The Effect of Hydrodynamic Cavitation on the Structural and Functional Properties of Soy Protein Isolate–Lignan/Stilbene Polyphenol Conjugates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SPI–Lignan/Stilbene Polyphenols
2.3. Binding Capacity of Polyphenols to Proteins
2.4. Determination of Free Amino and Exposed Sulfhydryl Content
2.5. UV Spectra Scanning
2.6. Endogenous Fluorescence Spectroscopy
2.7. FT-IR Spectroscopy
2.8. Determination of Secondary Structure
2.9. Determination of Surface Hydrophobicity
2.10. Determination of Emulsifying Properties
2.11. Determination of Antioxidant Capacity
2.11.1. DPPH Radical Scavenging Capacity
2.11.2. ABTS Radical Scavenging Capacity
2.11.3. Iron Ion Reducing Capacity
2.12. Statistical Analysis
3. Results and Discussion
3.1. Interaction of SPI–Polyphenol Conjugates
3.1.1. Impact on Binding Capacity
3.1.2. Analysis of Free Amino and Exposed Sulfhydryl Content
3.2. Structural Properties of SPI–Polyphenol Conjugates
3.2.1. UV Absorption Spectral Analysis
3.2.2. Endogenous Fluorescence Spectroscopic Analysis
3.2.3. FT-IR Spectral Analysis
3.2.4. Secondary Structure Analysis
3.2.5. Evaluation of H0
3.3. Functional Properties of SPI–Polyphenol Conjugates
3.3.1. Evaluation of Emulsifying Properties
3.3.2. Evaluation of Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Tu, K. The Research Advance of Traditional Meat Substitutes-Artificial Meat. Sci. Technol. Food Ind. 2020, 41, 327–333. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, W.; Zhang, J.M.; Zhou, X.C.; Bai, T. Artificial Meat and Its Research and Development Progress. Food Res. Dev. 2021, 42, 183–190. [Google Scholar] [CrossRef]
- Wang, N. Microfluidization of Soybean Protein Isolate-Tannic Acid Complex Stabilized Emulsions: Characterization of Emulsion Properties, Stability and in Vitro Digestion Properties. Food Chem. 2024, 430, 137065. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; He, H.; Wu, D.; Lin, D.; Qin, W.; Meng, D.; Yang, R.; Zhang, Q. Rheological and Textural Properties of Acid-Induced Soybean Protein Isolate Gel in the Presence of Soybean Protein Isolate Hydrolysates or Their Glycosylated Products. Food Chem. 2021, 360, 129991. [Google Scholar] [CrossRef]
- Xue, F.; Li, C.; Adhikari, B. Physicochemical Properties of Soy Protein Isolates-Cyanidin-3-Galactoside Conjugates Produced Using Free Radicals Induced by Ultrasound. Ultrason. Sonochem. 2020, 64, 104990. [Google Scholar] [CrossRef]
- Dai, S.; Lian, Z.; Qi, W.; Chen, Y.; Tong, X.; Tian, T.; Lyu, B.; Wang, M.; Wang, H.; Jiang, L. Non-Covalent Interaction of Soy Protein Isolate and Catechin: Mechanism and Effects on Protein Conformation. Food Chem. 2022, 384, 132507. [Google Scholar] [CrossRef]
- Tong, X.; Cao, J.; Tian, T.; Liu, B.; Miao, L.; Lian, Z.; Cui, W.; Liu, S.; Wang, H.; Jiang, L. Changes in Structure, Rheological Property and Antioxidant Activity of Soy Protein Isolate Fibrils by Ultrasound Pretreatment and EGCG. Food Hydrocoll. 2022, 122, 107084. [Google Scholar] [CrossRef]
- Wang, H.; You, S.; Wang, W.; Zeng, Y.; Su, R.; Qi, W.; Wang, K.; He, Z. Laccase-Catalyzed Soy Protein and Gallic Acid Complexation: Effects on Conformational Structures and Antioxidant Activity. Food Chem. 2022, 375, 131865. [Google Scholar] [CrossRef]
- Li, Y.; Deng, L.; Dai, T.; Li, Y.; Chen, J.; Liu, W.; Liu, C. Microfluidization: A Promising Food Processing Technology and Its Challenges in Industrial Application. Food Control 2022, 137, 108794. [Google Scholar] [CrossRef]
- Rajasekaran, B.; Singh, A.; Nilsuwan, K.; Ma, L.; Nazeer, R.A.; Benjakul, S. Shrimp Oil Nanoemulsions Prepared by Microfluidization and Ultrasonication: Characteristics and Stability. RSC Adv. 2024, 14, 6135–6145. [Google Scholar] [CrossRef]
- Lei, E.; Yuan, X.; Xiang, K.; Shao, Z.; Hong, F.; Huang, Y. Research Progress of Hydrodynamic Cavitation Reactors in the Field of Water Treatment: A Review. J. Water Process Eng. 2024, 66, 105997. [Google Scholar] [CrossRef]
- Gregersen, S.B.; Wiking, L.; Bertelsen, K.B.; Tangsanthatkun, J.; Pedersen, B.; Poulsen, K.R.; Andersen, U.; Hammershøj, M. Viscosity Reduction in Concentrated Protein Solutions by Hydrodynamic Cavitation. Int. Dairy J. 2019, 97, 1–4. [Google Scholar] [CrossRef]
- Asaithambi, N.; Singha, P.; Singh, S.K. Influence of Hydrodynamic Cavitation on Functional, Nutritional, and Structural Characteristics of Egg-White Protein Hydrolysates. Food Hydrocoll. Health 2023, 4, 100153. [Google Scholar] [CrossRef]
- Liu, L.-L.; Li, X.-T.; Zhang, N.; Tang, C.-H. Novel Soy β-Conglycinin Nanoparticles by Ethanol-Assisted Disassembly and Reassembly: Outstanding Nanocarriers for Hydrophobic Nutraceuticals. Food Hydrocoll. 2019, 91, 246–255. [Google Scholar] [CrossRef]
- Wang, D.; Li, H.; Hou, T.Y.; Zhang, Z.J.; Li, H.Z. Effects of Conjugated Interactions between Perilla Seed Meal Proteins and Different Polyphenols on the Structural and Functional Properties of Proteins. Food Chem. 2024, 433, 137345. [Google Scholar] [CrossRef]
- Liu, J.; Song, G.; Yuan, Y.; Zhou, L.; Wang, D.; Yuan, T.; Li, L.; He, G.; Yang, Q.; Xiao, G.; et al. Ultrasound-Assisted Assembly of β-Lactoglobulin and Chlorogenic Acid for Non-Covalent Nanocomplex: Fabrication, Characterization and Potential Biological Function. Ultrason. Sonochem. 2022, 86, 106025. [Google Scholar] [CrossRef]
- Liu, H.; Han, G.; Zhang, H.; Liu, Q.; Kong, B. Improving the Physical and Oxidative Stability of Emulsions Based on the Interfacial Electrostatic Effects between Porcine Bone Protein Hydrolysates and Porcine Bone Protein Hydrolysate-Rutin Conjugates. Food Hydrocoll. 2019, 94, 418–427. [Google Scholar] [CrossRef]
- Liu, C.; Lv, N.; Song, Y.; Dong, L.; Huang, M.; Shen, Q.; Ren, G.; Wu, R.; Wang, B.; Cao, Z.; et al. Interaction Mechanism between Zein and β-Lactoglobulin: Insights from Multi-Spectroscopy and Molecular Dynamics Simulation Methods. Food Hydrocoll. 2023, 135, 108226. [Google Scholar] [CrossRef]
- Liu, C.-M.; Zhong, J.-Z.; Liu, W.; Tu, Z.-C.; Wan, J.; Cai, X.-F.; Song, X.-Y. Relationship between Functional Properties and Aggregation Changes of Whey Protein Induced by High Pressure Microfluidization. J. Food Sci. 2011, 76, E341–E347. [Google Scholar] [CrossRef]
- Li, C.; Huang, X.; Peng, Q.; Shan, Y.; Xue, F. Physicochemical Properties of Peanut Protein Isolate–Glucomannan Conjugates Prepared by Ultrasonic Treatment. Ultrason. Sonochem. 2014, 21, 1722–1727. [Google Scholar] [CrossRef]
- Dai, S.; Liao, P.; Wang, Y.; Tian, T.; Tong, X.; Lyu, B.; Cheng, L.; Miao, L.; Qi, W.; Jiang, L.; et al. Soy Protein Isolate-Catechin Non-Covalent and Covalent Complexes: Focus on Structure, Aggregation, Stability and in Vitro Digestion Characteristics. Food Hydrocoll. 2023, 135, 108108. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Li, L.; Qi, B.; Ju, M.; Xu, Y.; Zhang, Y.; Sui, X. Covalent Conjugates of Anthocyanins to Soy Protein: Unravelling Their Structure Features and in Vitro Gastrointestinal Digestion Fate. Food Res. Int. 2019, 120, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Xue, J.; Abbas, S.; Feng, B.; Zhang, X.; Xia, S. Liposome as a Delivery System for Carotenoids: Comparative Antioxidant Activity of Carotenoids As Measured by Ferric Reducing Antioxidant Power, DPPH Assay and Lipid Peroxidation. J. Agric. Food Chem. 2014, 62, 6726–6735. [Google Scholar] [CrossRef] [PubMed]
- Song, G. Characterization of Ultrasound-Assisted Covalent Binding Interaction between β-Lactoglobulin and Dicaffeoylquinic Acid: Great Potential for the Curcumin Delivery. Food Chem. 2024, 441, 138400. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Zeng, X.-A.; Waseem, M.; Siddique, R.; Javed, M.R.; Verma, D.K.; Ali, M. Soy Protein-Polyphenols Conjugates Interaction Mechanism, Characterization, Techno-Functional and Biological Properties: An Updated Review. Food Chem. 2024, 460, 140571. [Google Scholar] [CrossRef]
- Guo, N.; Zhou, G.H.; Zhang, Y.M.; Zhang, F.Y.; Xu, J.J.; Pan, S.Y.; Zhu, G.L.; Wang, Z.Y. Effect of Ultrasound Treatment on Interactions of Whey Protein Isolate with Rutin. Ultrason. Sonochem. 2023, 95, 106387. [Google Scholar] [CrossRef]
- Zhao, T.T.; Li, B.Y.; Cheng, D. Preparation and functional properties of whey protein-chlorogenic acid covalent complex. Food Ferment. Ind. 2024, 1–11. [Google Scholar] [CrossRef]
- Kaur, J.; Katopo, L.; Hung, A.; Ashton, J.; Kasapis, S. Combined Spectroscopic, Molecular Docking and Quantum Mechanics Study of β-Casein and p-Coumaric Acid Interactions Following Thermal Treatment. Food Chem. 2018, 252, 163–170. [Google Scholar] [CrossRef]
- Dai, S.; Xu, T.; Yuan, Y.; Fang, Q.; Lian, Z.; Tian, T.; Tong, X.; Jiang, L.; Wang, H. Combination and Precipitation Mechanism of Soy Protein and Tea Polyphenols. Food Hydrocoll. 2024, 146, 109197. [Google Scholar] [CrossRef]
- Chen, X.-W.; Wang, J.-M.; Yang, X.-Q.; Qi, J.-R.; Hou, J.-J. Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability. J. Food Sci. 2016, 81, C2149–C2157. [Google Scholar] [CrossRef]
- Yu, Y.J.; Wang, T.; Huang, X.H.; Lian, Y.R.; Yang, F.M.; Yu, D.Y. Hemp Seed Protein and Chlorogenic Acid Complex: Effect of Ultrasound Modification on Its Structure and Functional Properties. Int. J. Biol. Macromol. 2023, 233, 123521. [Google Scholar] [CrossRef] [PubMed]
- Sang, Q.; Yi, Y.X.; Wang, X.N.; Yang, F. Preparation of SPl-based Tea Polyphenol Nanocomposites and Their Intermolecular Interactions. China Fruit Veg. 2024, 44, 42–48. [Google Scholar] [CrossRef]
- Yan, S.; Wang, Q.; Yu, J.; Li, Y.; Qi, B. Ultrasound-Assisted Preparation of Protein–Polyphenol Conjugates and Their Structural and Functional Characteristics. Ultrason. Sonochem. 2023, 100, 106645. [Google Scholar] [CrossRef]
- Xue, A.L.; Li, C.Y.; Wang, Q.M.; Zhang, C.; Lei, X.J.; Zhao, J.C.; Zeng, K.F.; Ming, J. Effect of Ultrasonic Treatment on the Interaction and Structural Properties of Gliadin-Rutin Complex. Food Sci. 2022, 43, 45–51. [Google Scholar] [CrossRef]
- Liu, F.; Sun, C.; Yang, W.; Yuan, F.; Gao, Y. Structural Characterization and Functional Evaluation of Lactoferrin–Polyphenol Conjugates Formed by Free-Radical Graft Copolymerization. RSC Adv. 2015, 5, 15641–15651. [Google Scholar] [CrossRef]
- Pan, L. Effects of Fabrication of Conjugates between Different Polyphenols and Bovine Bone Proteins on Their Structural and Functional Properties. Food Biosci. 2023, 52, 102375. [Google Scholar] [CrossRef]
- Iscimen, E.M. Ultrasound-Assisted Preparation of Faba Bean Protein Isolate- Vitis vinifera L. Polyphenol Extract Conjugates: Structural and Functional Characterization. Food Biosci. 2023, 55, 103041. [Google Scholar] [CrossRef]
- Gao, X.L.; Ma, M.L.; Li, Y.H.; Wang, Y.H.; He, S.H.; Guo, W.Y. Physicochemical and Structural Characteristics of Soy Protein Chlorogenic Acid Complex under Microwave Conditions. J. Chin. Inst. Food Sci. Technol. 2024, 24, 119–127. [Google Scholar]
- Dai, S.C.; Lian, Z.T.; Ma, L.Z.; Tong, X.H.; Tian, T.; Qi, W.J.; Peng, C.Y.; Fan, Y.H.; Wang, H.; Jiang, L.Z. Effect of Ultrasonic Pretreatment on the Structure and Function of Soybean Protein Isolate-Catechin Non-covalent/Covalent Complexes. Food Sci. 2022, 43, 102–110. [Google Scholar] [CrossRef]
- Chen, S.; Han, Y.; Huang, J.; Dai, L.; Du, J.; McClements, D.J.; Mao, L.; Liu, J.; Gao, Y. Fabrication and Characterization of Layer-by-Layer Composite Nanoparticles Based on Zein and Hyaluronic Acid for Codelivery of Curcumin and Quercetagetin. ACS Appl. Mater. Interfaces 2019, 11, 16922–16933. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Liu, J.; Liu, H.; Li, Z.; Liu, J. Interactions of Different Polyphenols with Wheat Germ Albumin and Globulin: Alterations in the Conformation and Emulsification Properties of Proteins. Food Chem. 2024, 457, 140129. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. Effects of Different Dietary Polyphenols on Conformational Changes and Functional Properties of Protein–Polyphenol Covalent Complexes. Food Chem. 2021, 361, 130071. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.D.; Ning, Z.Z.; Li, J.M.; Guan, Y.; He, J.H.; Zhao, S.N.; Liu, J.B.; Zhang, T. Effect of Molecular Interaction between Ovalbumin and Chlorogenic Acid on Protein Structure and Emulsion Stability. J. Chin. Inst. Food Sci. Technol. 2022, 22, 66–76. [Google Scholar] [CrossRef]
- Yang, W.; Liu, F.; Xu, C.; Yuan, F.; Gao, Y. Molecular Interaction between (−)-Epigallocatechin-3-Gallate and Bovine Lactoferrin Using Multi-Spectroscopic Method and Isothermal Titration Calorimetry. Food Res. Int. 2014, 64, 141–149. [Google Scholar] [CrossRef]
- Ji, W.; Liu, J.; Yang, J.J.; Nan, X.J.; Li, J.Y.; Wang, H.L.; Sheng, G.H.; Zhou, Q.C. Interaction of Pea Albumin with Chlorogenic Acid in a Dynamic High Pressure Microfluidization Environment. Food Sci. 2023, 44, 74–81. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Liu, T.; Jing, H.; Zhang, F.; Obadi, M.; Xu, B. Evaluation of Crossing-Linking Sites of Egg White Protein–Polyphenol Conjugates: Fabricated Using a Conventional and Ultrasound-Assisted Free Radical Technique. Food Chem. 2022, 386, 132606. [Google Scholar] [CrossRef]
- Wang, Z.G.; Gao, Y.Z.; Shi, J.F.; Zhang, J.J.; Jiang, R.S.; Huo, J.J.; Su, S.; Xiao, Z.G. Effects of extrusion temperature on the functional and structural properties of soybean protein isolate and proanthocyanidin complex. Trans. Chin. Soc. Agric. Eng. 2022, 38, 279–286. [Google Scholar]
- Shi, W.; Xie, H.; Ouyang, K.; Wang, S.; Xiong, H.; Woo, M.W.; Zhao, Q. The Effect of Rice Protein-Polyphenols Covalent and Non-Covalent Interactions on the Structure, Functionality and in Vitro Digestion Properties of Rice Protein. Food Chem. 2024, 450, 139241. [Google Scholar] [CrossRef]
- Dai, T.; Chen, J.; McClements, D.J.; Hu, P.; Ye, X.; Liu, C.; Li, T. Protein-Polyphenol Interactions Enhance the Antioxidant Capacity of Phenolics: Analysis of Rice Glutelin-Procyanidin Dimer Interactions. Food Funct. 2019, 10, 765–774. [Google Scholar] [CrossRef]
- Yan, S.; Wang, Q.; Yu, J.; Li, Y.; Qi, B. Soy Protein Interactions with Polyphenols: Structural and Functional Changes in Natural and Cationized Forms. Food Chem. X 2023, 19, 100866. [Google Scholar] [CrossRef]
- Seyoum, A.; Asres, K.; El-Fiky, F.K. Structure-Radical Scavenging Activity Relationships of Flavonoids. Phytochemistry 2006, 67, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- Rohn, S.; Rawel, H.M.; Kroll, J. Antioxidant Activity of Protein-Bound Quercetin. J. Agric. Food Chem. 2004, 52, 4725–4729. [Google Scholar] [CrossRef] [PubMed]
- Parolia, S.; Maley, J.; Sammynaiken, R.; Green, R.; Nickerson, M.; Ghosh, S. Structure-Functionality of Lentil Protein-Polyphenol Conjugates. Food Chem. 2022, 367, 130603. [Google Scholar] [CrossRef] [PubMed]
Material | α-Helix/% | β-Sheet/% | β-Turn/% | Random Coil/% |
---|---|---|---|---|
UH-SPI | 18.49 ± 0.29 e | 34.54 ± 0.30 a* | 17.56 ± 0.05 a | 29.71 ± 0.13 c* |
UH-SPI-MN | 20.41 ± 0.09 c | 30.52 ± 0.10 d* | 17.23 ± 0.03 c | 31.81 ± 0.08 a |
UH-SPI-RA | 21.68 ± 0.22 a | 30.56 ± 0.12 d* | 17.32 ± 0.03 bc | 30.08 ± 0.23 b |
UH-SPI-AC | 19.97 ± 0.14 d | 32.85 ± 0.12 b* | 17.52 ± 0.03 a | 29.72 ± 0.12 c |
UH-SPI-PD | 21.23 ± 0.14 b | 31.00 ± 0.11 c* | 17.39 ± 0.10 b | 30.15 ± 0.05 b* |
H-SPI | 24.92 ± 0.23 E* | 27.86 ± 0.31 A | 17.88 ± 0.04 C* | 29.02 ± 0.16 D |
H-SPI-MN | 29.39 ± 0.56 C* | 20.13 ± 0.41 C | 18.16 ± 0.11 AB* | 33.32 ± 0.18 A* |
H-SPI-RA | 33.29 ± 0.43 A* | 18.25 ± 0.32 D | 18.18 ± 0.06 AB* | 30.95 ± 0.17 B* |
H-SPI-AC | 31.56 ± 0.29 B* | 19.93 ± 0.05 C | 18.24 ± 0.06 A* | 30.82 ± 0.21 B* |
H-SPI-PD | 27.36 ± 0.18 D* | 24.72 ± 0.31 B | 18.10 ± 0.07 B* | 29.85 ± 0.22 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, N.; Ren, X.; Yang, F.; Huang, Y.; Wei, F.; Yang, L. The Effect of Hydrodynamic Cavitation on the Structural and Functional Properties of Soy Protein Isolate–Lignan/Stilbene Polyphenol Conjugates. Foods 2024, 13, 3609. https://doi.org/10.3390/foods13223609
Hua N, Ren X, Yang F, Huang Y, Wei F, Yang L. The Effect of Hydrodynamic Cavitation on the Structural and Functional Properties of Soy Protein Isolate–Lignan/Stilbene Polyphenol Conjugates. Foods. 2024; 13(22):3609. https://doi.org/10.3390/foods13223609
Chicago/Turabian StyleHua, Ning, Xian’e Ren, Feng Yang, Yongchun Huang, Fengyan Wei, and Lihui Yang. 2024. "The Effect of Hydrodynamic Cavitation on the Structural and Functional Properties of Soy Protein Isolate–Lignan/Stilbene Polyphenol Conjugates" Foods 13, no. 22: 3609. https://doi.org/10.3390/foods13223609
APA StyleHua, N., Ren, X., Yang, F., Huang, Y., Wei, F., & Yang, L. (2024). The Effect of Hydrodynamic Cavitation on the Structural and Functional Properties of Soy Protein Isolate–Lignan/Stilbene Polyphenol Conjugates. Foods, 13(22), 3609. https://doi.org/10.3390/foods13223609