 282, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Le Bourvellec, C.; Renard, C.M. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Comp. Rev. Food Sci. Food Saf. 2020, 19, 3574–3617. [Google Scholar] [CrossRef] [PubMed]
- Paajanen, A.; Rinta-Paavola, A.; Vaari, J. High-temperature decomposition of amorphous and crystalline cellulose: Reactive molecular simulations. Cellulose 2021, 28, 8987–9005. [Google Scholar] [CrossRef]
- Schmid, V.; Trabert, A.; Keller, J.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Defined shear and heat treatment of apple pomace: Impact on dietary fiber structures and functional properties. Eur. Food Res. Technol. 2021, 247, 2109–2122. [Google Scholar] [CrossRef]
- Bai, Y.P.; Zhou, H.M.; Zhu, K.R.; Li, Q. Impact of thermally induced wall breakage on the structural properties of water-soluble polysaccharides in chickpeas. Int. J. Biol. Macromol. 2022, 208, 869–882. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Zura-Bravo, L.; Lemus-Mondaca, R.; Martinez-Monzó, J.; Quispe-Fuentes, I.; Puente, L.; Di Scala, K. Influence of drying temperature on dietary fibre, rehydration properties, texture and microstructure of Cape gooseberry (Physalis peruviana L.). J. Food Sci. Technol. 2015, 52, 2304–2311. [Google Scholar] [CrossRef] [PubMed]
- Eblaghi, M.; Bronlund, J.E.; Yedro, F.M.; Archer, R.H. Kinetics of pectin reactions in apple pomace during hydrothermal treatment. Food Bioprocess Technol. 2021, 14, 739–750. [Google Scholar] [CrossRef]
- Borsini, A.A.; Llavata, B.; Umaña, M.; Cárcel, J.A. Artichoke by products as a source of antioxidant and fiber: How it can be affected by drying temperature. Foods 2021, 10, 459. [Google Scholar] [CrossRef]
- Calabuig-Jiménez, L.; Hinestroza-Córdoba, L.I.; Barrera, C.; Seguí, L.; Betoret, N. Effects of processing and storage conditions on functional properties of powdered blueberry pomace. Sustainability 2022, 14, 1839. [Google Scholar] [CrossRef]
- Belović, M.; Torbica, A.; Vujasinović, V.; Radivojević, G.; Perović, L.; Bokić, J. Technological properties, shelf life and consumers’ acceptance of high-fibre cookies prepared with juice processing by-products. Food Sci. Technol. Int. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Omoba, O.S.; Olagunju, A.I.; Iwaeni, O.O.; Olajumoke Obafaye, R. Effects of tiger nut fiber on the quality characteristics and consumer acceptability of cakes made from orange-fleshed sweet potato flour. J. Culin. Sci. Technol. 2021, 19, 228–246. [Google Scholar] [CrossRef]
- Liu, T.; Lei, H.; Zhen, X.; Liu, J.; Xie, W.; Tang, Q.; Gou, D.; Zhao, J. Advancements in modifying insoluble dietary fiber: Exploring the microstructure, physicochemical properties, biological activity, and applications in food industry—A review. Food Chem. 2024, 458, 140154. [Google Scholar] [CrossRef] [PubMed]
- Minjares-Fuentes, R.; Rodríguez-González, V.M.; González-Laredo, R.F.; Eim, V.; González-Centeno, M.R.; Femenia, A. Effect of different drying procedures on the bioactive polysaccharide acemannan from Aloe vera (Aloe barbadensis Miller). Carbohydr. Polym. 2017, 168, 327–336. [Google Scholar] [CrossRef]
- Korkerd, S.; Wanlapa, S.; Puttanlek, C.; Uttapap, D.; Rungsardthong, V. Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products. J. Food Sci. Technol. 2016, 53, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Seong, H.J.; Kim, H.; Cho, J.Y.; Yang, K.Y.; Nam, S.H. Modulating flavanone compound for reducing the bitterness and improving dietary fiber, physicochemical properties, and anti-adipogenesis of green yuzu powder by enzymatic hydrolysis. Food Chem. X 2024, 22, 101329. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G.P.; Figiel, A. Physicochemical properties of whole fruit plum powders obtained using different drying technologies. Food Chem. 2016, 207, 223–232. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef]
- Megías-Pérez, R.; Ferreira-Lazarte, A.; Villamiel, M. Valorization of grape pomace as a renewable source of techno-functional and antioxidant pectins. Antioxidants 2023, 12, 957. [Google Scholar] [CrossRef]
- Zhang, W.P.; Yang, X.H.; Mujumdar, A.S.; Ju, H.Y.; Xiao, H.W. The influence mechanism and control strategy of relative humidity on hot air drying of fruits and vegetables: A review. Dry. Technol. 2022, 40, 2217–2234. [Google Scholar] [CrossRef]
- Prakash, O.; Baskaran, R.; Chauhan, A.S.; Kudachikar, V.B. Effect of heat processing on phenolics and their possible transformation in low-sugar high-moisture (LSHM) fruit products from Kainth (Pyrus pashia Buch.-ham ex D. Don) fruit. Food Chem. 2022, 370, 130988. [Google Scholar] [CrossRef] [PubMed]
- Slavu, M.; Aprodu, I.; Milea, Ș.A.; Enachi, E.; Râpeanu, G.; Bahrim, G.E.; Stănciuc, N. Thermal degradation kinetics of anthocyanins extracted from purple maize flour extract and the effect of heating on selected biological functionality. Foods 2020, 9, 1593. [Google Scholar] [CrossRef] [PubMed]
- Nabi, B.G.; Mukhtar, K.; Ahmed, W.; Manzoor, M.F.; Ranjha, M.M.A.N.; Kieliszek, M.; Bhat, Z.F.; Aadil, R.M. Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as colorants in food products. Food Biosci. 2023, 52, 102403. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Tu, Z.; Yu, C.; Liu, R.; Deng, Z.; Luo, T. The degradation and antioxidant capacity of anthocyanins from eggplant peels in the context of complex food system under thermal processing. Food Biosci. 2024, 59, 103914. [Google Scholar] [CrossRef]
- Pasquet, P.L.; Julien-David, D.; Zhao, M.; Villain-Gambier, M.; Trébouet, D. Stability and preservation of phenolic compounds and related antioxidant capacity from agro-food matrix: Effect of pH and atmosphere. Food Biosci. 2024, 57, 103586. [Google Scholar] [CrossRef]
Model | Model Equation | Reference |
---|---|---|
Page | [28] | |
Modified Page | [16] | |
Henderson and Pabis | [16] | |
Logarithmic | [9] | |
Midilli | [9] |
Error Function | Reference |
---|---|
[28] | |
[13] | |
[13] | |
[23] | |
[29] | |
[9] | |
[9] |
Model | Temperature (°C) | Model Constants | R2 | χ2 | MSE | SSE | RMSE | AIC | AICc | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Page | 50 | k = 0.3344 | n = 1.0569 | - | - | 0.9982 | 0.0849 | 0.0002 | 0.0046 | 0.0125 | −249.9834 | −249.5219 |
60 | k = 0.5325 | n = 1.0838 | - | - | 0.9997 | 0.0242 | 0.0000 | 0.0006 | 0.0056 | −182.4758 | −181.6758 | |
70 | k = 0.6635 | n = 1.0826 | - | - | 0.9995 | 0.0277 | 0.0000 | 0.0007 | 0.0069 | −145.1781 | −144.1781 | |
80 | k = 0.7454 | n = 1.1818 | - | - | 0.9965 | 0.0539 | 0.0004 | 0.0041 | 0.0201 | −74.1123 | −72.3980 | |
90 | k = 0.9282 | n = 1.1896 | - | - | 0.9992 | 0.0276 | 0.0001 | 0.0009 | 0.0105 | −68.9573 | −66.5573 | |
Modified Page | 50 | k = 0.5064 | n = 0.5064 | - | - | 0.9981 | 0.1268 | 0.0002 | 0.0067 | 0.0152 | −238.7016 | −238.2400 |
60 | k = 0.6851 | n = 0.6851 | - | - | 0.9992 | 0.0561 | 0.0002 | 0.0031 | 0.0132 | −151.9003 | −151.1003 | |
70 | k = 0.7738 | n = 0.7738 | - | - | 0.9991 | 0.0554 | 0.0002 | 0.0027 | 0.0134 | −125.4324 | −124.4324 | |
80 | k = 0.8453 | n = 0.8453 | - | - | 0.9938 | 0.1218 | 0.0011 | 0.0106 | 0.0326 | −64.4486 | −62.7343 | |
90 | k = 0.9867 | n = 0.9867 | - | - | 0.9963 | 0.0769 | 0.0007 | 0.0060 | 0.0273 | −53.6126 | −51.2126 | |
Henderson–Pabis | 50 | k = 0.2586 | - | a = 1.0082 | - | 0.9978 | 0.1218 | 0.0002 | 0.0066 | 0.0150 | −239.4479 | −238.9864 |
60 | k = 0.4783 | - | a = 1.0200 | - | 0.9988 | 0.0486 | 0.0001 | 0.0025 | 0.0117 | −156.2267 | −155.4267 | |
70 | k = 0.6095 | - | a = 1.0189 | - | 0.9988 | 0.0495 | 0.0001 | 0.0022 | 0.0120 | −128.6402 | −127.6402 | |
80 | k = 0.7303 | - | a = 1.0142 | - | 0.9926 | 0.1139 | 0.0010 | 0.0099 | 0.0314 | −65.2132 | −63.4989 | |
90 | k = 0.8923 | - | a = 1.0220 | - | 0.9955 | 0.0716 | 0.0007 | 0.0054 | 0.0260 | −54.4222 | −52.0222 | |
Logarithmic | 50 | k = 0.2586 | - | a = 1.0082 | c = 0.0000 | 0.9978 | 0.1218 | 0.0002 | 0.0066 | 0.0150 | −237.4479 | −236.4879 |
60 | k = 0.4783 | - | a = 1.0200 | c = 0.0000 | 0.9988 | 0.0486 | 0.0001 | 0.0025 | 0.0117 | −154.2267 | −152.5124 | |
70 | k = 0.6095 | - | a = 1.0189 | c = 0.0000 | 0.9988 | 0.0495 | 0.0001 | 0.0022 | 0.0120 | −126.6402 | −124.4584 | |
80 | k = 0.7303 | - | a = 1.0142 | c = 0.0000 | 0.9926 | 0.1139 | 0.0010 | 0.0099 | 0.0314 | −63.2132 | −59.2132 | |
90 | k = 0.8923 | - | a = 1.0220 | c = 0.0000 | 0.9955 | 0.0716 | 0.0007 | 0.0054 | 0.0260 | −52.4222 | −46.4222 | |
Midilli | 50 | k = 0.2748 | n = 0.9534 | a = 1.0200 | b = 0.0000 | 0.9976 | 0.1890 | 0.0004 | 0.0118 | 0.0202 | −218.4229 | −216.7562 |
60 | k = 0.5522 | n = 0.9029 | a = 1.0134 | b = 0.0000 | 0.9937 | 0.0908 | 0.0006 | 0.0107 | 0.0243 | −125.7493 | −122.6724 | |
70 | k = 0.5643 | n = 1.0784 | a = 1.0190 | b = 0.0000 | 0.9995 | 0.0287 | 0.0000 | 0.0007 | 0.0070 | −140.9635 | −136.9635 | |
80 | k = 0.6296 | n = 1.2021 | a = 1.0169 | b = 0.0000 | 0.9967 | 0.0514 | 0.0004 | 0.0039 | 0.0197 | −70.5534 | −62.5534 | |
90 | k = 0.6296 | n = 1.2021 | a = 1.0169 | b = 0.0000 | 0.9869 | 0.3096 | 0.0086 | 0.0686 | 0.0926 | −30.0767 | −16.7434 |
Treatments | TDF (g∙100 g−1 db) | IDF (g∙100 g−1 db) | SDF (g∙100 g−1 db) | SDF:IDF |
---|---|---|---|---|
Freeze-drying | 64.14 ± 1.06 a | 61.78 ± 0.91 ab | 2.35 ± 0.15 b | 0.04:1 |
50 °C | 64.29 ± 3.56 a | 61.51 ± 3.23 a | 2.77 ± 0.36 ab | 0.05:1 |
60 °C | 64.63 ± 2.99 a | 61.54 ± 2.53 a | 3.08 ± 0.47 ab | 0.05:1 |
70 °C | 59.40 ± 3.11 a | 56.03 ± 3.12 b | 3.37 ± 0.19 a | 0.06:1 |
80 °C | 61.43 ± 1.36 a | 58.55 ± 1.18 b | 3.87 ± 0.43 a | 0.07:1 |
90 °C | 61.94 ± 1.52 a | 58.53 ± 1.41 b | 3.40 ± 0.16 a | 0.06:1 |
Treatments | SOL (%) | WHC (mL∙g−1 db) | OHC (mL∙g−1 db) | SC (mL∙g−1 db) | TD (kg∙m−3 db) |
---|---|---|---|---|---|
Freeze-drying | 76.0 ± 0.1 a | 11.8 ± 0.6 a | 3.3 ± 0.3 a | 15.2 ± 0.3 a | 279.0 ± 4.7 c |
50 °C | 65.2 ± 1.1 c | 8.0 ± 0.2 b | 2.4 ± 0.2 b | 7.6 ± 0.3 b | 313.9 ± 5.9 bc |
60 °C | 68.8 ± 2.1 b | 8.3 ± 0.4 b | 2.3 ± 0.1 b | 8.1 ± 0.4 b | 311.5 ± 8.2 bc |
70 °C | 71.8 ± 0.8 ab | 8.2 ± 0.5 b | 3.0 ± 0.3 a | 6.9 ± 0.3 c | 314.3 ± 8.3 b |
80 °C | 72.5 ± 0.9 a | 7.7 ± 0.2 bc | 1.7 ± 0.2 c | 7.0 ± 0.2 c | 322.6 ± 19.7 b |
90 °C | 72.6 ± 1.8 a | 7.0 ± 0.5 c | 2.0 ± 0.1 c | 7.1 ± 0.0 c | 362.1 ± 24.5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejeda-Miramontes, J.P.; Espinoza-Paredes, B.C.; Zatarain-Palffy, A.; García-Cayuela, T.; Tejada-Ortigoza, V.; Garcia-Amezquita, L.E. Process Modeling and Convective Drying Optimization of Raspberry Pomace as a Fiber-Rich Functional Ingredient: Effect on Techno-Functional and Bioactive Properties. Foods 2024, 13, 3597. https://doi.org/10.3390/foods13223597
Tejeda-Miramontes JP, Espinoza-Paredes BC, Zatarain-Palffy A, García-Cayuela T, Tejada-Ortigoza V, Garcia-Amezquita LE. Process Modeling and Convective Drying Optimization of Raspberry Pomace as a Fiber-Rich Functional Ingredient: Effect on Techno-Functional and Bioactive Properties. Foods. 2024; 13(22):3597. https://doi.org/10.3390/foods13223597
Chicago/Turabian StyleTejeda-Miramontes, José P., Brenda C. Espinoza-Paredes, Ana Zatarain-Palffy, Tomás García-Cayuela, Viridiana Tejada-Ortigoza, and Luis Eduardo Garcia-Amezquita. 2024. "Process Modeling and Convective Drying Optimization of Raspberry Pomace as a Fiber-Rich Functional Ingredient: Effect on Techno-Functional and Bioactive Properties" Foods 13, no. 22: 3597. https://doi.org/10.3390/foods13223597
APA StyleTejeda-Miramontes, J. P., Espinoza-Paredes, B. C., Zatarain-Palffy, A., García-Cayuela, T., Tejada-Ortigoza, V., & Garcia-Amezquita, L. E. (2024). Process Modeling and Convective Drying Optimization of Raspberry Pomace as a Fiber-Rich Functional Ingredient: Effect on Techno-Functional and Bioactive Properties. Foods, 13(22), 3597. https://doi.org/10.3390/foods13223597