Perilla Seed Oil: A Review of Health Effects, Encapsulation Strategies and Applications in Food
Abstract
:1. Introduction
2. Health Benefits of PSO
2.1. Antioxidant Activity
2.2. Anti-Inflammatory Activity
2.3. Hypolipidemic Activity
2.4. Hypoglycemic Activity
2.5. Neuroprotective Activity
2.6. Immunoregulatory Activity
2.7. Other Bioactivities
3. Gut Microbiome
4. Encapsulation Strategies and Their Applications in Food
4.1. Emulsions
4.2. Oleogels
4.3. Liposome
4.4. Microcapsule
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Li, Y.; Ma, J.; Wu, F.; Wang, L.; Sun, L.; Zhang, P.; Wang, W.; Xu, J. Comparative physiological and soil microbial community structural analysis revealed that selenium alleviates cadmium stress in Perilla frutescens. Front. Plant Sci. 2022, 13, 1022935. [Google Scholar] [CrossRef] [PubMed]
- Fuyuno, Y.; Uchi, H.; Yasumatsu, M.; Morino-Koga, S.; Tanaka, Y.; Mitoma, C.; Furue, M. Perillaldehyde Inhibits AHR Signaling and Activates NRF2 Antioxidant Pathway in Human Keratinocytes. Oxidative Med. Cell. Longev. 2018, 2018, 9524657. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zeng, X.; Zhang, S.; Wang, Y.; Zhang, P.; Lue, A.; Peng, X. Regional variation in components and antioxidant and antifungal activities of Perilla frutescens essential oils in China. Ind. Crops Prod. 2014, 59, 69–79. [Google Scholar] [CrossRef]
- Lee, K.-R.; Kim, K.-H.; Kim, J.B.; Hong, S.-B.; Jeon, I.; Kim, H.U.; Lee, M.H.; Kim, J.K. High accumulation of γ-linolenic acid and Stearidonic acid in transgenic Perilla (Perilla frutescens var. frutescens) seeds. BMC Plant Biol. 2019, 19, 120. [Google Scholar] [CrossRef]
- Asif, M. Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient. Pharm. Exp. Med. 2011, 11, 51–59. [Google Scholar] [CrossRef]
- Liang, X.; Wang, X.; Chen, D.; Song, N. The Research and Application Status of Perilla Seed Oil. China J. Chin. Med. 2022, 37, 547–551. [Google Scholar] [CrossRef]
- Jae Kwang, K.; Soo-Yun, P.; Jong-Kuk, N.; Eun Soo, S.; Chang Yeon, Y. Metabolite profiling based on lipophilic compounds for quality assessment of perilla (Perilla frutescens) cultivars. J. Agric. Food Chem. 2012, 60, 2257–2263. [Google Scholar]
- Seonyeong, W.; Hyunsuk, H.; Sukhoo, Y.; Eunok, C. Temperature dependence of autoxidation of perilla oil and tocopherol degradation. J. Food Sci. 2010, 75, C498–C505. [Google Scholar]
- Tingting, Z.; Seung In, H.; Junsoo, L.; Jeom-Sig, L.; In-Hwan, K. Impact of roasting on the chemical composition and oxidative stability of perilla oil. J. Food Sci. 2012, 77, C1273–C1278. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Wang, B.; Adhikari, R.; Adhikari, B. Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocoll. 2017, 69, 369–381. [Google Scholar] [CrossRef]
- Cao, X.; Yang, H. Optimization of Ultrasonic-assisted Extraction for Perilla frutescens Seed Oilby Response Surface Methodology and lts Antioxidant Activity. China Condiment 2018, 43, 17–22. [Google Scholar]
- Huang, J.; Xu, Y.; Chen, C.; Song, Z.; Chang, M.; Wang, X.; Wang, X. Effect of infrared roasting of perilla seeds on the content of bioactive components and antioxidant capacity in oil. J. Am. Oil Chem. Soc. 2024, 101, 513–522. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.-J.; Sung, J.-S.; Shin, H.-S. Influence of roasting conditions on the chemical properties and antioxidant activity of perilla oils. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 325–334. [Google Scholar] [CrossRef]
- Chen, X.; Hu, B.; Tang, X.; Zhang, B. Effects of Perilla seed oil on intestinal microorganisms and antioxidant capacity in mice. Food Ferment. Ind. 2024, 50, 271–277. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.; Liu, Z.; Zhou, H. Antioxidant Effect of Perilla Oil on Ethanol-Induced Oxidative Stress in Mice. Food Sci. 2015, 36, 279–282. [Google Scholar]
- Zhang, H.; Tian, Y.; Guan, J.; Xie, Q.; Zhao, Y. The anti-tussive, anti-inflammatory effects and sub-chronic toxicological evaluation of perilla seed oil. J. Sci. Food Agric. 2021, 101, 1419–1427. [Google Scholar] [CrossRef]
- Paradee, N.; Koonyosying, P.; Kusirisin, W.; Janthip, R.; Kanjanapothi, D.; Pattanapanyasat, K.; Srichairatanakool, S. Analgesic, anti-inflammatory and anti-ulcer properties of Thai Perilla frutescence fruit oil in animals. Biosci. Rep. 2021, 41, BSR20203166. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y. The hypolipidemic effect of perilla seed oil. J. Environ. Health 2008, 25, 827–828. [Google Scholar] [CrossRef]
- Wang, W. Study on Hypidemic Effect of Perilla Seed Oil and Preparation of Micropsule. Master’s Thesis, Jilin Agricultural University, Jilin, China, 2022. [Google Scholar]
- Li, F.; Zhang, M.; Wang, X. Feasibility of Safflower Seed Oil and Basil Seed Oil Mixture in Intervention of Hyperlipidemia. China J. Chin. Med. 2023, 38, 1240–1245. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, H.; Hu, M.; Wang, J.; Xia, H.; Yang, X.; Yang, L.; Sun, G. Perilla Oil Supplementation Improves Hypertriglyceridemia and Gut Dysbiosis in Diabetic KKAy Mice. Mol. Nutr. Food Res. 2018, 62, 1800299. [Google Scholar] [CrossRef]
- Wang, J.; He, Y.; Yu, D.; Jin, L.; Gong, X.; Zhang, B. Perilla oil regulates intestinal microbiota and alleviates insulin resistance through the PI3K/AKT signaling pathway in type-2 diabetic KKAy mice. Food Chem. Toxicol. 2020, 135, 110965. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, H.; Yang, Y. Effect of perilla oil on chronic hypoperfusion of the brain induced cognitive injury in rats. West China J. Pharm. Sci. 2012, 27, 639–640. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Guo, Y.; Xiao, N.; Tao, X.; Liu, Z.; Liu, D.; Liu, L. Effect of walnut oil, perilla oil,α-linolenic acid and linoleic acidsupplementation on rats spatial learning and memory ability. China Oils Fats 2011, 36, 33–37. [Google Scholar]
- Seong, J.; Song, Y.O. Perilla oil rich in α-linolenic acid inhibits neuronal apoptosis and the expression of inflammation-mediator protein in apoE KO mice. Biocatal. Agric. Biotechnol. 2012, 1, 167–173. [Google Scholar] [CrossRef]
- Cheng, H.; Tian, C.; Cai, F.; Pan, X.; Li, K.; Zhang, J.; Hong, Z. Effects of perilla seed oil on the growth and development, immunefunction and PUFAs composition of young laying chickens. Anim. Husb. Vet. Med. 2020, 52, 68–74. [Google Scholar]
- Chang, H.-H.; Chen, C.-S.; Lin, J.-Y. Dietary perilla oil lowers serum lipids and ovalbumin-specific IgG1, but increases total IgE levels in ovalbumin-challenged mice. Food Chem. Toxicol. 2009, 47, 848–854. [Google Scholar] [CrossRef]
- Xu, L.; Pan, W.; Cui, J. Response surface methodology optimization of water extraction of perillaseed oil and its effect on immune function of exercise rats. Cereals Oils 2021, 34, 53–57+61. [Google Scholar]
- Wang, S.; Zhang, L.; Li, P.; Wang, X.; Zhang, Q. Antibacterial Effects of Perilla Seed Oil Against Escherichia coli and Bacillus subtilis. Food Nutr. China 2017, 23, 38–41. [Google Scholar]
- Jia, X.; Zhang, Q.; Liu, H.; Wang, X.; Zeng, Y.; Zhong, G. Effect of infrared preheating treatment on quality and antioxidant activityof pressed perilla seed oil. China Oils Fats 2022, 47, 16–22. [Google Scholar] [CrossRef]
- Wu, R.; Ma, F.; Zhang, L.; Li, P.; Zhang, W.; Zhang, Q.; Li, G. Simultaneous Determination of 11 Phenolic Compounds in Perilla oil by High Performance Liquid ChromatographyTandem Mass Spectrometry. Chin. J. Anal. Chem. 2015, 43, 1600–1606. [Google Scholar]
- Wu, C. Studies on Anti-Aging Effect and Mechanism of Perilla Oil. Master’s Thesis, Wuhan Polytechnic University, Wuhan, China, 2012. [Google Scholar]
- Xu, J.; Zhang, J.; Lin, H.; Zhang, J.; Zhou, R.; Wu, X.; Niu, Y.; Zhang, J. Preparation of oral nanoparticles of Perillae Fructus oil and prevention application of cold stress in mice. Food Sci. Nutr. 2023, 11, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cao, Y.; Chen, S.; Lin, J.; Bian, J.; Huang, D. Anti-inflammation activity of flavones and their structure–activity relationship. J. Agric. Food Chem. 2021, 69, 7285–7302. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-H.; Chen, C.-S.; Lin, J.-Y. Protective effect of dietary perilla oil on allergic inflammation in asthmatic mice. Eur. J. Lipid Sci. Technol. 2012, 114, 1007–1015. [Google Scholar] [CrossRef]
- Huang, Z.-R.; Chen, M.; Guo, W.-L.; Li, T.-T.; Liu, B.; Bai, W.-D.; Ai, L.-Z.; Rao, P.-F.; Ni, L.; Lv, X.-C. Monascus purpureus-fermented common buckwheat protects against dyslipidemia and non-alcoholic fatty liver disease through the regulation of liver metabolome and intestinal microbiome. Food Res. Int. 2020, 136, 109511. [Google Scholar] [CrossRef]
- Mohamed, S. Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends Food Sci. Technol. 2014, 35, 114–128. [Google Scholar] [CrossRef]
- Shen, S.; Chang, J.; Chai, Y.; Li, J.; Chu, M.; Li, L. Hypolipidemic effect of different proportions of safflower seed oil and perilla seed oil. China Oils Fats 2020, 45, 106–110. [Google Scholar]
- Ma, H.; Zhang, Y. Security and hypolipidemic effect of perilla seed oil and linseed oil in combination. Mod. Prev. Med. 2022, 49, 4300–4305+4378. [Google Scholar] [CrossRef]
- Yu, D.; Ma, C.; Song, L.; Long, X.; Geng, Y. Lipid-lowering effect of perilla seed oil in combination with safflower seed oil. China Oils Fats 2014, 39, 35–38. [Google Scholar]
- Sun, K.; Li, X.; Ma, T. Research progress on the chemical composition and functional activities of perilla seed oil. Grain Oil Feed Technol. 2024, 16–18. [Google Scholar]
- Jang, J.-Y.; Kim, T.-S.; Cai, J.; Kim, J.; Kim, Y.; Shin, K.; Kim, K.-S.; Lee, S.-P.; Kang, M.-H.; Choi, E.-K. Perilla oil improves blood flow through inhibition of platelet aggregation and thrombus formation. Lab. Anim. Res. 2014, 30, 21–27. [Google Scholar] [CrossRef]
- Cha, Y.; Jang, J.Y.; Ban, Y.-H.; Guo, H.; Shin, K.; Kim, T.-S.; Lee, S.-P.; Choi, J.; An, E.-S.; Seo, D.-W. Anti-atherosclerotic effects of perilla oil in rabbits fed a high-cholesterol diet. Lab. Anim. Res. 2016, 32, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Sommer, F.; Bäckhed, F. The gut microbiota—Masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, H.; Yin, P.; Fan, H.; Sun, L.; Liu, Y. Flaxseed oil ameliorates alcoholic liver disease via anti-inflammation and modulating gut microbiota in mice. Lipids Health Dis. 2017, 16, 44. [Google Scholar] [CrossRef]
- Lee, W.; Tung, Y.; Wu, C.; Tu, P.; Yen, G. Camellia Oil (Camellia oleifera Abel.) Modifies the Composition of Gut Microbiota and Alleviates Acetic Acid-Induced Colitis in Rats. J. Agric. Food Chem. 2018, 66, 7384–7392. [Google Scholar] [CrossRef]
- Miao, F.; Shan, C.; Ma, T.; Geng, S.; Ning, D. Walnut oil alleviates DSS-induced colitis in mice by inhibiting NLRP3 inflammasome activation and regulating gut microbiota. Microb. Pathog. 2021, 154, 104866. [Google Scholar] [CrossRef]
- Martinez, N.; Prieto, I.; Hidalgo, M.; Belen Segarra, A.; Martinez-Rodriguez, A.M.; Cobo, A.; Ramirez, M.; Galvez, A.; Martinez-Canamero, M. Refined versus Extra Virgin Olive Oil High-Fat Diet Impact on Intestinal Microbiota of Mice and Its Relation to Different Physiological Variables. Microorganisms 2019, 7, 61. [Google Scholar] [CrossRef]
- Farras, M.; Martinez-Gili, L.; Portune, K.; Arranz, S.; Frost, G.; Tondo, M.; Blanco-Vaca, F. Modulation of the Gut Microbiota by Olive Oil Phenolic Compounds: Implications for Lipid Metabolism, Immune System, and Obesity. Nutrients 2020, 12, 2200. [Google Scholar] [CrossRef]
- Aldamarany, W.A.S.; Taocui, H.; Deng, L.; Mei, H.; Yi, Z.; Zhong, G. Perilla, sunflower, and tea seed oils as potential dietary supplements with anti-obesity effects by modulating the gut microbiota composition in mice fed a high-fat diet. Eur. J. Nutr. 2023, 62, 2509–2525. [Google Scholar] [CrossRef]
- Chivero, P.; Gohtani, S.; Yoshii, H.; Nakamura, A. Physical properties of oil-in-water emulsions as a function of oil and soy soluble polysaccharide types. Food Hydrocoll. 2014, 39, 34–40. [Google Scholar] [CrossRef]
- Yu, Y.; Gao, Y.; Zhu, Q.; Mou, D.; Duan, S.; Hou, Z. Preparation and Physicochemical Stability of Perilla Seed Oil Double-Layer Emulsions. Food Sci. 2019, 40, 60–65. [Google Scholar]
- Tunit, P.; Kietinun, S.; Sriyakul, K.; Tungsukruthai, P.; Chittasupho, C. Enhancement of Antioxidant Activity by the Combination of Moringa oleifera and Perilla frutescens Seed Oils in Microemulsion. Key Eng. Mater. 2020, 859, 100–106. [Google Scholar] [CrossRef]
- Nguyen, M.-T.; Shin, J.-A.; Lee, K.-T. Oxidation stability of oil-in-water emulsion prepared from perilla seed oil and soy sauce with high salt concentration using OSA-starch. Food Sci. Biotechnol. 2023, 32, 1883–1891. [Google Scholar] [CrossRef]
- Han, B.; Yu, B.; Liu, L.; Xiu, Y.; Wang, H. Experimental investigation of the strong stability, antibacterial and anti-inflammatory effect and high bioabsorbability of a perilla oil or linseed oil nanoemulsion system. RSC Adv. 2019, 9, 25739–25749. [Google Scholar] [CrossRef]
- Hu, M.; Xie, F.; Zhang, S.; Qi, B.; Li, Y. Effect of nanoemulsion particle size on the bioavailability and bioactivity of perilla oil in rats. J. Food Sci. 2021, 86, 206–214. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Wang, S.; Chen, S.; Yang, C.; Liu, L.; Bi, S.; Zhou, Y.; Zhu, Q. Perilla seed oil high internal phase emulsion improve the gel properties of myofibrillar protein. Food Chem. X 2024, 21, 101241. [Google Scholar] [CrossRef] [PubMed]
- Li, K.-Y.; Zhou, Y.; Huang, G.-Q.; Li, X.-D.; Xiao, J.-X. Preparation of powdered oil by spray drying the Pickering emulsion stabilized by ovalbumin–gum Arabic polyelectrolyte complex. Food Chem. 2022, 391, 133223. [Google Scholar] [CrossRef]
- Prakansamut, N.; Adulpadungsak, K.; Sonwai, S.; Aryusuk, K.; Lilitchan, S. Application of functional oil blend-based oleogels as novel structured oil alternatives in chocolate spread. LWT Food Sci. Technol. 2024, 203, 116322. [Google Scholar] [CrossRef]
- Xu, B.; Lin, X.; Zhao, Y.; Yin, C.; Cheng, Y.; Li, X.; Li, Y. The effect of citral loading and fatty acid distribution on the oleogels: Physicochemical properties and in vitro digestion. Food Chem. 2024, 459, 140337. [Google Scholar] [CrossRef]
- Zamani-Ghaleshahi, A.; Rajabzadeh, G.; Ezzatpanah, H.; Ghavami, M. Biopolymer coated nanoliposome as enhanced carrier system of perilla oil. Food Biophys. 2020, 15, 273–287. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, H.; Zhang, H.; Shi, C.; Zhou, W.; Zhang, X. Nanostructured lipid carrier as a strategy for encapsulation of formononetin and perilla seed oil: In vitro characterization and stability studies. Food Biosci. 2023, 53, 102707. [Google Scholar] [CrossRef]
- Han, L.; Hou, Z.; Wen, J.; Wu, Y.; Qian, Y.; Gong, S. Preparation and evaluation of high-loaded perilla seed oil by microencapsulation with different wall materials. Sci. Technol. Food Ind. 2016, 37, 167–170. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, W.; Wang, H.; Sun, H.; Li, C. Preparation, Physicochemical Indexes and Application Potential of Perilla Seed Oil Microcapsule. Chin. Agric. Sci. Bull. 2023, 39, 125–132. [Google Scholar]
- Xu, J.; Xiao, J.; Chen, Y.; Zhang, W.; Wang, J.; Wang, P.; Mi, L.; You, P. Research on Microencapsulation of Perilla Seed Oil Produced by Spray-drying Method. China Condiment 2013, 38, 9–13. [Google Scholar]
- Zhu, X.; Li, J.; Pan, Y.; Wang, N. The Research of Spray Granulation Technolgy and Stability of Perilla Seed Oil Microcapsules. Beverage Ind. 2021, 24, 47–50. [Google Scholar]
- Li, X.; Han, F.; Zhang, Z.; Li, H.; Chen, T. Preparation of perilla seed oil microcapsules. Food Sci. Technol. 2018, 43, 212–217. [Google Scholar] [CrossRef]
- Chang, D.; Zhang, T.; Ma, R.; Zheng, C.; Fang, C. Study on preparation of perilla oil microcapsules by complex coacervation followed by freeze drying. J. Shaanxi Univ. Sci. Technol. 2019, 37, 43–47. [Google Scholar] [CrossRef]
- Chen, L.; Li, R.; Jiang, Z.; Tan, J. Comparative study on properties of the microencapsule of perilla oilentrapped with different microencapsulation methods. Sci. Technol. Food Ind. 2013, 34, 176–180+234. [Google Scholar] [CrossRef]
- Jiang, A. Preparation and Application of Single-Walled Mierocapsules. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2022. [Google Scholar]
- Wang, Y.; Ai, C.; Wang, H.; Chen, C.; Teng, H.; Xiao, J.; Chen, L. Emulsion and its application in the food field: An update review. eFood 2023, 4, e102. [Google Scholar] [CrossRef]
- Pang, M.; Zheng, D.; Jia, P.; Cao, L. Novel Water-in-Oil Emulsions for Co-Loading Sialic Acid and Chitosan: Formulation, Characterization, and Stability Evaluation. Foods 2022, 11, 873. [Google Scholar] [CrossRef]
- Han, L.; Hou, Z.; Wen, J.; Wu, Y.; Qian, Y.; Gong, S. Preparation and stability evaluation of perilla seed oil emulsions. Food Ferment. Ind. 2016, 42, 144–149. [Google Scholar] [CrossRef]
- Chivero, P.; Gohtani, S.; Yoshii, H.; Nakamura, A. Effect of xanthan and guar gums on the formation and stability of soy soluble polysaccharide oil-in-water emulsions. Food Res. Int. 2015, 70, 7–14. [Google Scholar] [CrossRef]
- Walker, R.; Decker, E.A.; McClements, D.J. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: Opportunities and obstacles in the food industry. Food Funct. 2015, 6, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Tunit, P.; Chittasupho, C.; Sriyakul, K.; Tungsuruthai, P.; Chakkavittumrong, P.; Na-Bangchang, K.; Kietinun, S. Emulgels Containing Perilla frutescens Seed Oil, Moringa oleifera Seed Oil, and Mixed Seed Oil: Microemulsion and Safety Assessment. Polymers 2022, 14, 2348. [Google Scholar] [CrossRef]
- Brito de Carvalho-Guimaraes, F.; Correa, K.L.; de Souza, T.P.; Rodriguez Amado, J.R.; Ribeiro-Costa, R.M.; Silva-Junior, J.O.C. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals 2022, 15, 1413. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E. Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers That Can Inhibit Lipid Oxidation. J. Agric. Food Chem. 2018, 66, 20–35. [Google Scholar] [CrossRef]
- Wei, F.; Miao, J.; Tan, H.; Feng, R.; Zheng, Q.; Cao, Y.; Lan, Y. Oleogel-structured emulsion for enhanced oxidative stability of perilla oil: Influence of crystal morphology and cooling temperature. LWT Food Sci. Technol. 2021, 139, 110560. [Google Scholar] [CrossRef]
- Rudzińska, M.; Grygier, A.; Knight, G.; Kmiecik, D. Liposomes as Carriers of Bioactive Compounds in Human Nutrition. Foods 2024, 13, 1814. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, W.; Xiang, J.; Chen, H.; Quek, S.Y. Fabrication, characterization, and oxidative stability of perilla seed oil emulsions and microcapsules stabilized by protein and polysaccharides. J. Food Process. Preserv. 2022, 46, e16950. [Google Scholar] [CrossRef]
- Li, Y. Study on the Effect of Ice Structuring Protein on Freeze-Dried Perilla Oil Microcapsule Powder. Master’s Thesis, Harbin University of Commerce, Harbin, China, 2020. [Google Scholar]
- Chaiyasut, C.; Sivamaruthi, B.S.; Kesika, P.; Sirilun, S.; Makhamrueang, N.; Peerajan, S. Evaluation of Pharmacological Stability of Perilla Oil and Perilla Oil Capsule. Asian J. Pharm. Clin. Res. 2019, 12, 518–522. [Google Scholar] [CrossRef]
Health Benefits | Test Subjects | Types | Effects | Reference |
---|---|---|---|---|
Antioxidant Activity | O2− and NaNO2− | In vitro | The IC50 values are 2.49 mg/mL and 2.51 mg/mL. | [11] |
DPPH | In vitro | The scavenging ability is 73.14%. | [12] | |
Murine embryonic fibroblasts | In vitro | ROS ↓ | [13] | |
TNF-α-induced A549 lung adenocarcinoma cells | In vitro | Oxidative stress ↓ | [14] | |
Ethanol-induced oxidative damage in mice | In vivo | MDA and PC ↓ GSH and SOD ↑ | [15] | |
Anti-inflammatory activity | A549 cells | In vitro | IL-1β, IL-6, IL-8, TNF-α, COX-2 and LTB4 ↓ | [16] |
(EPP)-induced ear swelling in rats | In vivo | Twisting response ↓ Ear response ↓ | [17] | |
Hypolipidemic activity | Hyperlipidemic mice | In vivo | TC, TG, LDL-C and MDA ↓ HDL-C, SOD and CAT ↑ | [18,19,20] |
Hypoglycemic activity | Spontaneous diabetic KKAy mice | In vivo | ALT and AST↑ Glucose-6-phosphate dehydrogenase, TG and TC↓ | [21] |
Type 2 diabetic KKAy mice | In vivo | Insulin levels ↑ Blood glucose levels ↓ | [22] | |
Neuroprotective activity | Chronic cerebral hypoperfusion rats | In vivo | Escape latency and TChE ↓ TChE ↓ | [23] |
Weanling rats | In vivo | Escape latency↓ Platform crossing frequency↑ | [24] | |
ApoE KO mice | In vivo | Dark neurons ↓ Neuronal apoptosis ↓ | [25] | |
Immunoregulatory activity | layer chicks | In vivo | Nonspecific IgG ↑ | [26] |
OVA-sensitized mice | In vivo | Nonspecific IgE ↑ Nonspecific IgA ↓ | [27] | |
Rats | In vivo | Spleen index, thymus index and phagocytic index ↑ HC50 ↑ | [28] | |
Antibacterial activity | Escherichia coli and Bacillus subtilis | In vitro | The inhibition rates were 53.3–101.7% and 108.3–136.7%, respectively. | [29] |
Encapsulation Type | Condition | Physicochemical Property | Reference |
---|---|---|---|
Emulsions | Emulsifier: GA (mass fraction: 4%) | Particle size: 0.678 ± 0.006 μm Emulsion instability index: 0.131 Slope values: 0.0015%/s | [33] |
Emulsifier: HI-CAP 100 (mass fraction: 16%) | Particle size: 0.709 ± 0.045 μm Emulsion instability index < 0.2 Slope values < 0.0025%/s | ||
Emulsifier: PG 2000 (mass fraction: 4%) | Particle size: 0.766 ± 0.014 μm Emulsion instability index < 0.2 Slope values < 0.0025%/s | ||
Emulsifier: SSPS (mass fraction: 16%) | Particle size: 0.735 ± 0.004 μm Emulsion instability index < 0.2 Slope values < 0.0025%/s | ||
Emulsifier: SPI (mass fraction: 1%) | Particle size: 2.075 ± 0.095 μm Emulsion instability index < 0.2 Slope values < 0.0025%/s | ||
Emulsifier: SC (mass fraction: 4%) | Particle size: 0.742 ± 0.003 μm | ||
Emulsifier: SSPS-L (mass fraction: 6%) | Particle size: 0.07 mm | [52] | |
Emulsifier: SSPS-M (mass fraction: 6%) | Particle size: 0.08 mm | ||
Emulsifier: SSPS-H (mass fraction: 6%) | Particle size: 0.02 mm | ||
Emulsifiers: Soybean polysaccharides (core-to-wall ratio 2:1) and Chitosan (0.4%) | Particle size: 1.185 μm Zeta potential: +43 mV | [53] | |
Emulsifier: Tween 80 Oil phase: moringa seed oil and perilla seed oil | Particle size: 159.33–263.43 nm PDI: 0.341 ± 0.002–0.350 ± 0.018 Zeta potential: −7.636 ± 0.525–−6.61 ± 0.17 mV The rheological property: pseudoplastic flow behavior | [54] | |
Emulsifier: OSA-Starch (mass fraction 3%) | Particle size: 440 nm (4 °C) and 867–891 nm (25–40 °C) | [55] | |
Emulsifier: Cremophor RH40-Span80 (3:1) (mass fraction: 30%) Oil-to-water ratio: 3:7 | Particle size: 293.87 nm Zeta potential: −43.2 mV | [56] | |
Emulsifiers: SPI (4% w/v) and Phosphatidylcholine 0.4% (w/v) Homogenization Pressure: 120 MPa | Particle size: 293.87 ± 6.55 nm PDI < 0.25 | [57] | |
Emulsifier: Pea Protein (4.0% w/w) Oil-to-Water Ratio: 3:1 | Particle size: 23.39 μm Zeta potential: −29.00 mV | [58] | |
Emulsifier: Ovalbumin (OVA)–Gum Arabic (GA) (mass fraction: 2%) | Particle size: 3176.33–4336.00 nm Zeta potential: −17.99–19.91 mV Oil content: 77.7% Pseudoplastic behavior | [59] | |
Oleogels | Oil ratio: 80 g:10 g:10 g (rice bran oil: camellia seed oil: perilla seed oil) Gelators: monoglycerides, polyols and rice bran wax | Hardness: 1.25 ± 0.16 N, 0.75 ± 0.06 N and 0.12 ± 0.03 N Spreadability: 4.30 ± 1.0 N·s, 2.49 ± 0.29 N·s and 0.29 ± 0.14 N·s Melting point: 53.50 °C, 54.00 °C and 40.00 °C | [60] |
Gelling agent: Beeswax Citral (CT) < 10 wt% | Oil-Holding Capacity (OHC) value: 99.03% Hardness: 192.59 g Melting onset temperature (Tonset): 30.81 °C Melting peak temperature (Tpeak): 44.48 °C FFA release rate: 34.06% | [61] | |
Liposome | Liposome: L-α-lecithin Coating materials: chitosan, poly-L-lysine and sodium alginate Crosslinking agent: genipin | Particle size: 200–502 nm Zeta potential: +41.9 mV Encapsulation efficiency: 82–91% Fatty acid release: 20–80% | [62] |
Surfactants: Tween 80 and 1,2-Propanediol Solid Lipid: Glyceryl Distearate Liquid Lipid: PSO | Particle size: 117.5 ± 3.7 nm PDI: 0.240 ± 0.017 Zeta potential: 36.7 ± 0.7 mV DPPH radical scavenging ability: IC50 of 0.7 mg/mL | [63] | |
Microcapsule | Wall Materials: Pure-Cote 2000 and HI-CAP 100 (mass fraction:20%) | Particle Size: 109.4 ± 5.5 μm and 110.3 ± 6.8 μm Surface Oil Content: 3.05% and 3.31%, respectively Encapsulation Rate: 93.86% and 93.33%, respectively | [64] |
Wall materials: Arabic gum and β-cyclodextrin (β-CD) (1:2) Core materials: Mixture of monoesters and sucrose esters (6:4) and PSO | Particle size: 17.52 ± 1.86 μm Encapsulation efficiency: 86.52% Bulk density: 0.43 g/cm3 Moisture content: 2.17 ± 0.11% Solubility: 74.65 ± 0.34% Contact angle: 36.27 ± 0.17° | [65] | |
Wall material: Flaxseed gum Core-to-wall ratio: 3:2 | Encapsulation efficiency: 97.9% Microencapsulation efficiency: 92.36% Oil content: 55.45% | [66] | |
Wall material: Sodium caseinate (mass fraction: 7.5%) Core-to-wall ratio: 3:1 Filler: Solid corn syrup (mass fraction: 30%) | Encapsulation efficiency: 97.85% | [67] | |
Emulsifiers: Tween-80 and Span-80 (Mass ratio 1:1, Mass fraction 1%) Wall Materials: Perilla Protein Powder and Maltodextrin (Mass ratio 3:1) Core-to-Wall Ratio: 2:3 | Encapsulation Rate: 94.01% Oil Content: 39.23% | [68] | |
Gelatin: Arabic gum (1:1 ratio, 1% mass fraction) Core-to-wall ratio: 1:1 | Structure intact Uniform morphology Even dispersion | [69] | |
Wall Materials: Octenyl succinic anhydride modified starch Solid Content: 30% Core-to-Wall Ratio: 1: 4 | Microencapsulation Efficiency: 98.86% and 76.24% (Spray Drying and Freeze-Drying) | [70] | |
Wall Material: Gelatin Core-to-Wall Ratio: 1.5:1 | Encapsulation Rate: 89.4% Particle size: 20–40 μm | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Jiang, N.; Guo, G.; Lu, S.; Li, Z.; Mu, Y.; Xia, X.; Xu, Z.; Hu, Y.; Xiang, X. Perilla Seed Oil: A Review of Health Effects, Encapsulation Strategies and Applications in Food. Foods 2024, 13, 3615. https://doi.org/10.3390/foods13223615
Li M, Jiang N, Guo G, Lu S, Li Z, Mu Y, Xia X, Xu Z, Hu Y, Xiang X. Perilla Seed Oil: A Review of Health Effects, Encapsulation Strategies and Applications in Food. Foods. 2024; 13(22):3615. https://doi.org/10.3390/foods13223615
Chicago/Turabian StyleLi, Min, Nanjie Jiang, Guangqi Guo, Shuaijun Lu, Ziliang Li, Yujie Mu, Xiaoyang Xia, Zhenxia Xu, Yong Hu, and Xia Xiang. 2024. "Perilla Seed Oil: A Review of Health Effects, Encapsulation Strategies and Applications in Food" Foods 13, no. 22: 3615. https://doi.org/10.3390/foods13223615
APA StyleLi, M., Jiang, N., Guo, G., Lu, S., Li, Z., Mu, Y., Xia, X., Xu, Z., Hu, Y., & Xiang, X. (2024). Perilla Seed Oil: A Review of Health Effects, Encapsulation Strategies and Applications in Food. Foods, 13(22), 3615. https://doi.org/10.3390/foods13223615