Comparative Evaluation of Camelina Seed Oils Obtained by Cold-Pressing and Solvent Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Oil Extraction from Camelina Seeds
2.4. Physico-Chemical Properties
2.5. Oxidative Stability
2.6. Oil Composition
2.6.1. Analysis of Fatty Acids
2.6.2. Tocopherol Content
2.6.3. Total Carotenoid Content
2.6.4. Total Phenol Content
2.6.5. Antioxidant Capacity Measured by DPPH
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Properties of Camelina Seed Oils
3.2. Oxidative Stability of Camelina Seed Oils
3.3. Composition of Camelina Seed Oils
3.3.1. Fatty Acid Profile and Nutrient Indices of Camelina Seed Oils
3.3.2. Tocopherol Content of Camelina Seed Oils
3.3.3. Total Carotenoid Content of Camelina Seed Oils
3.3.4. Total Phenol Content of Camelina Seed Oils
3.3.5. Antioxidant Capacity of Camelina Seed Oils
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuzmanović, B.; Petrović, S.; Nagl, N.; Mladenov, V.; Grahovac, N.; Zanetti, F.; Eynck, C.; Vollmann, J.; Jeromela, A.M. Yield-related traits of 20 spring camelina genotypes grown in a multi-environment study in Serbia. Agronomy 2021, 11, 858. [Google Scholar] [CrossRef]
- Čanak, P.; Zanetti, F.; Jovičić, D.; Vujošević, B.; Miladinov, Z.; Stanisavljević, D.; Mirosavljević, M.; Alberghini, A.; Facciolla, E.; Jeromela, A.M. Camelina germination under osmotic stress—Trend lines, time-courses and critical points. Ind. Crops Prod. 2022, 181, 114761. [Google Scholar] [CrossRef]
- Kurasiak-Popowska, D.; Ryńska, B.; Stuper-Szablewska, K. Analysis of distribution of selected bioactive compounds in Camelina sativa from seeds to pomace and oil. Agronomy 2019, 9, 168. [Google Scholar] [CrossRef]
- Omonov, T.S.; Kharraz, E.; Curtis, J.M. Camelina (Camelina sativa) oil polyols as an alternative to castor oil. Ind. Crops Prod. 2017, 107, 378–385. [Google Scholar] [CrossRef]
- Blume, R.Y.; Rakhmetov, D.B.; Blume, Y.B. Evaluation of Ukrainian Camelina sativa germplasm productivity and analysis of its amenability for efficient biodiesel production. Ind. Crops Prod. 2022, 187, 115477. [Google Scholar] [CrossRef]
- Mondor, M.; Hernández-Álvarez, A.J. Camelina sativa composition, attributes, and applications: A review. Eur. J. Lipid Sci. Technol. 2022, 124, 2100035. [Google Scholar] [CrossRef]
- Ermosh, L.G.; Prisuhina, N.V.; Koch, D.A.; Eremina, E.V. The use of oilseed cake for supplementation of bakery products. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 022090. [Google Scholar] [CrossRef]
- Ilić, P.; Rakita, S.; Spasevski, N.; Đuragić, O.; Jeromela, A.M.; Cvejić, S. Nutritive value of Serbian camelina genotypes as an alternative feed ingredient. Food Feed Res. 2022, 49, 209–221. [Google Scholar] [CrossRef]
- Arshad, M.; Mohanty, A.K.; Van Acker, R.; Riddle, R.; Todd, J.; Khalil, H.; Misra, M. Valorization of camelina oil to biobased materials and biofuels for new industrial uses: A review. RSC Adv. 2022, 12, 27230–27245. [Google Scholar] [CrossRef]
- Abramovic, H.; Abram, V. Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technol. Biotechnol. 2005, 43, 63–70. [Google Scholar]
- Rabiej-Kozioł, D.; Momot-Ruppert, M.; Stawicka, B.; Szydłowska-Czerniak, A. Health benefits, antioxidant activity, and sensory attributes of selected cold-pressed oils. Molecules 2023, 28, 5484. [Google Scholar] [CrossRef] [PubMed]
- Ameer, K.; Kim, Y.M.; Murtaza, M.A.; Nasir, M.A.; Khan, F.A.; Khan, M.A.; Mueen-ud-Din, G.; Mahmood, S.; Abid, M. Extraction of oil from oilseeds. In Extraction Processes in the Food Industry; Jafari, S.M., Akhavan-Mahdavi, S., Eds.; Woodhead Publishing: Cambridge, UK, 2024; pp. 149–175. [Google Scholar]
- Hasanov, J.; Salikhov, S.; Oshchepkova, Y. Techno-economic evaluation of supercritical fluid extraction of flaxseed oil. J. Supercrit. Fluids. 2023, 194, 105839. [Google Scholar] [CrossRef]
- Chantsalnyam, B.; Otgonbayar, C.; Enkhtungalag, O.; Odonmajig, P. Physical and chemical characteristics and fatty acids composition of seeds oil isolated from Camelina sativa (L.) cultivated in Mongolia. Mong. J. Chem. 2013, 14, 80–83. [Google Scholar] [CrossRef]
- Lopez, C.; Sotin, H.; Rabesona, H.; Novales, B.; Le Quéré, J.M.; Froissard, M.; Faure, J.D.; Guyot, S.; Anton, M. Oil bodies from chia (Salvia hispanica L.) and camelina (Camelina sativa L.) seeds for innovative food applications: Microstructure, composition and physical stability. Foods 2023, 12, 211. [Google Scholar] [CrossRef]
- Belayneh, H.D.; Wehling, R.L.; Cahoon, E.; Ciftci, O.N. Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. J. Supercrit. Fluids 2015, 104, 153–159. [Google Scholar] [CrossRef]
- Chew, S.C.; Nyam, K.L. Refining of edible oils. In Lipids and Edible Oils; Galanakis, C.M., Ed.; Academic Press: New York, NY, USA, 2020; pp. 213–241. [Google Scholar]
- Guneser, B.A.; Yilmaz, E. Bioactives, aromatics and sensory properties of cold-pressed and hexane-extracted lemon (Citrus limon L.) seed oils. J. Am. Oil Chem. Soc. 2017, 94, 723–731. [Google Scholar] [CrossRef]
- Momot, M.; Stawicka, B.; Szydłowska-Czerniak, A. Physicochemical properties and sensory attributes of cold-pressed camelina oils from the Polish retail market. Appl. Sci. 2023, 13, 1924. [Google Scholar] [CrossRef]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive compounds, nutritional quality and oxidative stability of cold-pressed camelina (Camelina sativa L.) oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef]
- Symoniuk, E.; Ratusz, K.; Ostrowska-Ligęza, E.; Krygier, K. Impact of selected chemical characteristics of cold-pressed oils on their oxidative stability determined using the rancimat and pressure differential scanning calorimetry method. Food Anal. Methods 2018, 11, 1095–1104. [Google Scholar] [CrossRef]
- Piravi-vanak, Z.; Azadmard-Damirchi, S.; Kahrizi, D.; Mooraki, N.; Ercisli, S.; Savage, G.P.; Ahmadvandi, H.R.; Martinez, F. Physicochemical properties of oil extracted from camelina (Camelina sativa) seeds as a new source of vegetable oil in different regions of Iran. J. Mol. Liq. 2022, 345, 117043. [Google Scholar] [CrossRef]
- Ratusz, K.; Popis, E.; Ciemniewska-Żytkiewicz, H.; Wroniak, M. Oxidative stability of camelina (Camelina sativa L.) oil using pressure differential scanning calorimetry and Rancimat method. J. Therm. Anal. Calorim. 2016, 126, 343–351. [Google Scholar] [CrossRef]
- Ergönül, P.G.; Özbek, Z.A. Identification of bioactive compounds and total phenol contents of cold pressed oils from safflower and camelina seeds. J. Food Meas. Charact. 2018, 12, 2313–2323. [Google Scholar] [CrossRef]
- Pathak, R.; Mohsin, M.; Mehta, S.S. An assessment of in vitro antioxidant potential of Camelina sativa L. seed oil and estimation of tocopherol content using HPTLC method. J. Sci. Res. 2021, 13, 589–600. [Google Scholar] [CrossRef]
- Moslavac, T.; Jokić, S.; Šubarić, D.; Aladić, K.; Vukoja, J.; Prce, N. Pressing and supercritical CO2 extraction of Camelina sativa oil. Ind. Crops Prod. 2014, 54, 122–129. [Google Scholar] [CrossRef]
- ISO 3657:2023; Animal and Vegetable Fats and Oils—Determination of Saponification Value. ISO: Geneva, Switzerland, 2009.
- ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value-Iodometric (Visual) Endpoint Determination. ISO: Geneva, Switzerland, 2017.
- ISO 6885:2016; Animal and Vegetable Fats and Oils—Determination of Anisidine Value. ISO: Geneva, Switzerland, 2016.
- ISO 660:2009; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. ISO: Geneva, Switzerland, 2009.
- ISO 6886:2016; Animal and Vegetable Fats and Oils—Determination of Oxidative Stability (Accelerated Oxidation Test). ISO: Geneva, Switzerland, 2016.
- SRPS EN ISO 12966-2:2017; Animal and Vegetable Fats and Oils–Gas Chromatography of Fatty Acid Methyl Esters–Part 2: Preparation of Methyl Esters of Fatty Acids. ISO (Institute of Standardization of Serbia): Belgrade, Serbia, 2017.
- Rabrenović, B.B.; Dimić, E.B.; Novaković, M.M.; Tešević, V.V.; Basić, Z.N. The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. LWT-Food Sci. Technol. 2014, 55, 521–527. [Google Scholar] [CrossRef]
- British Standard BS 684-2.20:1977; British Standard Method of Analysis of Fats and Fatty Oils—Determination of Carotene in Vegetable Oils. British Standard Illustration: London, UK, 1977.
- Michiu, D.; Socaciu, M.I.; Fogarasi, M.; Jimborean, A.M.; Ranga, F.; Mureşan, V.; Semeniuc, C.A. Implementation of an analytical method for spectrophotometric evaluation of total phenolic content in essential oils. Molecules 2022, 27, 1345. [Google Scholar] [CrossRef]
- Savic, I.; Savic Gajic, I.; Gajic, D. Physico-chemical properties and oxidative stability of fixed oil from plum seeds (Prunus domestica Linn.). Biomolecules 2020, 10, 294. [Google Scholar] [CrossRef]
- Mwithiga, G.; Moriasi, L. A Study of yield characteristics during mechanical oil extraction of preheated and ground soybeans. J. Appl. Sci. Res. 2007, 3, 1146–1151. [Google Scholar]
- Wandhekar, S.; Pawar, V.; Shinde, S.; Gangakhedkar, P. Extraction of oil from oilseeds by cold pressing: A review. Indian Food Ind. Mag. 2023, 4, 63–69. [Google Scholar]
- Yalcin, H.; Toker, O.S.; Dogan, M. Effect of oil type and fatty acid composition on dynamic and steady shear rheology of vegetable oils. J. Oleo Sci. 2012, 61, 181–187. [Google Scholar] [CrossRef]
- Leong, X.F. Lipid oxidation products on inflammation-mediated hypertension and atherosclerosis: A mini review. Front. Nutr. 2021, 8, 717740. [Google Scholar] [CrossRef] [PubMed]
- Symoniuk, E.; Wroniak, M.; Napiórkowska, K.; Brzezińska, R.; Ratusz, K. Oxidative stability and antioxidant activity of selected cold-pressed oils and oils mixtures. Foods 2022, 11, 1597. [Google Scholar] [CrossRef] [PubMed]
- CXS 210-1999; Standard for Named Vegetable Oils CXS 210-1999. Codex Alimentarius. Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2019. Available online: https://tinyurl.com/46s68uzu (accessed on 1 October 2024).
- Czaplicki, S.; Ogrodowska, D.; Derewiaka, D.; Tańska, M.; Zadernowski, R. Bioactive compounds in unsaponifiable fraction of oils from unconventional sources. Eur. J. Lipid Sci. Technol. 2011, 113, 1456–1464. [Google Scholar] [CrossRef]
- Bojanowska, M.; Lamo-rska, J. Evaluation of technological quality of selected rapeseed oils. Acta Agrophys. 2016, 23, 519–531. [Google Scholar]
- Raczyk, M.; Popis, E.; Kruszewski, B.; Ratusz, K.; Rudzińska, M. Physicochemical quality and oxidative stability of linseed (Linum usitatissimum) and camelina (Camelina sativa) cold-pressed oils from retail outlets. Eur. J. Lipid Sci. Technol. 2016, 118, 834–839. [Google Scholar] [CrossRef]
- Ixtaina, V.Y.; Martínez, M.L.; Spotorno, V.; Mateo, C.M.; Maestri, D.M.; Diehl, B.W.; Nolasco, S.M.; Tomás, M.C. Characterization of chia seed oils obtained by pressing and solvent extraction. J. Food Compos. Anal. 2011, 24, 166–174. [Google Scholar] [CrossRef]
- Yilmaz, E.; Güneşer, B.A. Cold pressed versus solvent extracted lemon (Citrus limon L.) seed oils: Yield and properties. J. Food Sci. Technol. 2017, 54, 1891–1900. [Google Scholar] [CrossRef]
- Gao, P.; Jin, J.; Liu, R.; Jin, Q.; Wang, X. Chemical compositions of walnut (Juglans regia L.) oils from different cultivated regions in China. J. Am. Oil Chem. Soc. 2018, 95, 825–834. [Google Scholar] [CrossRef]
- Uluata, S. Effect of extraction method on biochemical properties and oxidative stability of apricot seed oil. Akad. Gida 2016, 14, 333–340. [Google Scholar]
- European Commission Regulation (EEC). No. 2568/91, On the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31991R2568 (accessed on 1 October 2024).
- Abramovič, H.; Abram, V. Effect of added rosemary extract on oxidative stability of Camelina sativa oil. Acta Agric. Slov. 2006, 87, 225–261. [Google Scholar] [CrossRef]
- Gawrysiak-Witulska, M.; Siger, A.; Grygier, A.; Rusinek, R.; Gancarz, M. Effects of drying conditions on the content of biologically active compounds in winter Camelina sativa seeds. Eur. J. Lipid Sci. Technol. 2022, 124, 2200035. [Google Scholar] [CrossRef]
- Piskernik, S.; Levart, A.; Korošec, M.; Perme, K.; Salobir, J.; Pajk Žontar, T. Fatty acid profiles, nutritional quality and sensory characteristics of unconventional oils and fats on the Slovenian market. J. Food Nutr. Res. 2021, 60, 373–383. [Google Scholar]
- Commission Regulation (EU) No. 1870/2019 of 7 November 2019 amending and correcting Regulation (EC) No 1881/2006 as regards maximum levels of erucic acid and hydrocyanic acid in certain foodstuffs. Off. J. EU 2019, L289/37, 37–40. Available online: https://eur-lex.europa.eu/eli/reg/2019/1870/oj (accessed on 1 October 2024).
- Wallace, H.; Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Bruschweiler, B.; Ceccatelli, S.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Erucic acid in feed and food. EFSA J. 2016, 14, e04593. [Google Scholar]
- Lunn, J.; Theobald, H.E. The health effects of dietary unsaturated fatty acids. Nutr. Bull. 2006, 31, 178–224. [Google Scholar] [CrossRef]
- Ergönül, P.G.; Özbek, Z.A. Cold pressed camelina (Camelina sativa L.) seed oil. In Cold Pressed Oils; Academic Press: Cambridge, MA, USA, 2020; pp. 255–266. [Google Scholar]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Hrastar, R.; Abramovič, H.; Košir, I.J. In situ quality evaluation of Camelina sativa landrace. Eur. J. Lipid Sci. Technol. 2012, 114, 343–351. [Google Scholar] [CrossRef]
- Huang, S.W.; Frankel, E.N.; German, J.B. Antioxidant activity of α-and γ-tocopherols in bulk oils and in oil-in-water emulsions. J. Agric. Food Chem. 1994, 42, 2108–2114. [Google Scholar] [CrossRef]
- Carazo, A.; Macáková, K.; Matoušová, K.; Krčmová, L.K.; Protti, M.; Mladěnka, P. Vitamin A update: Forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients 2021, 13, 1703. [Google Scholar] [CrossRef]
- Abramovič, H.; Butinar, B.; Nikolič, V. Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chem. 2007, 104, 903–909. [Google Scholar] [CrossRef]
Parameters | Solvent Extraction | Cold-Pressing | ||
---|---|---|---|---|
NS Zlatka | NS Slatka | NS Zlatka | NS Slatka | |
Oil yield (%) | 26.7 ± 0.04 a | 29.7 ± 0.06 b | 26.0 ± 0.06 a | 30.0 ± 0.08 b |
Moisture content (%) | 0.171 ± 0.02 ab | 0.149 ± 0.03 ab | 0.118 ± 0.01 a | 0.193 ± 0.02 b |
Density (g/mL) | 0.8718 ± 0.05 a | 0.8253 ± 0.03 a | 0.9094 ± 0.04 b | 0.9150 ± 0.02 b |
Refractive index | 1.479 ± 0.01 a | 1.482 ± 0.02 a | 1.477± 0.01 a | 1.481 ± 0.01 a |
Viscosity (mPa·s) | 50.2 ± 2.29 a | 49.9 ± 2.21 a | 50.1 ± 2.49 a | 49.6 ± 2.18 a |
pH value | 7.40 ± 0.03 c | 8.10 ± 0.04 d | 6.66 ± 0.02 a | 6.80 ± 0.02 b |
Saponification number (mg KOH/g) | 58.90 ± 3.17 c | 42.09 ± 2.26 b | 28.06 ± 1.89 a | 47.70 ± 3.42 b |
Parameters | Solvent Extraction | Cold-Pressing | ||
---|---|---|---|---|
NS Zlatka | NS Slatka | NS Zlatka | NS Slatka | |
Peroxide value (meq O2/kg) | 1.32 ± 0.21 a | 1.80 ± 0.06 ab | 1.60 ± 0.11 ab | 1.93 ± 0.09 b |
p-Anisidine value | 0.27 ± 0.07 bc | 0.08 ± 0.01 a | 0.39 ± 0.04 c | 0.15 ± 0.05 ab |
TOTOX | 2.91 ± 0.35 a | 3.68 ± 0.12 ab | 3.58 ± 0.18 ab | 4.00 ± 0.13 b |
Acid value (mg KOH/g) | 1.40 ± 0.01 c | 1.02 ± 0.01 a | 1.70 ± 0.02 d | 1.12 ± 0.01 b |
Induction period at 100 °C | 4.48 ± 0.05 b | 4.72 ± 0.04 c | 4.19 ± 0.05 a | 4.26 ± 0.06 a |
Parameters | Oil | Solvent Extraction | Cold-Pressing | ||
---|---|---|---|---|---|
NS Zlatka | NS Slatka | NS Zlatka | NS Slatka | ||
K232 | Fresh oil | 3.5451 ± 0.08 a | 3.6450 ± 0.03 a | 3.5497 ± 0.06 a | 3.5246 ± 0.07 a |
Tempered oil | 3.5709 ± 0.07 a | 3.6488 ± 0.07 a | 3.5914 ± 0.04 a | 3.5733 ± 0.01 a | |
K268 | Fresh oil | 3.6463 ± 0.04 b | 3.7459 ± 0.07 b | 2.6828 ± 0.06 a | 2.6661 ± 0.08 a |
Tempered oil | 3.6694 ± 0.06 c | 3.7467 ± 0.04 c | 2.6945 ± 0.01 a | 2.9085 ± 0.07 b | |
R–value | Fresh oil | 0.9722 ± 0.013 a | 0.9731 ± 0.010 a | 1.3231 ± 0.007 b | 1.3220 ± 0.013 b |
Tempered oil | 0.9732 ± 0.003 a | 0.9739 ± 0.008 a | 1.3329 ± 0.001 c | 1.2286 ± 0.026 b |
Fatty Acid (%) | Solvent Extraction | Cold-Pressing | ||
---|---|---|---|---|
NS Zlatka | NS Slatka | NS Zlatka | NS Slatka | |
C14:0 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.01 |
C16:0 | 5.75 ± 0.17 | 5.75 ± 0.15 | 5.39 ± 0.16 | 5.35 ± 0.15 |
C18:0 | 2.76 ± 0.20 | 2.58 ± 0.18 | 2.50 ± 0.17 | 2.48 ± 0.15 |
C20:0 | 1.43 ± 0.03 | 1.31 ± 0.21 | 1.30 ± 0.02 | 1.18 ± 0.01 |
ΣSFA | 9.99 ± 0.07 d | 9.69 ± 0.05 c | 9.23 ± 0.06 b | 9.07 ± 0.04 a |
C16:1 | 0.09 ± 0.01 | 0.11 ± 0.03 | 0.10 ± 0.02 | 0.10 ± 0.03 |
C18:1n9c | 13.59 ± 0.48 | 13.94 ± 0.51 | 13.40 ± 0.49 | 13.87 ± 0.51 |
C20:1n9 | 16.12 ± 0.69 | 15.72 ± 0.58 | 15.44 ± 0.52 | 15.17 ± 0.48 |
C22:1n9 | 3.03 ± 0.04 b | 2.91 ± 0.01 a | 3.18 ± 0.03 c | 2.91 ± 0.02 a |
ΣMUFA | 32.82 ± 3.17 | 32.67 ± 3.09 | 32.12 ± 2.92 | 32.05 ± 2.79 |
C18:2n6c | 16.71 ± 1.84 | 16.72 ± 1.88 | 15.89 ± 1.79 | 15.83 ± 1.77 |
C18:3n3 | 36.68 ± 3.44 | 37.96 ± 3.68 | 38.76 ± 3.87 | 39.25 ± 3.94 |
C20:2n6 | 1.99 ± 0.18 b | 1.17 ± 0.16 a | 2.11 ± 0.19 b | 2.03 ± 0.23 b |
C20:3n3 | 1.80 ± 0.01 a | 1.79 ± 0.02 a | 1.89 ± 0.01 b | 1.77 ± 0.01 a |
ΣPUFA | 57.19 ± 2.61 | 57.63 ± 2.55 | 58.65 ± 2.46 | 58.88 ± 2.39 |
Σω-3 | 38.48 ± 2.26 | 39.75 ± 2.29 | 40.65 ± 2.34 | 41.02 ± 2.38 |
Σω-6 | 18.71 ± 0.17 b | 17.89 ± 0.12 a | 18.00 ± 0.03 a | 17.86 ± 0.17 a |
ω-6/ω-3 | 0.49 ± 0.02 | 0.45 ± 0.02 | 0.44 ± 0.02 | 0.44 ± 0.02 |
COX | 9.78 ± 0.04 | 10.06 ± 0.24 | 10.14 ± 0.06 | 10.25 ± 0.05 |
AI | 0.07 ± 0.00 | 0.07 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 |
TI | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.05 ± 0.00 | 0.05 ± 0.00 |
HH | 11.54 ± 0.03 a | 11.83 ± 0.45 ab | 12.54 ± 0.22 ab | 12.75 ± 0.22 b |
Parameters | Solvent Extraction | Cold-Pressing | ||
---|---|---|---|---|
NS Zlatka | NS Slatka | NS Zlatka | NS Slatka | |
α-tocopherol (mg/kg) | 14.1 ± 1.34 a | 10.8 ± 0.28 a | 21.1 ± 0.99 b | 26.8 ± 2.33 b |
β-tocopherol (mg/kg) | <0.1 | <0.1 | <0.1 | <0.1 |
γ-tocopherol (mg/kg) | 184.3 ± 8.98 a | 198.2 ± 11.46 a | 385.1 ± 30.48 b | 547.4 ± 10.54 c |
β-carotene (mg/kg) | 118.96 ± 10.9 b | 132.52 ± 12.4 b | 89.43 ± 6.01 a | 71.12 ± 5.28 a |
Total phenol content (mg GAE/100 g) | 26.0 ± 0.02 b | 41.1 ± 0.02 d | 7.3 ± 0.02 a | 30.9 ± 0.02 c |
Antioxidant Activity | Solvent Extraction | Cold-Pressing | ||
---|---|---|---|---|
NS Zlatka | NS Slatka | NS Zlatka | NS Slatka | |
IC50 (mg/mL) | 10.50 ± 0.07 b | 11.90 ± 0.04 c | 11.90 ± 0.08 c | 9.50 ± 0.06 a |
Concentration (mg/mL) | 3.125–100 | 3.125–100 | 6.250–100 | 6.250–100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakita, S.; Spasevski, N.; Savić, I.; Savić Gajić, I.; Lazarević, J.; Dragojlović, D.; Đuragić, O. Comparative Evaluation of Camelina Seed Oils Obtained by Cold-Pressing and Solvent Extraction. Foods 2024, 13, 3605. https://doi.org/10.3390/foods13223605
Rakita S, Spasevski N, Savić I, Savić Gajić I, Lazarević J, Dragojlović D, Đuragić O. Comparative Evaluation of Camelina Seed Oils Obtained by Cold-Pressing and Solvent Extraction. Foods. 2024; 13(22):3605. https://doi.org/10.3390/foods13223605
Chicago/Turabian StyleRakita, Slađana, Nedeljka Spasevski, Ivan Savić, Ivana Savić Gajić, Jasmina Lazarević, Danka Dragojlović, and Olivera Đuragić. 2024. "Comparative Evaluation of Camelina Seed Oils Obtained by Cold-Pressing and Solvent Extraction" Foods 13, no. 22: 3605. https://doi.org/10.3390/foods13223605
APA StyleRakita, S., Spasevski, N., Savić, I., Savić Gajić, I., Lazarević, J., Dragojlović, D., & Đuragić, O. (2024). Comparative Evaluation of Camelina Seed Oils Obtained by Cold-Pressing and Solvent Extraction. Foods, 13(22), 3605. https://doi.org/10.3390/foods13223605